• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Square-root parametrization of dark energy in f(Q) cosmology

    2023-12-28 09:20:36KoussourMyrzakulovAlnadhiefAlfedeelHassanSofuoluandSafaMirgani
    Communications in Theoretical Physics 2023年12期

    M Koussour ,N Myrzakulov ,Alnadhief H A Alfedeel ,E I Hassan ,D Sofuo?lu and Safa M Mirgani

    1 Quantum Physics and Magnetism Team,LPMC,Faculty of Science Ben M’sik,Casablanca Hassan II University,Morocco

    2 L.N.Gumilyov Eurasian National University,Astana 010008,Kazakhstan

    3 Ratbay Myrzakulov Eurasian International Centre for Theoretical Physics,Astana 010009,Kazakhstan

    4 Department of Mathematics and Statistics,Imam Mohammad Ibn Saud Islamic University (IMSIU),Riyadh 13318,Saudi Arabia

    5 Department of Physics,Faculty of Science,University of Khartoum,PO Box 321,Khartoum 11115,Sudan

    6 Centre for Space Research,North-West University,Potchefstroom 2520,South Africa

    7 Department of Physics,Istanbul University Vezneciler 34134,Fatih,Istanbul,Turkey

    Abstract This paper is a parametrization of the equation of state (EoS) parameter of dark energy (DE),which is parameterized using square-root(SR)form i.e.,where ω0 and ω1 are free constants.This parametrization is examined in the context of the recently suggested f(Q)gravity theory as an alternative to general relativity (GR),in which gravitational effects are attributed to the non-metricity scalar Q with the functional form f(Q)=Q+αQn,where α and n are arbitrary constants.We derive observational constraints on model parameters using the Hubble dataset with 31 data points and the Supernovae (SNe) dataset from the Pantheon samples compilation dataset with 1048 data points.For the current model,the evolution of the deceleration parameter,density parameter,EoS for DE,and Om(z)diagnostic have all been investigated.It has been shown that the deceleration parameter favors the current accelerated expansion phase.It has also been shown that the EoS parameter for DE has a quintessence nature at this time.

    Keywords: cosmology,dark energy,f(Q) gravity,EoS parameter

    1.Introduction

    Observational evidence for high redshift Supernovae (SNe)supports the growing idea of late-time cosmic acceleration[1,2].This observation is further supported by evidence of Baryon acoustic oscillations(BAO)[3,4],cosmic microwave background (CMB) [5,6],and large scale structure (LSS)[7,8].One of the most delicate difficulties in current cosmology is determining who is accountable for late time cosmic accelerated expansion.Our Cosmos/Universe is governed by an unidentified type of energy known as Dark Energy (DE).Although the inclusion of DE as the cosmological constant,has been exceedingly efficient,theoretical difficulties of fine-tuning and cosmic coincidence have hampered its effectiveness [9,10] .This leads physicists to describe the Cosmos with a phase transition from deceleration to acceleration.The kinematic method is explored by Turner and Riess to describe cosmic acceleration without assuming the validity of general relativity (GR) [11].This method has no influence on the physical or geometrical features of DE and is referred to as the model-independent way to investigate DE,i.e.via a parametrized equation of state (EoS) parameter of DE as a function of scale factor or redshift,and then comparing such parametrizations to cosmological data.Reference[12] is a review of the parametrization of the EoS parameterω(z).Another model-independent way to investigate the DE is to parametrize the deceleration parameter.For a quick overview of the deceleration parameter,see here [13].Nojiri and Odintsov also investigated numerous parametrizations of the Hubble parameter to study future cosmological singularities[14].The advantage of the parameterization method is that the result is independent of any specific gravitational theory.The negative is that it will not provide much direct knowledge on what is causing the Cosmos to accelerate.

    Another approach to solving the late time acceleration problem and describing the origin of DE is to modify the action of GR,which is known as modified theories of gravity(MTG).Many modified theories have been suggested up to this moment.The f(R)gravity(where R is the scalar curvature)introduced by Buchdahl is the most important and extensively utilized modification to GR [15].Numerous researchers have examined various aspects of f(R)gravity and how it might induce cosmic inflation and acceleration [16–18].Another extension of the Einstein–Hilbert action is the presence of non-minimal interaction between matter and geometry.Thus,the so-called f(R,T)modified theory of gravity emerges.Harko et al introduced f(R,T) gravity theory,where the gravitational Lagrangian is characterized by an arbitrary function of the scalar curvature R and the trace of the energy-momentum tensor T [19].In f(R,T)gravity,several astrophysical and cosmological consequences are studied [20–24].Apart from curvature,the essential items involved with the manifold’s connection defining gravity are also torsion and non-metricity[25].The gravity theories may be divided into three categories based on the connection used.The first employs curvature,free torsion,and metric-compatible connections,such as GR.The second class employs a metriccompatible,curvature-free connection with torsion,such as the teleparallel equivalent of GR [26].The latter employs a curvature and torsion-free connection that is not metric compatible,for example,the symmetric teleparallel(ST)equivalent of GR[27].The geometrical trinity of gravity refers to these three equivalent interpretations based on the three separate connections[25].The f(Q) gravity (where Q is the non-metricity scalar) is a generalization of the ST equivalent of GR with zero torsion and curvature [28].Much research on f(Q) gravity has recently been published.[29,30]include the very first cosmological solutions in f(Q)theory,whereas[31,32]contain f(Q)cosmography and energy conditions.A power-law model has been examined using quantum cosmology [33].Cosmological solutions and matter perturbation growth index have been examined for a polynomial form of f(Q)theory[34].Harko et al used a power-law function to analyze the coupling matter in f(Q) gravity [35].

    In this paper,we consider the square-root (SR) parametrization ofωDE(z),and then we use observational data to determine the behavior of the EoS parameter for DE.After confirming that the Cosmos underwent acceleration,we presume that the acceleration was caused by DE and employ a basic DE parametrization to investigate the property of DE within the framework of f(Q) gravity.The observational constraints on the model parameters are achieved by utilizing the most recent Hubble dataset with 31 data points,and SNe dataset from Pantheon samples compilation dataset with 1048 data points.Using the estimated values of model parameters,we examined the evolution of the deceleration parameter and the EoS parameter for DE at the 1-σ and 2-σ confidence levels.This study is structured as follows:in the next section,we describe the fundamental cosmological scenario of f(Q)gravity and derive the field equations in flat FRW space.Section 3 presents the parametrization model of the EoS parameter and the background for discussing the cosmic evolution of the Cosmos.In section 4,we have detailed the most recent observational data-sets used in our research.Section 5 goes with cosmological parameters such as deceleration parameter,energy density,EoS parameter,and Om(z)diagnostic.The last section contains the outcomes.

    2.f(Q) cosmology

    In f(Q)theory,the covariant derivative of the metric tensor is non-zero,and this fact can be represented mathematically in terms of a new geometrical variable known as non-metricity i.e.Qσμν=?σgμν.So,f(Q) gravity is a modified theory that extends Einstein’s theory of GR by adding a function of the non-metricity tensor Q into the action,which has no curvature or torsion.The non-metricity tensor measures the variation of a vector’s length in parallel transport and is the critical geometric variable that explains the characteristics of gravitational interaction.The action of the f(Q) gravity is [28]

    where Q is replaced by f(Q) in the symmetric teleparallel action,f(Q) being an arbitrary function of Q.Here,g is the determinant of the metric tensor gμνandLmis the usual matter Lagrangian density.The two independent traces of Qαμνare

    Moreover,the non-metricity scalar is defined as a contraction of Qαμνgiven by

    where Pσμνis the superpotential tensor (also known as the non-metricity conjugate) and

    A variation of action(1)with regard to the metric gives the field equations as

    We consider that the matter of the Cosmos is a perfect fluid with no viscosity.The energy-momentum tensor Tμνis given by

    where uμis the 4-velocity satisfying the normalization condition uμuμ=-1.Also,ρ and p are the energy density and isotropic pressure of a perfect fluid,respectively.The current objective is to investigate the dynamics of the Cosmos against the background of the spatially flat Friedmann–Lemaitre–Robertson–Walker (FLRW) metric,which is expressed as

    In this case,the non-metricity scalar is given by Q=6H2,whereis the Hubble parameter with a(t) as the scale factor and the dot is the derivative with respect to cosmic time t.The modified Friedmann equations govern the Cosmos’s dynamics take the form [29]

    For f(Q)=Q,we get the standard Friedmann equations[29],as predicted,because,as previously stated,this specific option for the form of the function f(Q) represents the theory’s ST equivalent of GR limit.By using f(Q)=Q+F(Q),the field equations (8) and (9) can be written as

    Equations (10) and (11) can be interpreted as the ST counterparts of GR cosmology,but with the inclusion of an additional component arising from the non-metricity Q of space-time that exhibits properties similar to those of a fluid component attributed to DE i.e.ρQ=ρDEand pQ=pDE.

    Therefore,using equations (10) and (11),we obtain

    where ρDEand pDEare the density and pressure contributions of the DE due to the non-metricity of space-time defined by

    Furthermore,the equation of state(EoS)parameter due to the DE component is

    By applying the covariant divergence to the field equations (5),we derive ?μTμν=0 [36],and incorporating equation (6),the conservation equation for the energymomentum tensor can be derived as

    3.Square-root (SR) parametrization for EoS parameter

    For our investigation of SR parametrization,we pressume the functional formF(Q)=αQn,where α and n are model parameters.This specific functional form of f(Q) is motivated in [30].Also,we observe that if n=0,the model reduces to the standard ΛCDM model,withbehaving as the cosmological constant [37,38].The scenario n=1 corresponds to the symmetric teleparallel equivalent of GR,due to a factor of α+1 rescaling of Newton’s gravitational constant [29].Nevertheless,modification from the GR evolution occurs in the small curvature phase for n<1 and modification at the large curvature phase for n>1.Thus,whereas models with n>1 will apply to the early Cosmos,models with n<1 will apply to the late time DE-dominated Cosmos [30].

    Using this form,we derived the energy density ρDE,and pressure pDEfor DE in terms of Hubble parameter as,

    To get cosmological findings that enable for direct comparison of predicted results with observational data,we include the redshift parameter z,expressed byas an independent variable instead of the cosmic time variable t.Here,we have normalized the scale factor so that its current day value is one i.e.a(0) =a0=1.Therefore,the timedependent derivative of the Hubble parameter is represented as

    Now,we have an additional choice to pick one parameter because we have more unknown parameters with fewer equations to solve i.e.equations (18)–(20).The DE is typically described by an EoS parameter that is a ratio of spatially homogenous pressure to DE density.Recent cosmological investigations show that the ambiguities are too great to distinguish between the cases: ω<-1,ω=-1,and ω>-1[39–41].In the decelerating phase,which contains two epochs of matter and radiation,the EoS parameter takes the valuesand ω=0 respectively.The accelerating phase of the Cosmos,which has recently been explored,is represented withwhich contains the quintessenceΛCDM ω=-1,and phantom regime ω<-1.The value of the EoS parameter for DE estimated by Nine-Year Wilkinson Microwave Anisotropy Probe(WMAP9),which integrated data from H0measurements,SNe,CMB,and BAO,is ω=-1.084±0.063 [39],whereas the Planck collaboration shows ω=-1.006±0.0451 [40],and later in 2018,it published ω=-1.028±0.032 [41].So,the value of the EoS parameter flips from positive in the past to negative in the present.The parameterization of the EoS is a valuable way for reconstructing cosmological parameters and constraining the dynamical history of the Cosmos in ageneral scheme.There are numerous parameterizations for ωDEdescribed in the literature,see [42–45].In this work,we consider the SR parametrization form of EoS parameter for DE in terms of redshift z (ωQ=ωDE=ωSR) [46],

    The parametrization employed in this study offers several key advantages in the context of modeling the EoS of DE.Firstly,it provides a physically interpretable framework,with ω0representing the DE EoS at the present epoch (z=0) and ω1characterizing the temporal evolution of DE.This transparency enhances our understanding of the underlying physical processes.Moreover,the parametrization explicitly incorporates the redshift dependence,allowing us to capture the evolving nature of DE over cosmic time.Its flexibility enables us to encompass a wide range of DE behaviors,from quintessence to phantom DE.This adaptability ensures that the parametrization can be fine-tuned to match a variety of observational data,making it a valuable tool for cosmological research.In addition,it clearly observes that the EoSparameter at high redshift (i.e.z →∞) becomes ωSR=ω0+ω1and thus depends on the values ω0and ω1.For z →-1,becomes asit behaves like DE throughout cosmic evolution and this is appropriate for ωDEin equation (20).

    Using equations (20),(21),and (22),we obtain the following differential equation

    Solving equation (23),we obtain the expression for the Hubble parameter in terms of z

    where c0is a constant of integration.The current value of the Hubble parameter can be obtained as

    Using equations(24)and(25),the Hubble parameter can be rewritten in terms of H0in the form

    The deceleration parameter q is written as

    In the current model,q evolves as a function of z as

    The Om diagnostic is an important method for classifying the various DE cosmological scenarios[47].It is the simplest diagnosis since it just takes the first order derivative of the cosmic scale factor.It is expressed for a spatially flat Cosmos as

    The negative slope of Om(z) leads to quintessence type behavior (ω>-1),whereas the positive slope,refers to phantom-type behavior (ω<-1).The constant nature of Om(z)represents the ΛCDM model(ω=-1).In the next section,we will attempt to estimate the ω0,ω1and n values using the Hubble and Pantheon data-sets.With the help of the ω0,ω1and n values,we discuss the behavior of the aforementioned cosmological parameters and verify the validity of the cosmological model.

    4.Observational data

    The several observational datasets may then be utilized to restrict the parameters H0,ω0,ω1and n.It is important to note that the EoS parameter ωDEfor DE (see equation (20)) is not dependent on the parameter α and hence is not explicitly contained in the Hubble parameter expression,i.e.equation(26),we attempt to fix it by setting α=1.We study the observational data using the standard Bayesian approach,and we get the posterior distributions of the parameters using the MCMC (Markov Chain Monte Carlo) method.In addition,for MCMC analysis,we use the emcee Python package[48].In this work,we use two data: Hubble dataset with 31 data points,and SNe dataset from Pantheon samples compilation dataset with 1048 data points.

    4.1.Hubble dataset

    We utilize a dataset consisting of 31 data points obtained through the cosmic chronometers (CC) technique.This approach allows us to directly extract information about the Hubble function at various redshifts,spanning up to z ≤2.The choice to incorporate CC data is primarily motivated by its reliance on measurements of age differences between two galaxies that evolved passively,originating simultaneously but separated by a small redshift interval.This method facilitates the calculation of Δz/Δt.Notably,CC data has demonstrated higher reliability in comparison to other methods that depend on absolute age determinations for galaxies,as previously discussed in[49].The CC data points utilized in our analysis were collected from references [50–56],all of which are independent of the Cepheid distance scale and specific cosmological models.It is important to acknowledge that these data points rely on the modeling of stellar ages,employing well-established techniques of stellar population synthesis (for further details,refer to [52,54,57–60] for analyses related to CC systematics).To evaluate the goodness of fit between our model and the dataset,we employ the χ2function,defined as

    4.2.Pantheon dataset

    The SNe plays an important role in characterizing the expanding Cosmos.Moreover,spectroscopically acquired SNe data from studies that include the SuperNova Legacy Survey (SNLS),the Sloan Digital Sky Survey (SDSS),the Hubble space telescope (HST) survey,and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1) provide strong evidence in this path.The Pantheon dataset,the most recent SNe data sample,comprise 1048 magnitudes for the distance modulus evaluated over a redshift range of 0.01

    4.3.Hubble+Pantheon dataset

    In this section,we present the outcomes of the statistical MCMC method combined with the Bayesian analysis.We apply the joint analysis for the Hubble dataset with 31 data points,and the Pantheon dataset with 1048 sample points to constrain the parameters of the model H0,ω0,ω1and n from equation (26).We utilized 100 walkers and 1000 MCMC steps to get conclusions for the dataset.For the joint analysis,we consider the following priors:H0?[6 0,80],ω0? [-2,2],ω1? [-2,2],andn? [-2,2].When only a dataset is used to estimate parameters,we presume a Gaussian likelihood.The quality of fit for the joint analysis is measured by a total chi-squared functionthat is defined as:

    whereLTrepresents the product of the likelihood functions of each dataset.

    Recent studies have highlighted the significance of Hubble parameter measurements and Pantheon data in constraining cosmological parameters.In our model,the parameters of interest are H0,ω0,ω1,and n.However,our primary aim is to assess the influence of parameters within the chosen parameter space and gauge their compatibility with observational data.Figure 1 displays the 1-σ and 2-σ likelihood contours derived from the joint analysis of the Hubble and Pantheon datasets.The best-fit values of the estimated model parameters areThe likelihood functions for the Hubble+Pantheon datasets are also extremely well matched to a Gaussian distribution function,as seen in figure 1.Figures 2 and 3 compare our RS parametrization model to the widely accepted ΛCDM model in cosmology,i.e.For the figure,we=0.314and H0=67.4 km.s-1.Mpc-1[41].The figures also include Hubble and Pantheon experimental findings,with 31 and 1048 data points with errors,respectively,allowing for a direct comparison between different models.

    Figure 1.The confidence curves for the model parameters at 1-σ and 2-σ using the Hubble+Pantheon dataset.Dark green shaded zones indicate the 1-σ confidence level(CL),whereas light green shaded regions reflect the 2-σ CL.The parameter constraint values are also displayed at the 1-σ CL.

    Figure 2.The variation of H(z)versus z.The blue dots represent error bars,the red line represents our model’s curve,and the black dashed line represents the ΛCDM model.

    Figure 3.The variation of μ(z)versus z.The blue dots represent error bars,the red line represents our model’s curve,and the black dashed line represents the ΛCDM model.

    Figure 4.The behavior of the deceleration parameter q versus redshift z.

    Figure 5.The behavior of the density parameter for DE ρDE versus redshift z.

    Figure 6.The behavior of the EoS parameter for DE ω versus redshift z.

    Figure 7.The behavior of the Om(z) versus redshift z.

    5.Cosmological parameters

    Cosmological parameters play a vital role in the construction of cosmological models.For the model to be realistic,the current value of the deceleration parameter q must be matched with the cosmic measurements.Furthermore,the model’s decelerating or accelerating behavior is determined by the positive or negative value of q.The behavior of the deceleration parameter,energy density,and EoS parameter in terms of redshift is illustrated below.For the model parameter values,we use the Hubble+Pantheon data-sets.According to figure 4,the deceleration parameter clearly indicates the transition from a decelerated(i.e.q>0)to an accelerated(i.e.q<0) stage of the Cosmos expansion for the constrained values of the model parameters.The present value of the deceleration parameter(i.e.z=0)corresponding to the model parameter values constrained by the Hubble+Pantheon dataset isMoreover,the transition redshift(i.e.q=0) is[63,64] for the Hubble+Pantheon dataset.In addition,it is essential to point out that the q0and ztrvalues constrained in this paper are consistent with the value reported in[65–67].The behavior of the energy density of DE is shown in figure 5.As the Universe expands,the energy density of DE increases with redshift z,but decreases with time.At late times,the DE density reaches a minimum value.Moreover,the small value of DE density implies that the Universe will continue to accelerate in its expansion in the future,leading to the big rip scenario.

    The EoS parameter is one of the cosmological parameters that are important in describing the status of the expansion of our Cosmos.So when the value of the EoS parameter is strictly less thanthe Cosmos accelerates.The behavior of the EoS parameter for DE is depicted in figure 6 based on constrained values of model parameters ω0,ω1and n from Hubble+Pantheon data-sets.It is seen that the EoS parameter for DE continues in the quintessence era,maintaining the Cosmos’s acceleration.The current value of EoS is calculated as[68,69].

    In addition,the slope of the diagnostic parameter Om(z)can distinguish between two types of DE scenarios (quintessence and phantom).According to figure 7,theOm(z) for the constrained values of the model parameters has a negative slope over the whole domain.We may deduce from theOm(z)diagnostic test that our RS model depicts quintessencetype behavior.This indicates that our model exhibits unique characteristics when contrasted with the standard ΛCDM model.

    6.Conclusion

    DE is one of the most enticing and intriguing topics in current cosmology,as it contributes to the Cosmos’s accelerating expansion.Many attempts have been taken to explain this cosmic acceleration,including several parametrizations of DE models and modified theories of gravity.The goal of this research is to examine the SR parametrization model in the f(Q)theory of gravity as an alternative theory to GR,in which gravitational effects are attributed to the non-metricity scalar Q.We derived the exact solution of the field equations for the functional form of f(Q) as f(Q)=Q+αQn,where α and n are arbitrary constants,by using the SR parametrization form of the EoS parameter for DE aswhich leads to the variable deceleration parameter.To obtain the best-fit values for the model parameters ω0,ω1and n,we used the Hubble dataset with 31 data points and SNe dataset from the Pantheon samples compilation dataset with 1048 data points.The best-fit values of the estimated model parameters areandfor the Hubble+Pantheon dataset.In this case,ω0represents the current value of the EoS parameter for DE,which exhibits negative behavior and is situated in the quintessence epoch.In addition,we explored numerous cosmological parameters to assess the model’s feasibility.The deceleration parameter demonstrates that the Cosmos depicted by our model transitions smoothly from the early decelerated phase to the present accelerated phase.Further,the present value of the deceleration parameter corresponding to the model parameter values constrained by the Hubble+Pantheon dataset isThe transition redshiftfor the Hubble+Pantheon dataset.Finally,figure 7 shows that the slope of the Om(z) diagnostic parameter Om(z) is negative.Thus,the model presented here behaves like the Cosmos’s quintessence model.The f(Q)cosmological model under consideration can be viewed as a highly promising alternative to the ΛCDM model,and more research into its possibilities would be both intriguing and important.A similar examination will be carried out in a future publication.

    Acknowledgments

    This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (Grant No.IMSIU-RG23008).

    ORCID iDs

    在线观看一区二区三区激情| 六月丁香七月| 老熟女久久久| 看免费成人av毛片| 五月伊人婷婷丁香| 久久青草综合色| 亚洲欧美日韩另类电影网站| 80岁老熟妇乱子伦牲交| 欧美xxⅹ黑人| 又粗又硬又长又爽又黄的视频| 精品卡一卡二卡四卡免费| 国产精品伦人一区二区| 人人妻人人看人人澡| 男的添女的下面高潮视频| 丰满人妻一区二区三区视频av| 精品少妇内射三级| 97在线人人人人妻| 欧美日韩一区二区视频在线观看视频在线| 亚洲一级一片aⅴ在线观看| 少妇猛男粗大的猛烈进出视频| 如何舔出高潮| 亚洲在久久综合| 这个男人来自地球电影免费观看 | 午夜福利影视在线免费观看| 亚洲av在线观看美女高潮| 久久鲁丝午夜福利片| 欧美日韩在线观看h| 亚洲精品国产色婷婷电影| 亚洲欧美中文字幕日韩二区| 另类亚洲欧美激情| 亚洲精品久久久久久婷婷小说| 免费久久久久久久精品成人欧美视频 | av有码第一页| 最新中文字幕久久久久| 一区二区三区免费毛片| av在线老鸭窝| 午夜福利网站1000一区二区三区| 97在线视频观看| 亚洲国产精品国产精品| 全区人妻精品视频| 一区在线观看完整版| 日韩成人av中文字幕在线观看| 韩国av在线不卡| 人妻 亚洲 视频| 高清黄色对白视频在线免费看 | 欧美精品高潮呻吟av久久| 插逼视频在线观看| 久久久国产一区二区| av不卡在线播放| 在线观看人妻少妇| 全区人妻精品视频| 国产精品免费大片| a 毛片基地| 久久狼人影院| 日日啪夜夜撸| 亚洲av电影在线观看一区二区三区| 国产黄色视频一区二区在线观看| 日韩成人伦理影院| 少妇丰满av| 久久97久久精品| 亚洲国产欧美日韩在线播放 | 性色avwww在线观看| 久久精品国产a三级三级三级| 黄色日韩在线| 亚洲自偷自拍三级| 最近的中文字幕免费完整| 久久久精品免费免费高清| 中文天堂在线官网| 亚洲国产精品一区三区| 国产精品蜜桃在线观看| 欧美激情极品国产一区二区三区 | 亚洲精品乱码久久久久久按摩| 久久久精品94久久精品| 男人狂女人下面高潮的视频| av有码第一页| 亚洲自偷自拍三级| 狂野欧美激情性bbbbbb| 高清视频免费观看一区二区| av福利片在线| 高清欧美精品videossex| 午夜影院在线不卡| 男人舔奶头视频| 亚洲精品国产成人久久av| 久久精品夜色国产| 亚洲欧美日韩东京热| 国产一区二区在线观看日韩| 亚洲高清免费不卡视频| 免费黄频网站在线观看国产| 制服丝袜香蕉在线| 国产高清国产精品国产三级| 啦啦啦啦在线视频资源| 九草在线视频观看| 九九久久精品国产亚洲av麻豆| 精品国产国语对白av| 极品少妇高潮喷水抽搐| 天天躁夜夜躁狠狠久久av| 一级毛片电影观看| 亚洲人成网站在线播| 国产黄片美女视频| 自拍欧美九色日韩亚洲蝌蚪91 | 街头女战士在线观看网站| 久久人人爽av亚洲精品天堂| 高清在线视频一区二区三区| 亚洲av欧美aⅴ国产| 国产精品欧美亚洲77777| 狂野欧美白嫩少妇大欣赏| 亚洲欧美成人精品一区二区| 最新中文字幕久久久久| 亚洲精品日本国产第一区| 亚洲丝袜综合中文字幕| 日本色播在线视频| 日韩免费高清中文字幕av| 精品久久久噜噜| 中文天堂在线官网| 中文字幕av电影在线播放| 伊人久久国产一区二区| 天天躁夜夜躁狠狠久久av| 亚洲国产精品一区三区| 国产日韩欧美亚洲二区| 亚洲av中文av极速乱| 久久影院123| 三级国产精品片| 日韩电影二区| 日本-黄色视频高清免费观看| 精品午夜福利在线看| 一级二级三级毛片免费看| 久久人人爽人人片av| 亚洲久久久国产精品| 又大又黄又爽视频免费| 国产 精品1| 18+在线观看网站| 日本av免费视频播放| 免费观看无遮挡的男女| 欧美97在线视频| 亚洲精品日韩在线中文字幕| 精品卡一卡二卡四卡免费| 精品久久久噜噜| 亚洲精品日韩在线中文字幕| 欧美日韩国产mv在线观看视频| 国产色婷婷99| 亚洲av国产av综合av卡| 黄色怎么调成土黄色| 免费黄网站久久成人精品| 色网站视频免费| 国产男女内射视频| 在线亚洲精品国产二区图片欧美 | av免费在线看不卡| 亚洲国产精品成人久久小说| 性高湖久久久久久久久免费观看| 精品久久国产蜜桃| 亚洲精品第二区| 欧美人与善性xxx| 一区二区av电影网| 51国产日韩欧美| 久久久久久久久久成人| 中文精品一卡2卡3卡4更新| 狂野欧美激情性bbbbbb| 黑丝袜美女国产一区| 精品午夜福利在线看| 99热全是精品| 免费观看av网站的网址| 少妇裸体淫交视频免费看高清| 国产爽快片一区二区三区| 日本免费在线观看一区| 国产综合精华液| av黄色大香蕉| 亚洲美女黄色视频免费看| 在线观看免费高清a一片| 亚洲第一av免费看| 精品久久久久久久久亚洲| 一级毛片我不卡| 秋霞伦理黄片| 亚洲av.av天堂| 狂野欧美激情性bbbbbb| 插逼视频在线观看| 国产综合精华液| 中文在线观看免费www的网站| 在线观看av片永久免费下载| av卡一久久| 欧美精品人与动牲交sv欧美| 美女福利国产在线| 免费人成在线观看视频色| 只有这里有精品99| 五月天丁香电影| 18+在线观看网站| 人人妻人人澡人人看| 色婷婷久久久亚洲欧美| 亚洲性久久影院| 极品人妻少妇av视频| 国产精品久久久久成人av| 久久亚洲国产成人精品v| 亚洲怡红院男人天堂| 老司机影院成人| 99re6热这里在线精品视频| 99热网站在线观看| 国产无遮挡羞羞视频在线观看| av福利片在线观看| 久久ye,这里只有精品| 欧美成人午夜免费资源| 亚洲精品,欧美精品| 午夜老司机福利剧场| 亚洲精华国产精华液的使用体验| 国内揄拍国产精品人妻在线| 少妇熟女欧美另类| 久久人妻熟女aⅴ| 亚洲情色 制服丝袜| 中文在线观看免费www的网站| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| h视频一区二区三区| 少妇被粗大猛烈的视频| 亚洲精品成人av观看孕妇| 国产白丝娇喘喷水9色精品| 精品久久久久久久久av| 久久精品国产鲁丝片午夜精品| 午夜日本视频在线| 夜夜骑夜夜射夜夜干| 午夜福利,免费看| 久久久久久伊人网av| 亚洲欧美日韩另类电影网站| 大话2 男鬼变身卡| 午夜福利视频精品| 国产毛片在线视频| 久久久久视频综合| 国产欧美日韩一区二区三区在线 | 亚洲内射少妇av| 精品99又大又爽又粗少妇毛片| 免费观看av网站的网址| 久久青草综合色| 久久狼人影院| 国内揄拍国产精品人妻在线| 啦啦啦啦在线视频资源| 亚洲精品自拍成人| 一区二区三区乱码不卡18| 欧美老熟妇乱子伦牲交| 大片电影免费在线观看免费| 伊人久久国产一区二区| av福利片在线| 欧美3d第一页| 亚洲精品自拍成人| 亚洲国产精品成人久久小说| 国产精品久久久久久久电影| 卡戴珊不雅视频在线播放| 精品一品国产午夜福利视频| 一本色道久久久久久精品综合| 欧美丝袜亚洲另类| 这个男人来自地球电影免费观看 | 丁香六月天网| 免费播放大片免费观看视频在线观看| 亚洲av综合色区一区| 永久网站在线| videossex国产| 欧美+日韩+精品| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 少妇人妻 视频| 人妻系列 视频| 久久人妻熟女aⅴ| 久久6这里有精品| 80岁老熟妇乱子伦牲交| 国产亚洲91精品色在线| 精品人妻一区二区三区麻豆| 又大又黄又爽视频免费| 极品教师在线视频| 亚洲美女黄色视频免费看| 亚洲国产精品成人久久小说| 成年美女黄网站色视频大全免费 | 高清毛片免费看| 只有这里有精品99| 在线免费观看不下载黄p国产| 亚洲成人av在线免费| 人人妻人人添人人爽欧美一区卜| 国产在线男女| 国产国拍精品亚洲av在线观看| 丝瓜视频免费看黄片| 最新的欧美精品一区二区| 婷婷色综合www| 亚洲中文av在线| 精品午夜福利在线看| 欧美日韩av久久| 日韩熟女老妇一区二区性免费视频| 五月玫瑰六月丁香| 啦啦啦啦在线视频资源| 天天躁夜夜躁狠狠久久av| 春色校园在线视频观看| 插逼视频在线观看| 日韩欧美精品免费久久| 亚洲成色77777| 偷拍熟女少妇极品色| 秋霞伦理黄片| 亚洲内射少妇av| 观看免费一级毛片| 色吧在线观看| 乱码一卡2卡4卡精品| 美女主播在线视频| 婷婷色av中文字幕| 一级,二级,三级黄色视频| 大香蕉97超碰在线| 精品国产露脸久久av麻豆| 日日爽夜夜爽网站| 日韩,欧美,国产一区二区三区| 激情五月婷婷亚洲| 一级毛片aaaaaa免费看小| 亚洲欧美精品专区久久| 国模一区二区三区四区视频| 亚洲三级黄色毛片| 日韩av在线免费看完整版不卡| 噜噜噜噜噜久久久久久91| 女的被弄到高潮叫床怎么办| 在线看a的网站| 少妇的逼好多水| 女性被躁到高潮视频| 美女中出高潮动态图| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线 | 美女xxoo啪啪120秒动态图| 成年女人在线观看亚洲视频| 国产男人的电影天堂91| 黄色欧美视频在线观看| 欧美精品国产亚洲| 日韩视频在线欧美| 自拍欧美九色日韩亚洲蝌蚪91 | 国产亚洲最大av| 大又大粗又爽又黄少妇毛片口| 亚洲综合色惰| 乱码一卡2卡4卡精品| 国产一区二区在线观看av| 中文字幕制服av| 在线观看免费日韩欧美大片 | 亚洲精华国产精华液的使用体验| 亚洲精品国产色婷婷电影| 精品一品国产午夜福利视频| 国产精品欧美亚洲77777| 久久国产精品男人的天堂亚洲 | 欧美bdsm另类| 如何舔出高潮| 久久精品久久久久久噜噜老黄| 一级av片app| 国产精品国产三级专区第一集| 精品一区二区三区视频在线| 国产成人精品无人区| 乱系列少妇在线播放| 老司机影院毛片| 嫩草影院新地址| 18+在线观看网站| 夫妻午夜视频| 免费看不卡的av| 精品久久久久久久久av| 夜夜爽夜夜爽视频| 国产国拍精品亚洲av在线观看| 欧美精品高潮呻吟av久久| 国产成人免费观看mmmm| 亚洲美女搞黄在线观看| 草草在线视频免费看| 成人二区视频| 国产精品成人在线| 国产69精品久久久久777片| 国产亚洲5aaaaa淫片| 免费在线观看成人毛片| 亚洲精品日韩在线中文字幕| 日本黄色片子视频| av免费观看日本| 丰满饥渴人妻一区二区三| 亚洲一区二区三区欧美精品| 国产精品一二三区在线看| 亚洲真实伦在线观看| 人妻系列 视频| 日产精品乱码卡一卡2卡三| 久久久久国产精品人妻一区二区| 亚洲真实伦在线观看| 99热这里只有是精品在线观看| 男人舔奶头视频| 国产中年淑女户外野战色| 美女大奶头黄色视频| 成年人午夜在线观看视频| 男女免费视频国产| 亚洲精品日本国产第一区| 高清黄色对白视频在线免费看 | 如日韩欧美国产精品一区二区三区 | 精品久久久精品久久久| 欧美日韩综合久久久久久| 最后的刺客免费高清国语| .国产精品久久| 好男人视频免费观看在线| 国产精品一区二区在线观看99| 六月丁香七月| 中文字幕人妻丝袜制服| 久久久久精品性色| 亚洲精品亚洲一区二区| 免费看av在线观看网站| 观看av在线不卡| 欧美日韩亚洲高清精品| 日韩精品有码人妻一区| 新久久久久国产一级毛片| 十分钟在线观看高清视频www | 少妇被粗大猛烈的视频| 伊人久久国产一区二区| 亚洲国产欧美在线一区| 久久毛片免费看一区二区三区| 国产高清国产精品国产三级| 十八禁网站网址无遮挡 | 插逼视频在线观看| 成年人午夜在线观看视频| 美女大奶头黄色视频| 97精品久久久久久久久久精品| 国产黄色免费在线视频| 超碰97精品在线观看| 少妇人妻一区二区三区视频| 熟妇人妻不卡中文字幕| 我的女老师完整版在线观看| 黄色欧美视频在线观看| 国产视频首页在线观看| 日韩,欧美,国产一区二区三区| 一二三四中文在线观看免费高清| 波野结衣二区三区在线| 2021少妇久久久久久久久久久| 国产女主播在线喷水免费视频网站| 日韩 亚洲 欧美在线| 久久99精品国语久久久| 欧美 日韩 精品 国产| 亚洲熟女精品中文字幕| 精品亚洲乱码少妇综合久久| 国产一区亚洲一区在线观看| 成人午夜精彩视频在线观看| 日韩成人av中文字幕在线观看| 大香蕉久久网| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| 性色av一级| 26uuu在线亚洲综合色| 伊人久久国产一区二区| 2018国产大陆天天弄谢| 国产伦理片在线播放av一区| 91精品国产国语对白视频| 久久女婷五月综合色啪小说| 日韩亚洲欧美综合| 汤姆久久久久久久影院中文字幕| 免费看日本二区| 最新中文字幕久久久久| 在线观看一区二区三区激情| 亚洲欧洲精品一区二区精品久久久 | 一级爰片在线观看| 亚洲欧洲日产国产| 一个人看视频在线观看www免费| 高清不卡的av网站| 亚洲第一区二区三区不卡| 国产成人aa在线观看| 国产极品天堂在线| 女的被弄到高潮叫床怎么办| 97超视频在线观看视频| 久久久欧美国产精品| 久久99热这里只频精品6学生| 亚洲中文av在线| 一本大道久久a久久精品| 亚洲av欧美aⅴ国产| 天堂俺去俺来也www色官网| a级毛片免费高清观看在线播放| 亚洲精华国产精华液的使用体验| 日日摸夜夜添夜夜爱| 全区人妻精品视频| 国产成人aa在线观看| 如日韩欧美国产精品一区二区三区 | 免费黄色在线免费观看| 亚洲精品日韩av片在线观看| 高清在线视频一区二区三区| 国产精品欧美亚洲77777| 99国产精品免费福利视频| 嫩草影院入口| 交换朋友夫妻互换小说| 嘟嘟电影网在线观看| www.色视频.com| 又黄又爽又刺激的免费视频.| 色哟哟·www| 国产伦在线观看视频一区| 六月丁香七月| 国内少妇人妻偷人精品xxx网站| 国产亚洲一区二区精品| 国产伦精品一区二区三区视频9| 黄色欧美视频在线观看| 综合色丁香网| 你懂的网址亚洲精品在线观看| 国产黄色视频一区二区在线观看| 最黄视频免费看| av黄色大香蕉| 亚洲精品国产色婷婷电影| www.av在线官网国产| 一区二区三区乱码不卡18| 日韩人妻高清精品专区| 久久久久久久国产电影| 大片电影免费在线观看免费| 不卡视频在线观看欧美| 国产亚洲精品久久久com| 蜜臀久久99精品久久宅男| 自线自在国产av| 国产亚洲欧美精品永久| 欧美激情国产日韩精品一区| 婷婷色综合www| 日日啪夜夜撸| 精品亚洲乱码少妇综合久久| 男女国产视频网站| 亚洲经典国产精华液单| 国产精品久久久久久精品电影小说| 国产午夜精品久久久久久一区二区三区| 久久久久久久久久久丰满| 国产亚洲午夜精品一区二区久久| 岛国毛片在线播放| 精品一区二区三区视频在线| 精华霜和精华液先用哪个| 乱码一卡2卡4卡精品| 日韩强制内射视频| 国产男女超爽视频在线观看| 97精品久久久久久久久久精品| 少妇丰满av| 大又大粗又爽又黄少妇毛片口| 天美传媒精品一区二区| 永久网站在线| 美女视频免费永久观看网站| 国产精品人妻久久久影院| 久久av网站| 国语对白做爰xxxⅹ性视频网站| 这个男人来自地球电影免费观看 | 久久国产精品大桥未久av | 久久精品久久久久久噜噜老黄| 精品一区二区三卡| 国产av国产精品国产| 寂寞人妻少妇视频99o| 天堂俺去俺来也www色官网| 国产成人免费观看mmmm| 久久亚洲国产成人精品v| 欧美日韩国产mv在线观看视频| 亚洲精品亚洲一区二区| 精品亚洲乱码少妇综合久久| 国产精品一区二区在线不卡| 美女脱内裤让男人舔精品视频| 久久精品国产亚洲网站| 99热网站在线观看| 中文资源天堂在线| 高清欧美精品videossex| av播播在线观看一区| 丝袜喷水一区| 欧美性感艳星| 久久人妻熟女aⅴ| 国产精品久久久久久精品古装| 少妇人妻 视频| av视频免费观看在线观看| 另类精品久久| av又黄又爽大尺度在线免费看| 欧美人与善性xxx| av不卡在线播放| 一区在线观看完整版| 成人综合一区亚洲| 久久影院123| 你懂的网址亚洲精品在线观看| 啦啦啦啦在线视频资源| xxx大片免费视频| 成年人免费黄色播放视频 | 成人亚洲精品一区在线观看| 51国产日韩欧美| 色婷婷av一区二区三区视频| 亚洲无线观看免费| av不卡在线播放| 欧美日韩精品成人综合77777| 久久精品熟女亚洲av麻豆精品| 91在线精品国自产拍蜜月| 寂寞人妻少妇视频99o| 欧美日韩亚洲高清精品| 多毛熟女@视频| 国产在线免费精品| 久久精品夜色国产| 十分钟在线观看高清视频www | 黑人猛操日本美女一级片| 老司机影院毛片| 国产亚洲一区二区精品| 国产男人的电影天堂91| 亚洲中文av在线| 亚洲精品成人av观看孕妇| 十分钟在线观看高清视频www | av一本久久久久| 精品国产露脸久久av麻豆| 成人二区视频| 国产精品免费大片| av天堂中文字幕网| 日本黄色片子视频| 午夜激情久久久久久久| 五月开心婷婷网| 秋霞在线观看毛片| 最近最新中文字幕免费大全7| 精品人妻熟女毛片av久久网站| 欧美 亚洲 国产 日韩一| 国产一区二区在线观看日韩| 亚洲人成网站在线观看播放| 人妻人人澡人人爽人人| 哪个播放器可以免费观看大片| 美女中出高潮动态图| 嫩草影院入口| 亚洲美女黄色视频免费看| 久久狼人影院| av国产久精品久网站免费入址| 欧美精品一区二区免费开放| 成年女人在线观看亚洲视频| videossex国产| 欧美日韩视频精品一区| a级一级毛片免费在线观看| 一区二区三区乱码不卡18| 一区在线观看完整版| 午夜视频国产福利| av卡一久久| 亚洲美女黄色视频免费看| 国产欧美日韩精品一区二区| 人妻人人澡人人爽人人| 欧美日韩精品成人综合77777| 另类亚洲欧美激情| 国产精品熟女久久久久浪| 日韩不卡一区二区三区视频在线| 亚洲国产精品999|