• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prompt photon production in proton–nucleus collisions at LHC: a comparison among color dipole models*

    2023-12-28 09:20:26HongMinWangYanZhaoWangYongHanXuandXianJingSun
    Communications in Theoretical Physics 2023年12期

    Hong-Min Wang ,Yan-Zhao Wang ,Yong-Han Xu and Xian-Jing Sun

    1 Physics Department,Army Academy of Armored Forces,PLA,Beijing 100072,China

    2 Department of Mathematics and Physics,Shijiazhuang Tiedao University,Shijiazhuang 050043,China

    3 Hebei Key Laboratory of Physics and Energy Technology,North China Electric Power University,Baoding 071000,China

    4 Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    Abstract The nuclear modification factor for prompt photon production in proton–nucleus collisions is investigated within color dipole formalism.By means of the Glauber–Gribov approach,the nuclear effects are studied in various rapidity bins with the evolution equation-based saturation models and the phenomenological dipole models.The theoretical results are compared with the experimental data provided by PHENIX,ATLAS and CMS Collaborations.At forward rapidity and midrapidity,a reasonable agreement with the experimental data is shown for the theoretical results with the modified Kharzeev,Levin and Nardi model,and the Kowalski and Teaney model.Then,we analyze the influence of the initial state energy loss effect on the nuclear modification factor and find that it is obvious only at backward rapidity together with small pT.Finally,the theoretical results are also compared with those of JETPHOX Monte Carlo program and the predictive results for the LHCb at very forward rapidities are presented.

    Keywords: color dipole formalism,Glauber-Gribov approach,small-r limit

    1.Introduction

    The production of photons is an important tool for studying the properties of quark–gluon plasma (QGP) produced in heavy-ion collisions(HIC)[1].Among the photons produced in the HIC,prompt photons from cold processes are always considered as a background for thermal photons from the QGP.Furthermore,since photons are colorless,they are not sensitive to the final state interactions and can leave the QGP without energy loss.Thus,prompt photon production is an ideal probe to study the initial state of cold nuclear matter(CNM) effects.In 2013,the experimental data for prompt photon production in deuteron-gold (d+Au) collisions was extracted by PHENIX Collaboration[2].Recently,the data in proton-lead (p+Pb) collisions is also probed by the ATLAS Collaboration [3].These experimental data are used to study the CNM effects in prompt photon production.

    The color dipole (CD) approach is an effective theory to describe both prompt photon and Drell-Yan dilepton production in proton-proton (p+p) collisions [4].In this approach,the prompt photon production is treated as a quark(or anti-quark) electromagnetic bremsstrahlung after exchanging a single gluon with the target [5].The phenomenology for the color dipole formulism is based on the qˉq color dipole cross-section,which incorporates the gluon radiation and nonlinear gluon recombination effects [6].The dipole cross section is always written as an integral of the forward scattering amplitude,which can be given by the CD models.The CD models can be divided into two kinds: the phenomenological models and the evolution equation-dependent models.The phenomenological CD models,such as the Golec–Biernat and W ü sthoff (GBW) model [7],the Iancu,Itakura and Munier (IIM) model [8],the Dumitru,Hayashigaki and Jalilian-Marian(DHJ)model[9]et al[10–13],incorporate the basic features of gluon saturation into the color dipole crosssection.Each of them has a different anomalous dimensionγeff,which is an important parameter in the CD model to determine the transition between the saturation regime and the DGLAP-like region (at large-pT).The evolution equation dependent saturation models,such as the Kowalski and Teaney (KT) model [14],the running coupling Balitsky-Kovchegov (rcBK) model [15],and the collinearly-improved Balitsky-Kovchegov (ciBK) model [16–18],are more successful in describing the data at small Bjorken-x and high energies than that of the phenomenological CD models.

    In order to study the nuclear modification factor in p+A collisions,the nuclear effects should be considered.There are two methods to consider the nuclear effects in the CD framework.One simple way is via the geometric scaling (GS)property from the CD models.This method considers the nuclear effects by relating the saturation scale of the nucleus,Qs,A,to that of the proton,Qs,p,by multiplying a constant[19].In order to get more reliable theoretical results,we should consider the impact parameter (b) dependence of the nuclear saturation scale.With the standard Woods–Saxon nuclear density [20],the Glauber–Gribov approach can successfully consider the b-dependence effect [21,22].For a heavy target,the projectile partons will also undergo multiple scattering in a medium before the prompt photon production[23].This is called the initial energy loss effect.In recent years,it is still an ongoing subject on both experimental and theoretical sides [24–26].Therefore the initial energy loss effect is also considered.

    This paper is organized as follows.In section 2,we present the theoretical framework.This section includes the prompt photon production mechanism,a review for the dipole-proton scattering amplitude in the color dipole models and how to consider the nuclear effects in the CD approach.In section 3,the theoretical results and discussion are given.The summary is given in section 4.

    2.Theoretical framework

    2.1.Prompt photon production in p+p collisions

    In the color dipole formalism,the prompt photon production cross section in p+p collisions can be given by [4]

    where y and pTare the rapidity and transverse momentum of the photon,respectively.is the proton structure function[27].α is the fraction of the quark momentum carried by the photon and the hard scale μ is taken asμ2=The prompt photon production cross section in the quark-nucleon interactions [28]

    2.2.Dipole-proton scattering amplitude in the color dipole models

    In order to investigate the nuclear effects entirely,we will consider the dipole-proton cross-section σdpwithin different CD models.In the eikonal approximation,σdpcan be given by [29]

    where Ndp(x,r,b)is the dipole-proton scattering amplitude.If the b-dependence in Ndp(x,r,b) is neglected,the dipoleproton cross section can be rewritten as σdp(x,r)=σ0Ndp(x,r)withfitted to the experimental data.In the following,we review Ndp(x,r) given by the CD models.

    The scattering amplitude in the GBW model [7] and the DHJ model [9] can be given by a more general form

    In the IIM model,the scattering amplitude has a different form [8]

    where β(≤1) is a parameter introduced at large Bjorken-x.The parameters are given by=0.6599,N0=0.3358,k=9.9 x0=0.00105 and λ=0.2063.

    In the KT model,the dipole-proton scattering amplitude can be written as [14]

    where αs(μ2) is the running coupling constant.The gluon density xg(x,μ2) can be given by the DGLAP evolution equations,and the proton shape function T(b)can be given by a Gaussian form

    with BG=4.25 GeV-2.

    In the rcBK approach,the dipole scattering amplitude can be written as [15]

    whereKBal(rT,r1T,r2T)is the kernel for the running term,and the initial conditions of the dipole scattering amplitude is the GBW ansatz.

    2.3.Nuclear effects in p+A collisions

    For the phenomenological models,a very simple method to consider nuclear effects in p+A collisions is to obtain the saturation scale of the nucleus from that of a proton through a translation Qs,A=A1/3Qs,p[10].The nuclear effects are absorbed into the saturation scale of the nucleus.

    The GS approach is another simple way to consider nuclear effects.In this method,the dipole-nucleus (dA)saturation scale can be written as [19]

    where Rpand RAare the radii of the proton and nucleus,respectively.The parameter δ=0.79.Then the scattering amplitude for the nucleus can be obtained by

    The above two methods can only give a rough estimate of the nuclear effects.The Glauber–Gribov method,which considers b-dependence,is an ideal tool to study nuclear effects.In this study,different from the method used in[31,32],we consider the nuclear effect by replacingrQ2s,p2 for the proton in equation (5) with [33]

    for nucleus.Thus,the dipole-nucleus scattering amplitude can be given by

    where A is the nucleon number.TA(bA) is the thickness function of the nucleus [20]

    where ρ0is normalized constant with ∫d2bATA(bA)=1.d=0.54 fm and RA=1.12A(1/3)-0.86A-1/3fm.

    For the DGLAP evolution equation-dependent KT model,the parton distributions in the nuclear environment are modified [34].Therefore the dipole-nucleus scattering amplitude should be written as

    where the nuclear ratio Rgcan be given by the EPPS16 parametrization [35].For the rcBK approach,the nuclear effect can be considered by following [33].

    The initial-state energy loss is another effect to suppress the prompt photon production cross-section in p+A collisions.The mean energy loss of an incoming parton in this study is simply taken as [36]

    where 〈L〉A(chǔ)=3RA/4.ξ ≈2 GeV/fm can be extracted from the Drell–Yan data [25].The Bjorken scale x1can be correspondingly rewritten as

    Considering the nuclear effects in p+A collisions,we introduce the nuclear modification factor

    3.Results and discussion

    For the effective anomalous dimension,γeffis an important parameter to study the nuclear modification factor,figure 1 showsγeffof different phenomenological CD models versus pTat different rapidity:y=-2(a),y=-1(b),y=1(c)and y=2(d).The curves are the results of the GBW model(solid curves),the M-KLN model (dashed curves),the DHJ model(dotted curves)and the IIM model (dash–dotted curves).It is shown thatγeffapproaches 1 for the DHJ model.For the IIM model,γeffis larger than 1 and has an abnormal value at forward rapidity,as shown in figure 1(d).This can also be seen in [29],where the saturation scale of the IIM model is different from other models.The γeffvalue for the M-KLN model is larger than 1 only at large pTat forward rapidity.

    In equation(3),the modified Bessel function J0(J1)in the Hankel’s integral transforms is a high oscillation function.In figure 2,we give the results for J0and K0versus r.Figure 2(a)shows J0verse r at pT=100 GeV (solid curve) and 10 GeV(dashed curve).It is shown that the oscillation of J0becomes violent when pTis large.In contrast,as shown in figure 2(b),γ-production (solid curve) is very difficult to converge compared to the D-meson production (dashed curve) at the same α(=0.5) [29].Thus,it is very difficult to obtain accurate theoretical results for the Hankel’s integral transforms in prompt photon production at large pT.At large pT,the small-r limit can be applied for the dipole-proton scattering amplitude.In this domain,r ≈1/pTand the I1,2,3can be analytically given by [5].

    Figure 2.The modified Bessel function J0 (a) and K0 (b) as a function of r.

    The nuclear modification factor RdAufor the prompt photon production in d+Au collisions at200 GeV is shown in figure 3.Here,we neglect the nuclear modification for the parton distribution in deuteron.The experimental data come from PHENIX [2].Figure 3(a) shows the theoretical results for RdAuwith different color dipole models: the KT model (solid curve),the M-KLN model (dashed curve),the DHJ model(dotted curve),the IIM model(dash-dotted curve)and the GBW model (shot-dashed curve).As shown in figure 3(a),the nuclear effect (‘shadowing’) within the GBW model is not obvious.This is because the dipole-nucleus scattering amplitude in the GBW model can be approximately written asBy using the normalization of the thickness function of the nucleus,σdA≈Aσdpand the nuclear modification factor RdAu≈1.The theoretical result for the IIM model is unreasonable,especially at large pT.The reason lies in its abnormal γeff,as shown in figure 2.The results with the DHJ model and the M-KLN model fit the data well.These indicate that they are more reasonable in studying the nuclear effect for prompt photon production in p+A collisions.Although the result with the KT model is larger than that of the other models,it is still in the allowable error range of the experimental data.In figure 3(b),the influence of the initial energy loss effect is given with the KT model and the M-KLN model.The solid(dashed) curve is the result of the KT (M-KLN) model without energy loss,and the dotted (dash-dotted) curve is the result of the KT (M-KLN) model with energy loss.The PHENIX data in d+Au collisions are at mid-rapidity(|y|<0.35).As shown in [25],the gluon initial energy loss effect is more obvious than that of the quark.The prompt photon bremsstrahlung by quark (or antiquark),so the initial energy loss effect is not obvious in d+Au collisions at RHIC energies.

    Figure 4.Prompt photon production differential cross sections in p+Pb collision at=8.16 TeV in different rapidity bins: (a)1.09

    Figure 5.RpPb versus pT at=8.16 TeV.The figure captions are the same as those in figure 4.

    Figure 6.Differential cross sections for photon production in p+p collisions at=13 TeV in different rapidity bins: (a) |y|<0.8,(b)0.8<|y|<1.44,(c) 1.57<|y|<2.1,(d) 2.1<|y|<2.5.

    In figure 4,the results for prompt photon production in p+Pb collisions at forward rapidity(a)and midrapidity(b)are shown.The theoretical results are with the KT model (solid curves),the M-KLN model (dashed curves),the DHJ model(dotted curves)and the rcBK model(dash-dotted curves).The experimental data come from ATLAS Collaboration [3].The initial energy loss effect is neglected because it is too small to be considered at LHC energies[25].It is shown that the result of the KT model fits well with the experimental data at forward rapidity,where the Bjorken scale x2is very small.This demonstrates that the KT model is more effective at small x2.The results of the M-KLN model fit well with the data at forward and mid-rapidity.The results for the DHJ model are above the experimental data in the range pT>200 GeV at mid-rapidity.In this range,the effective anomalous dimensionγefffor the DHJ model approaches 1,as shown in figure 1,so the nuclear effect for the DHJ model disappears.The results of the rcBK model fit well with the experimental data at forward rapidity.However,its results are similar to those of the DHJ model at mid-rapidity.In conclusion,the theoretical results for the above models are all reasonable in fitting to the experimental data for prompt photon production when the Bjorken-x2is small.

    The nuclear modification factorsfor prompt photon production are shown in figure 5.The figure captions are the same as those in figure 4.In order to compare with other methods,the theoretical results with the JETPHOX Monte Carlo program based on EPPS16 (shot-dashed curves) [37]and the IPSAT model including Reggeons (shot-dotted curves) are also given [31,32].It is shown that the nuclear effect for the rcBK method and the DHJ model are not clear.This is because the γefffor the DHJ model is close to 1 and the initial conditions for the rcBK method is the GBW model.As shown in figure 5(a),the results for the CD models are all reasonable at forward rapidity.At mid-rapidity when pT>200 GeV,the Bjorken scale x2~0.01.For the effective range of the CD formalism is x2<0.01,x2~0.01 is at the edge of the the CD model’s effective range.Therefore,the results for the CD models are slightly above the experimental data at mid-rapidity when pT>200 GeV as shown in figure 5(b).It is also shown in figure 5(b)that the results with the JETPHOX Monte Carlo program are above the experimental data at large pTtoo.Though the theoretical results with the IPSAT+REGGEON method are approximate to the experimental value when pT>200 GeV,its results are almost constant at forward rapidity as shown in figure 5(a).

    In figure 6,the theoretical results for prompt photon production at13 TeV in p+p collisions are shown.The data come from CMS Collaboration [38].The solid curves and the dashed curves are the results with the KT model and the M-KLN model,respectively.It is shown that the theoretical results with the KT model fit well with experimental data at a large absolute value of y.For the M-KLN model,the theoretical results are larger than the experimental data.The reason is that the experimental data includes both forward and backward data.At backward rapidity,the Bjorken scale x2>0.01,which is out of the effective domain for the CD models.

    In order to give a further study for the influence of the energy loss effect,figure 7(a) shows the results versus y at pT=2 GeV.The figure captions are the same as those in figure 3(b).It is shown that the initial energy loss effect is effective only at backward rapidity together with small pT.The reason is that the Bjorken scale x1(<0.00001) is very small at backward rapidity while pT=2 GeV.By equation (19),it can be obtained that the average change of the momentum fraction Δx1,which is also very small,is a constant at certain collision energies.Therefore,the influence of Δx1on quark distribution will become more obvious when the Bjorken scale x1is very small.This phenomenon can also be seen in figure 4 of[25].Figure 7(b)y=3,(c)y=4 and(d)y=5 show the predictive results for the LHCb in p+Pb collisions at8.16 TeV[39].The figure captions are the same as figure 4.An obvious deviation can be seen in the results between the KT model and the other two models.

    Figure 7.Predictive results for the LHCb at =8.16 TeV.The influence of the energy loss effect versus y at pT=2 GeV is shown in figure 7(a).The predictive results versus pT at very forward rapidities are shown in figure 7(b) y=3,(c) y=4 and (d) y=5.

    4.Conclusion

    In summary,the nuclear modification factor for prompt photon production in p+A (or p+p) collisions is studied in the CD theoretical framework.By considering the nuclear effect with the Glauber–Gribov approach,the theoretical results are reasonable at forward rapidity for all of the color dipole models.This demonstrates that the CD formalism is an effective theory at small Bjorken-x.It is also demonstrated that a further study should be given for prompt photon production at mid-rapidity when pT>200 GeV.The predictive results for the LHCb at very large rapidities are to be verified by future experiments.

    国产老妇女一区| 麻豆成人午夜福利视频| 欧美激情在线99| 97超视频在线观看视频| 一a级毛片在线观看| 国产爱豆传媒在线观看| 国产一级毛片七仙女欲春2| 在线观看66精品国产| .国产精品久久| 三级男女做爰猛烈吃奶摸视频| 亚洲国产高清在线一区二区三| 黄色配什么色好看| 欧美潮喷喷水| 亚洲天堂国产精品一区在线| 成年av动漫网址| 久久草成人影院| 99热这里只有精品一区| 成人毛片a级毛片在线播放| 国产高清视频在线播放一区| 午夜福利高清视频| 精品不卡国产一区二区三区| 国产一级毛片七仙女欲春2| 久久国产乱子免费精品| 中文字幕av成人在线电影| 亚洲中文字幕一区二区三区有码在线看| 国产伦在线观看视频一区| 亚洲在线自拍视频| 成人精品一区二区免费| 国产成人freesex在线 | 亚洲综合色惰| 亚洲熟妇熟女久久| 乱人视频在线观看| 女人十人毛片免费观看3o分钟| 免费搜索国产男女视频| 一边摸一边抽搐一进一小说| 国产黄色小视频在线观看| 男人和女人高潮做爰伦理| 亚洲国产精品国产精品| 亚洲人成网站在线播放欧美日韩| 日韩制服骚丝袜av| 日韩欧美精品免费久久| 久久久久久久亚洲中文字幕| 日韩欧美 国产精品| 99热只有精品国产| 国产精品嫩草影院av在线观看| 亚洲天堂国产精品一区在线| 亚洲一区二区三区色噜噜| 久久久成人免费电影| 日日摸夜夜添夜夜爱| 老司机午夜福利在线观看视频| 欧美日本视频| 亚洲成人中文字幕在线播放| 日日摸夜夜添夜夜爱| 精品日产1卡2卡| 国产成人一区二区在线| 国产乱人视频| 国产精品日韩av在线免费观看| 别揉我奶头~嗯~啊~动态视频| 亚洲在线观看片| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧洲综合997久久,| 麻豆成人午夜福利视频| 久久久久久久亚洲中文字幕| 日韩欧美 国产精品| 99在线人妻在线中文字幕| 亚洲最大成人手机在线| 啦啦啦韩国在线观看视频| 欧美三级亚洲精品| 男女边吃奶边做爰视频| 夜夜夜夜夜久久久久| 午夜免费男女啪啪视频观看 | 女人被狂操c到高潮| 久久久久久久久久成人| 国产一区二区在线观看日韩| 久久久久国内视频| 国产精品电影一区二区三区| 国产精品一区二区性色av| 黑人高潮一二区| 久久久久九九精品影院| 国产欧美日韩精品一区二区| 日本免费一区二区三区高清不卡| 久久久久久久午夜电影| 欧美色欧美亚洲另类二区| 尾随美女入室| 看非洲黑人一级黄片| а√天堂www在线а√下载| 男人狂女人下面高潮的视频| 久久久久久久久久成人| 少妇被粗大猛烈的视频| 春色校园在线视频观看| 在线国产一区二区在线| av国产免费在线观看| 91久久精品国产一区二区成人| 精品日产1卡2卡| 看十八女毛片水多多多| 看非洲黑人一级黄片| 毛片一级片免费看久久久久| 精品久久久久久久久久免费视频| 国产精品久久久久久亚洲av鲁大| av视频在线观看入口| 欧美高清性xxxxhd video| h日本视频在线播放| 国产伦精品一区二区三区视频9| 卡戴珊不雅视频在线播放| 成年av动漫网址| 欧美日韩综合久久久久久| 久久精品国产清高在天天线| av女优亚洲男人天堂| 99精品在免费线老司机午夜| 自拍偷自拍亚洲精品老妇| 少妇裸体淫交视频免费看高清| 啦啦啦啦在线视频资源| 亚洲国产精品合色在线| 日本精品一区二区三区蜜桃| 一进一出抽搐动态| 久久久欧美国产精品| 国产真实伦视频高清在线观看| av视频在线观看入口| 日本在线视频免费播放| 精品一区二区三区视频在线观看免费| 综合色av麻豆| 国产久久久一区二区三区| 欧美区成人在线视频| 美女黄网站色视频| 在线看三级毛片| 国产精品人妻久久久久久| 最好的美女福利视频网| 国产精品久久久久久av不卡| 国产探花在线观看一区二区| 国产精品无大码| 最近中文字幕高清免费大全6| 国产精品久久电影中文字幕| 国产女主播在线喷水免费视频网站 | 亚洲五月天丁香| 真实男女啪啪啪动态图| 波多野结衣高清无吗| 校园人妻丝袜中文字幕| av在线老鸭窝| 国产成人精品久久久久久| 天堂√8在线中文| 中文字幕精品亚洲无线码一区| 国产亚洲精品av在线| 五月伊人婷婷丁香| 国产欧美日韩一区二区精品| 最新中文字幕久久久久| 1024手机看黄色片| 精品少妇黑人巨大在线播放 | 91午夜精品亚洲一区二区三区| 成年女人永久免费观看视频| 欧美高清性xxxxhd video| 亚洲中文字幕日韩| 免费大片18禁| 久久久精品大字幕| 国产午夜精品久久久久久一区二区三区 | 色视频www国产| 国产毛片a区久久久久| 精品一区二区免费观看| 免费观看的影片在线观看| 精品日产1卡2卡| 国产精品1区2区在线观看.| 亚洲av美国av| 亚洲一区高清亚洲精品| 国产精品乱码一区二三区的特点| 亚洲自偷自拍三级| 夜夜夜夜夜久久久久| 免费av不卡在线播放| 十八禁网站免费在线| 秋霞在线观看毛片| 精品福利观看| 91久久精品国产一区二区三区| 国产黄色视频一区二区在线观看 | 91在线观看av| 免费不卡的大黄色大毛片视频在线观看 | 免费无遮挡裸体视频| 免费高清视频大片| 99热这里只有是精品在线观看| 精品福利观看| 深爱激情五月婷婷| 欧洲精品卡2卡3卡4卡5卡区| 国产三级中文精品| 一本久久中文字幕| 午夜视频国产福利| 少妇丰满av| 国内精品宾馆在线| 国内精品一区二区在线观看| 哪里可以看免费的av片| 欧洲精品卡2卡3卡4卡5卡区| 永久网站在线| 夜夜爽天天搞| 欧美人与善性xxx| 国产精品久久久久久精品电影| 能在线免费观看的黄片| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 又黄又爽又刺激的免费视频.| 亚洲真实伦在线观看| videossex国产| 赤兔流量卡办理| 色噜噜av男人的天堂激情| 亚洲av免费高清在线观看| 国产在线男女| 久久久久久久久大av| 少妇人妻精品综合一区二区 | 亚洲成人久久性| 日本爱情动作片www.在线观看 | 免费看美女性在线毛片视频| 日韩欧美国产在线观看| 少妇人妻一区二区三区视频| 俺也久久电影网| 日韩在线高清观看一区二区三区| 国产一区二区在线观看日韩| 熟女人妻精品中文字幕| 精品熟女少妇av免费看| 夜夜爽天天搞| 欧美高清成人免费视频www| 搡女人真爽免费视频火全软件 | 国产一级毛片七仙女欲春2| 日本免费a在线| 老女人水多毛片| 国产乱人视频| 久久久色成人| 国产视频一区二区在线看| 淫秽高清视频在线观看| 成人美女网站在线观看视频| 最新中文字幕久久久久| 国产单亲对白刺激| 精品人妻偷拍中文字幕| 春色校园在线视频观看| h日本视频在线播放| 亚洲无线在线观看| 国产又黄又爽又无遮挡在线| 日韩中字成人| 久久99热6这里只有精品| av.在线天堂| 我要搜黄色片| 97超碰精品成人国产| 国产精品久久久久久精品电影| 欧美色欧美亚洲另类二区| 国产精品亚洲美女久久久| 精品人妻视频免费看| 国产精华一区二区三区| 一个人看的www免费观看视频| 久久久久久伊人网av| 国产三级中文精品| a级毛色黄片| 中文字幕免费在线视频6| 久久久欧美国产精品| 精品人妻偷拍中文字幕| 免费搜索国产男女视频| 一个人看视频在线观看www免费| 五月玫瑰六月丁香| 中文字幕人妻熟人妻熟丝袜美| 亚洲美女黄片视频| 亚洲四区av| 日韩,欧美,国产一区二区三区 | 精品人妻偷拍中文字幕| 老司机影院成人| 99久久九九国产精品国产免费| 91久久精品国产一区二区三区| 老女人水多毛片| 精华霜和精华液先用哪个| 最近2019中文字幕mv第一页| 成人亚洲欧美一区二区av| 中国国产av一级| 国产色爽女视频免费观看| 欧美日韩精品成人综合77777| 三级毛片av免费| 在线观看66精品国产| 免费观看人在逋| 亚洲三级黄色毛片| 国产成年人精品一区二区| 精品99又大又爽又粗少妇毛片| 欧美又色又爽又黄视频| 成人av在线播放网站| 老熟妇乱子伦视频在线观看| 91在线精品国自产拍蜜月| 国产在线男女| 精品久久国产蜜桃| 99热精品在线国产| 国产男人的电影天堂91| 内地一区二区视频在线| 少妇丰满av| 桃色一区二区三区在线观看| 老熟妇仑乱视频hdxx| 久久午夜福利片| 日韩国内少妇激情av| 亚洲无线在线观看| 天堂av国产一区二区熟女人妻| 精品乱码久久久久久99久播| 老师上课跳d突然被开到最大视频| 一级a爱片免费观看的视频| 国产成人aa在线观看| 精品不卡国产一区二区三区| 精品免费久久久久久久清纯| 国内精品久久久久精免费| 搡女人真爽免费视频火全软件 | 国产精品综合久久久久久久免费| 1024手机看黄色片| 久久精品91蜜桃| 嫩草影院新地址| 中文字幕久久专区| 亚洲熟妇中文字幕五十中出| 久久久精品大字幕| 黑人高潮一二区| 国产av一区在线观看免费| 国产真实伦视频高清在线观看| 最近2019中文字幕mv第一页| 亚洲第一区二区三区不卡| 色播亚洲综合网| 91狼人影院| 国产精品三级大全| 联通29元200g的流量卡| 哪里可以看免费的av片| 一级毛片aaaaaa免费看小| 日日撸夜夜添| 国产 一区 欧美 日韩| 久久精品国产自在天天线| 美女高潮的动态| 此物有八面人人有两片| 午夜激情福利司机影院| 天天躁夜夜躁狠狠久久av| 久久久色成人| 悠悠久久av| 日本一二三区视频观看| 日本黄色视频三级网站网址| 久久九九热精品免费| 波野结衣二区三区在线| 天天躁日日操中文字幕| 白带黄色成豆腐渣| 毛片一级片免费看久久久久| 亚洲精品一卡2卡三卡4卡5卡| 日韩成人av中文字幕在线观看 | 欧美xxxx黑人xx丫x性爽| 黄色配什么色好看| 色播亚洲综合网| 久久鲁丝午夜福利片| 综合色丁香网| 成人精品一区二区免费| 少妇丰满av| 午夜爱爱视频在线播放| 黄色日韩在线| 搡老妇女老女人老熟妇| 内射极品少妇av片p| 最近视频中文字幕2019在线8| 成人一区二区视频在线观看| 女生性感内裤真人,穿戴方法视频| 人妻丰满熟妇av一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲国产精品国产精品| 久久中文看片网| 久久久久精品国产欧美久久久| 久久精品国产亚洲av香蕉五月| 蜜桃久久精品国产亚洲av| 亚洲真实伦在线观看| 久久人人爽人人片av| 欧美+亚洲+日韩+国产| 国产成人aa在线观看| 老熟妇仑乱视频hdxx| 麻豆成人午夜福利视频| 天天躁夜夜躁狠狠久久av| 人妻少妇偷人精品九色| 男人舔奶头视频| 日韩 亚洲 欧美在线| 国产免费一级a男人的天堂| 春色校园在线视频观看| 我的老师免费观看完整版| 国产亚洲av嫩草精品影院| 亚洲成人av在线免费| 97热精品久久久久久| 变态另类成人亚洲欧美熟女| 春色校园在线视频观看| 12—13女人毛片做爰片一| 国产欧美日韩一区二区精品| 天天躁夜夜躁狠狠久久av| 别揉我奶头~嗯~啊~动态视频| 12—13女人毛片做爰片一| 亚洲国产精品成人久久小说 | 国国产精品蜜臀av免费| 日韩欧美在线乱码| 观看美女的网站| 亚洲欧美日韩东京热| 嫩草影院新地址| 久久久久国产网址| 亚洲精品影视一区二区三区av| .国产精品久久| 久久韩国三级中文字幕| 国产熟女欧美一区二区| 久久午夜亚洲精品久久| 22中文网久久字幕| 精品无人区乱码1区二区| 午夜福利在线在线| 美女高潮的动态| 亚洲精品日韩av片在线观看| 亚洲美女搞黄在线观看 | 看片在线看免费视频| 有码 亚洲区| 大又大粗又爽又黄少妇毛片口| 久久人人爽人人爽人人片va| 99久久精品一区二区三区| 亚洲无线在线观看| 熟妇人妻久久中文字幕3abv| 国产成人a∨麻豆精品| 一级黄色大片毛片| 美女cb高潮喷水在线观看| 午夜福利在线观看免费完整高清在 | 人妻少妇偷人精品九色| av中文乱码字幕在线| 久久久国产成人精品二区| 日韩欧美 国产精品| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看| 国产蜜桃级精品一区二区三区| 三级毛片av免费| 99视频精品全部免费 在线| 欧美性感艳星| 成人美女网站在线观看视频| 欧美bdsm另类| 非洲黑人性xxxx精品又粗又长| 精品不卡国产一区二区三区| 免费观看人在逋| a级一级毛片免费在线观看| 我的女老师完整版在线观看| 免费看日本二区| 波多野结衣高清无吗| 1024手机看黄色片| 人人妻人人澡人人爽人人夜夜 | 欧美国产日韩亚洲一区| 久久久久久伊人网av| 精品久久久久久久久久久久久| 搡女人真爽免费视频火全软件 | 九九在线视频观看精品| 国产精品一区www在线观看| 午夜福利在线在线| 亚洲av电影不卡..在线观看| 亚洲一级一片aⅴ在线观看| 联通29元200g的流量卡| 俄罗斯特黄特色一大片| 网址你懂的国产日韩在线| videossex国产| 色哟哟哟哟哟哟| 美女 人体艺术 gogo| 最好的美女福利视频网| 亚洲不卡免费看| 亚州av有码| 99久久精品一区二区三区| 偷拍熟女少妇极品色| 99久久九九国产精品国产免费| 最后的刺客免费高清国语| 熟女电影av网| 亚洲国产色片| 亚洲精品日韩在线中文字幕 | 久久久久久久亚洲中文字幕| 99在线人妻在线中文字幕| 国产av麻豆久久久久久久| 国国产精品蜜臀av免费| av在线亚洲专区| 女同久久另类99精品国产91| 午夜亚洲福利在线播放| 看十八女毛片水多多多| 在线观看午夜福利视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美日韩高清专用| 嫩草影视91久久| 国产精品一二三区在线看| 成人三级黄色视频| 国产久久久一区二区三区| 我的女老师完整版在线观看| 精品国内亚洲2022精品成人| 久久久久久久午夜电影| 亚洲,欧美,日韩| 日日摸夜夜添夜夜爱| 一级黄色大片毛片| 精品欧美国产一区二区三| 国内少妇人妻偷人精品xxx网站| 美女 人体艺术 gogo| 国产精品福利在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产亚洲av香蕉五月| 老女人水多毛片| 国产av不卡久久| 免费av观看视频| 中国国产av一级| 欧美不卡视频在线免费观看| 亚洲精品久久国产高清桃花| av在线蜜桃| 非洲黑人性xxxx精品又粗又长| 色在线成人网| av黄色大香蕉| 精品午夜福利在线看| 看黄色毛片网站| 欧美性感艳星| 成人亚洲欧美一区二区av| 麻豆国产av国片精品| 成人毛片a级毛片在线播放| 国产成人aa在线观看| 国产 一区精品| 欧美成人精品欧美一级黄| 我的女老师完整版在线观看| 成人欧美大片| 美女xxoo啪啪120秒动态图| 日韩精品中文字幕看吧| 亚洲精品国产av成人精品 | av女优亚洲男人天堂| 亚洲精品在线观看二区| 国产v大片淫在线免费观看| 婷婷六月久久综合丁香| 国产色婷婷99| 超碰av人人做人人爽久久| 国产白丝娇喘喷水9色精品| 午夜福利视频1000在线观看| 在线观看av片永久免费下载| 国产69精品久久久久777片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产精品国产精品| 床上黄色一级片| 国产伦一二天堂av在线观看| 日日干狠狠操夜夜爽| 99视频精品全部免费 在线| 日韩 亚洲 欧美在线| 少妇人妻一区二区三区视频| 精品人妻一区二区三区麻豆 | 国产精品一二三区在线看| 亚洲美女视频黄频| 免费人成在线观看视频色| or卡值多少钱| 精品福利观看| 精品一区二区三区视频在线| 午夜福利18| 日本在线视频免费播放| 变态另类丝袜制服| 日韩,欧美,国产一区二区三区 | 一级毛片我不卡| 日产精品乱码卡一卡2卡三| 亚洲美女搞黄在线观看 | 黄色一级大片看看| 成人av在线播放网站| 国产不卡一卡二| 联通29元200g的流量卡| 欧美激情在线99| ponron亚洲| 色av中文字幕| 哪里可以看免费的av片| 少妇高潮的动态图| 亚洲人与动物交配视频| 日韩精品有码人妻一区| 波多野结衣巨乳人妻| 亚洲国产精品成人综合色| 精品一区二区三区视频在线观看免费| 免费看日本二区| 国产欧美日韩精品亚洲av| 看免费成人av毛片| 成人av在线播放网站| 一区福利在线观看| 少妇的逼水好多| 午夜老司机福利剧场| 亚洲精品一区av在线观看| 级片在线观看| 亚洲av一区综合| 亚洲欧美精品自产自拍| 欧美成人精品欧美一级黄| 床上黄色一级片| 婷婷精品国产亚洲av| 99热全是精品| 免费不卡的大黄色大毛片视频在线观看 | 少妇的逼好多水| 免费无遮挡裸体视频| 午夜激情欧美在线| 色吧在线观看| 欧美绝顶高潮抽搐喷水| 午夜爱爱视频在线播放| 精品一区二区免费观看| 国产午夜精品论理片| 99久国产av精品国产电影| 日产精品乱码卡一卡2卡三| 国产色爽女视频免费观看| 亚洲av第一区精品v没综合| 91久久精品电影网| 别揉我奶头 嗯啊视频| 99九九线精品视频在线观看视频| 亚洲欧美精品自产自拍| 精品久久久久久成人av| 噜噜噜噜噜久久久久久91| 久久精品91蜜桃| 色av中文字幕| or卡值多少钱| 国产极品精品免费视频能看的| 亚洲欧美精品综合久久99| 亚洲熟妇中文字幕五十中出| 国产白丝娇喘喷水9色精品| 免费在线观看成人毛片| 美女黄网站色视频| 亚洲中文日韩欧美视频| 岛国在线免费视频观看| 熟女电影av网| 美女 人体艺术 gogo| 搡老岳熟女国产| 色尼玛亚洲综合影院| 国产一区亚洲一区在线观看| 国产高清三级在线| 中文字幕av成人在线电影| 午夜亚洲福利在线播放| 亚洲色图av天堂| 97热精品久久久久久| 老熟妇仑乱视频hdxx| 成人二区视频| 如何舔出高潮| 少妇被粗大猛烈的视频| 真实男女啪啪啪动态图| 久久久久久大精品| 一个人看视频在线观看www免费| 在线观看午夜福利视频| ponron亚洲| 如何舔出高潮| 香蕉av资源在线| 亚洲丝袜综合中文字幕|