• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propagation of chirped solitons on a cw background in a non-Kerr quintic medium with self-steepening effect

    2023-12-28 09:20:02AbdesselamBouguerraHouriaTrikiChunWeiZhenbangLuandQinZhou
    Communications in Theoretical Physics 2023年12期

    Abdesselam Bouguerra ,Houria Triki ,Chun Wei ,Zhenbang Lu and Qin Zhou,?

    1 Radiation and Matter Physics Laboratory,Matter Sciences Department,Mohamed-Cherif Messaadia University,P.O.Box 1553,Souk-Ahras,41000,Algeria

    2 Radiation Physics Laboratory,Department of Physics,Faculty of Sciences,Badji Mokhtar University,P.O.Box 12,23000 Annaba,Algeria

    3 School of Electronics and Information Engineering,Wuhan Donghu University,Wuhan 430212,China

    4 School of Mathematical and Physical Sciences,Wuhan Textile University,Wuhan 430200,China

    Abstract We study the existence and stability of envelope solitons on a continuous-wave background in a non-Kerr quintic optical material exhibiting a self-steepening effect.Light propagation in such a nonlinear medium is governed by the Gerdjikov–Ivanov equation.We find that the system supports a variety of localized waveforms exhibiting an important frequency chirping property which makes them potentially useful in many practical applications to optical communication.This frequency chirp is found to be crucially dependent on the intensity of the wave and its amplitude can be controlled by a suitable choice of self-steepening parameter.The obtained nonlinearly chirped solitons include bright,gray and kink shapes.We also discuss the stability of the chirped solitons numerically under finite initial perturbations.The results show that the main character of chirped localized structures is not influenced by finite initial perturbations such as white noise.

    Keywords: solitons,non-Kerr nonlinearity,self-steepening effect

    1.Introduction

    The dynamics of envelope solitons in dispersive nonlinear media have attracted increased interest in recent years [1–4].Such localized wave packets can propagate in nonlinear dispersive media without any change in their shape over extremely large distances.The formation of these localized waves in single-mode fibers occurs when the pulse broadening of the groupvelocity dispersion and the compressing of the Kerr nonlinearity are exactly balanced[5].Because of their extensive applications to optical communication and all-optical ultrafast switching devices[6],soliton structures have recently become the subject of intense study,especially in the field of nonlinear optics[7,8].

    The main envelope equation that governs the transmission of a soliton pulse inside an optical waveguiding medium is the cubic nonlinear Schr?dinger (NLS) equation,which incorporates the terms representing the effects of group velocity dispersion and self-phase modulation [9].It is worth mentioning that such a model equation rigorously describes the evolution of low-power pulses with durations of a few picoseconds in optical fibers.Within this NLS equation framework,two distinct types of localized solutions,the socalled bright and dark solitons,were shown to exist in the anomalous and normal dispersion regimes,respectively[2].It is noteworthy that such fundamental solitons are chirp-free pulses because the chirp produced by group velocity dispersion is balanced by the chirp produced by the Kerr nonlinearity [10].However,if short pulses have to be injected into the optical material,higher-order effects become important and should be incorporated into the underlying equation.In such a situation,the pulse dynamics can be described by more generalized NLS equations containing various contributions of higher-order dispersive and nonlinear terms.Such equations were found to have a rich variety of soliton solutions [11–13],which may be useful in understanding different physical phenomena and dynamical processes arising in optical systems.We note here that important results have been found with recent works demonstrating soliton dynamics supported by complex parity-time symmetric potentials [14] as well as breathers and rogue waves in spinor Bose–Einstein condensates with space-time modulated potentials [15].In addition to nonlinear waveforms,optical characteristics of a new type of materials that have application prospects in the field of nonlinear optics have been also reported [16].

    Recently,much attention has been directed toward the study of nonlinearly chirped soliton pulses in optical fibers and waveguides[17–22].This is because chirp is very useful in the process of light pulse compression and has potential applications in optical communication systems [23].Notably,chirped pulses are useful in the design of optical devices such as fiberoptic amplifiers,optical pulse compressors and solitary wavebased communication links[18,24].Physically,the chirp of an optical wave is generally known as the time dependence of its instantaneous frequency [10].In this setting,significant results have been obtained with recent studies analyzing the propagation of nonlinearly chirped solitons in optical materials exhibiting different kinds of higher-order effects such as selfsteepening and self-frequency shift processes [18],self-steepening and quintic nonlinearity [17,19,20],self-steepening and quintic-septic-nonic nonlinearities [25].However,all chirped soliton solutions mentioned above are obtained under the influence of cubic nonlinearity.How to find the exact and new kind of chirped solitons in the absence of cubic nonlinearity is interesting work.Such a problem is addressed and clarified in the present work.We demonstrate here that under the vanishing Kerr nonlinearity,different chirped soliton solutions on a cw background are formed in a non-Kerr quintic medium exhibiting a self-steepening effect.In particular,different types of bright,gray,kink solitons on a cw background are found for the first time for the so-called Gerdjikov–Ivanov equation,which is a kind of NLS equation modeling the wave dynamics in the presence of quintic nonlinearity and selfsteepening effects.We will show that under the influence of the self-steepening process,these envelope solitons acquire a frequency chirp that depends strongly on the wave intensity.

    The paper is organized as follows.In section 2,we present the general form of the nonlinearly chirped traveling wave solutions of the Gerdjikov–Ivanov model and their corresponding frequency chirp.In section 3,we find a variety of exact chirped soliton solutions on a cw background for the governing equation and determine the chirp associated with each of these soliton structures.In section 4,we analyze the stability of our chirped solutions against small perturbations such as white noise.Our findings are summarized in section 5.

    2.General traveling wave solutions

    The Gerdjikov–Ivanov equation governing the propagation of the optical field in a non-Kerr quintic medium exhibiting selfsteepening nonlinearity can be written in the form [26–30]:

    where q is the complex amplitude of the electric field,x is the distance and t is the time.Parameters α,β and γ represent the group velocity dispersion,self-steepening effect,and quintic nonlinearity,respectively.

    Model (1) has been used to study stationary solutions by applying the Lie symmetry method[26].The conservation laws for equation (1) have also been derived by means of Lie symmetry analysis[27].In addition,soliton-like solutions have been obtained with the application of Madelung fluid description[28].Moreover,the explicit soliton-like solutions of the Gerdjikov–Ivanov model have been derived by employing its Darboux transformation [29].Several exact localized solutions including bright,kink,and singular soliton solutions have been also found for this model[30].Here,we will find the soliton solutions on a cw background which exhibit a nonlinear frequency chirp,resulting from the self-steepening effect.As previously mentioned,chirped optical localized waves are of practical relevance to achieving pulse amplification or compression [18,23,24].

    To search for exact chirped localized wave solutions of equation (1),we consider a complex traveling-wave solution of the form [18,25],

    where the real amplitudeU(ξ)and phase modificationφ(ξ)are functions of the traveling coordinate ξ=x-vt,with v is the velocity of the traveling wave.Also,the parameter w represents the frequency of the wave oscillation.

    Substitution of the expression of q(x,t)into the model(1)and separation of the real and imaginary parts yield coupled equations in U and φ as,

    where the subscripts indicate partial derivatives.

    Then,we can obtain an evolution equation for the phase modification φ(ξ) using equation (4) by multiplying it by the functionU(ξ)and integration as,

    with A being an integration constant to be determined later.This result shows that dφ/dξ depends on U2,thus indicating that the phase of propagating waves possesses a nontrivial form which leads to the appearance of chirped nonlinear waves in the system.

    The accompanying frequency chirp δω defined asδω=-? [φ(ξ) -ωt]?xis given by

    Scrutinizing the expression(6),we see that the frequency chirp property appears due to the self-steepening effect.One can also observe that chirp-free nonlinear waveforms may exist in the nonlinear medium in the case of vanishing selfsteepening (β →0) if we choose A=0.Importantly,this chirp includes two nonlinear contributions which are dependent on the wave intensity∣q(x,t)∣2=∣U(ξ)∣2.

    Now,substituting equations (5) in (3),one obtains the ordinary nonlinear differential equation:

    which describes the dynamics of the pulse amplitude in the non-Kerr quintic medium.Multiplying the amplitude equation(7)by the function dU/dξ and integrating once with respect to ξ,one gets

    where B is the second integration constant.

    We now make the transformation P=U2and write equation (8) as

    where the coefficients a,b,c,and Ω are given by

    With these results,we find that the general traveling wave solutions of the Gerdjikov–Ivanov equation(1)take the form,

    withP(ξ)obeying the nonlinear differential equation (9) and φ(ξ)can be determined explicitly from equation(5).Also,the resultant frequency chirp across the propagating pulse is given by

    Expression (11) describes various nonlinearly chirped traveling waves that may propagate in a non-Kerr quintic medium wherein the pulse evolution is governed by the Gerdjikov–Ivanov equation (1).These nonlinear waveforms can be generated from the closed-form solutions P(ξ) of equation (9) and the general waveform (11).It is worth pointing out that the case of localized waves on a zero background,which seems to be simple in the Gerdjikov–Ivanov equation case,has been extensively studied using various methods (see,e.g.[26–29]).In what follows,we study several types of localized pulses on a cw background for this model equation that are characterized by a nonlinear chirp.One should note that nonlinear waveforms appearing on a constant background are of practical interest in different physical systems including optical fibers,Bose–Einstein condensates and hydrodynamics,etc [31–33].

    3.Chirped solitons on a cw background

    We have obtained a variety of analytical soliton solutions on a cw background of model (1) which are characterized by a frequency chirp that is intensity dependent.

    3.1.Bright solitons

    We find an exact soliton solution for equation(9)of the form,

    where λ,ρ and η are real parameters defined by

    For this solution,the integration constants A and B are given by

    If we insert these results into equation (11),one obtains an exact chirped soliton pulse solution for the Gerdjikov–Ivanov model (1) as,

    with ξ0being an arbitrary constant.

    Expressions (14) and (15) show that this localized wave exists when a>0,b<0 and 3b2>8ac.Moreover,from equation(16),we can see that the condition 16ac-5b2>0 is required for the constant A to be real.

    The corresponding frequency chirp can be obtained readily as

    Figure 1.Evolution of intensity wave profile of the soliton solution (17) with parameters α=0.1,β=0.15,γ=0.08,v=-0.1,ω=-0.06125,v=-0.1,A=0.08,and ξ0=0(a)bright soliton on a cw background for the+sign and(b)dark soliton for the-sign.The corresponding chirp profiles for the (a) bright soliton and (b) dark soliton.

    Figures 1(a)and(b)display the evolution of the intensity wave profile of the chirped soliton solution (17) with the lower sign and the upper sign,respectively.The adopted parameter values are: α=0.1,β=0.15,γ=0.08,v=-0.1,ω=-0.06125,v=-0.1,A=0.08,and ξ0=0.As seen,this solution represents a bright soliton pulse on a cw background for the upper sign and a dark soliton pulse for the lower sign.The profiles of accompanying frequency chirp for bright and dark solitons are exhibited in figures 1(c)and(d),respectively(for t=0).It is clear that the chirp for the bright pulse has a maximum at the center of the pulse,whereas for the dark pulse,it has a minimum;however,for both cases,it saturates at the same finite value as x →±∞.

    3.2.Gray solitons

    In what follows,we present the nonlinearly chirped gray soliton solutions of the Gerdjikov–Ivanov model (1) in two types.

    (i) Type l

    We obtained an analytical soliton solution for equation (9) as,

    when the balance between the group velocity dispersion,quintic nonlinearity and self-steepening effect satisfies the relation

    In this solution,the real parameters p,?and r are related to the coefficients of the nonlinear differential equation (9) by

    Then,by equating the parameters in equations (10) and (21),one obtains the following expressions of the wave velocity v,frequency w,and integration constants A and B:

    It follows from expressions (24) and (25) that the integration constants A and B can be fixed easily with the pulse parameters p,?and r,and consequently the physical meaning of these constants is very clear.Note that for the constant A in(24) to be real,we must require 0

    By inserting these results into equation (11),one obtains an exact chirped soliton solution for the Gerdjikov–Ivanov model (1) as,

    It should be remarked that this solution has three free parameters p,?and r,and thus it describes a wide class of localized waves that are of great practical importance.Note that this soliton structure exists for the Gerdjikov–Ivanov model (1) with group velocity dispersion,fifth-order nonlinearity and self-steepening subject to the constraint condition(20).The latter condition shows the dispersion parameter α and the quintic parameter γ should be of the same sign(i.e.αγ>0),thus implying that the obtained nonlinearly chirped soliton can exist in anomalous (normal) dispersion for selfdefocusing (-focusing) nonlinearity.Naturally,the solution(26) reduces to a chirped dark-type solitonq(x,t)=±ptanh [r(x-vt-ξ0) exp [i(φ(ξ) -ωt)]for the case when ?=1.

    The frequency chirp associated with the chirped soliton(26) can be obtained readily as

    Figure 2(a) shows the evolution of the intensity wave profile of the nonlinearly chirped soliton solution (26) for the material parameters α=0.25 and γ=0.2.To satisfy the existence condition(20),we set β=0.4.Also,the other soliton parameters are taken as p=1.6,?=0.5,r=1,and ξ0=0.As concerns the pulse velocity v,it can be determined from equation (22) as v ≈-0.48.One can see from this figure that this solution represents a chirped gray pulse with a nonzero dip.The profile of the frequency chirp associated with this graytype solution is shown in figure 2(b)(for t=0).It is clear that this chirp has a minimum at the center of the pulse and saturates at the same finite value as x →±∞.

    Figure 2.(a) Evolution of intensity wave profile of the gray soliton solution (26) with parameters α=0.25,β=0.4,γ=0.2,p=1.6,?=0.5,r=1,ξ0=0 and (b) The corresponding chirp of the gray soliton solution.

    Figure 3.Evolution of intensity wave profile of the soliton solution(29)with parameters α=0.1,γ=0.08(a)bright soliton on a continuouswave background for Λ=0.3,β=0.15,v=-0.1 and (b) gray soliton with a nonzero dip for Λ=-0.3,β=0.18,v=0.1.The corresponding chirp profiles for the (a) bright soliton and (b) gray soliton.

    Figure 4.Evolution of intensity wave profile of the kink soliton solution (36) for different values of β (a) β=0.4 and (b) β=0.6.(c) The corresponding chirp profiles for β=0.4 (dashed line) and β=0.6 (thick line).The other parameters are mentioned in the text.

    Figure 5.The numerical evolution of chirped(a)bright soliton solution(17),(b)gray soliton solution(26)and(c)kink soliton solution(36)under the perturbation with 10% initial white noise.The parameters are the same as those in figures 1(a),2(a) and 4(a),respectively.

    (ii) Type 2

    We find that equation (9) admits an exact closed-form soliton solution of the form,

    which leads to a class of nonlinearly chirped solitary wave solutions for the Gerdjikov–Ivanov equation (1) as,

    with Λ being a free constant which should satisfy Λ>-1.Note that for this chirped soliton solution,one finds that the first integration constant A vanishes while the second integration constant is equal to B=-μ2S2/16Λ,and the accompanying frequency chirp can be obtained readily as,

    Physically,the expression (29) describes a nonlinearly chirped bright soliton on a cw background with an intensitytanh2[μ(x-vt-ξ0)]}for Λ>0 or a nonlinearly chirped gray soliton on a nonzero background and an intensity oftanh2[μ(x-vt-ξ0)]}for-1<Λ<0.As follows from equations(30)and(31),we see that the existence conditions of this chirped waveform are a>0,b<0 for Λ>0 and a<0,b>0 for -1<Λ<0.

    The intensity profile of the chirped soliton (29) is depicted in figures 3(a) and (b) for α=0.1,γ=0.08 and different values of the free constant Λ,0.3 and -0.3,respectively.The other parameters are taken as β=0.15,v=-0.1 for the case when Λ=0.3 and β=0.18,v=0.1 for the case when Λ=-0.3.One can observe that the soliton(29) takes a bright waveform for Λ=0.3 and a gray waveform for Λ=-0.3.The profiles of associated frequency chirp (for t=0) are shown in figures 4(a) and (b),respectively.

    3.3.Kink solitons

    We have found the exact soliton solution of equation(9)to be

    The real parameters R and h in this solution are defined by the expressions

    under the constraint conditionsa<0 and c<0.

    On substitution of the solution equations (34) into (11),we obtain a class of nonlinearly chirped soliton solution for the Gerdjikov–Ivanov equation (1) as,

    Note that for this chirped solitary wave solution,we find that the integration constants A and B vanish and the associated frequency chirp reads,

    The evolution of the intensity wave profile of kink soliton(36) is illustrated in figures 4(a)–(b) for α=0.1,γ=0.425,and different values of the self-steepening parameter β,0.4 and 0.6,respectively.Here the other parameters are taken as v=-0.1,ω=-0.125 for the case when β=0.4 and v=-0.2036,ω=-0.2036 for the case when β=0.6.These profiles show that the intensity of pulses decreases with the increase of the self-steepening parameter β.The chirp profile(for t=0)is shown in figure 4(c)for different values of β.It is seen from the figure that the amplitude of the frequency chirp can be controlled by varying this parameter.

    From the above results,we can see that in the presence of the self-steepening effect,the Gerdjikov–Ivanov equation (1)supports different types of soliton structures on a cw background which exhibit a frequency chirping property.One notes that the novelty of the obtained nonlinear localized waves lies essentially in their functional shapes,which are different from the previously attained results.For example,we see that our chirped bright soliton solution (17) has a platform underneath it and involves a phase modification φ(ξ),markedly different from the soliton solution (3.7) presented in[29]which is unchirped and has a simple sech-type functional form.Moreover,the nonlinearly chirped soliton solutions(26),(29)and(36)obtained here for the Gerdjikov–Ivanov model are first presented in this paper.

    4.Stability analysis

    A distinctive property of localized waves is their stability to perturbations since only stable shape-preserving wave packets can be realized in experiments and utilized in practical applications.It is therefore important to investigate the stability of the derived nonlinearly chirped soliton solutions with respect to the finite initial perturbations.Here,we have performed a direct numerical simulation of model (1) using the split-step Fourier method [34] to verify the stability of solutions(17),(26)and(36)with initial white noise,as compared to figures 1(a),2(a) and 4(a).The evolution plots of chirped bright,gray and kink soliton solutions (17),(26) and (36)under the perturbation of 10% white noise are illustrated in figures 5(a),(b) and (c),respectively.The numerical results show that the chirped soliton structures remain stable after propagating a distance of twenty dispersion lengths.Hence we can conclude that the nonlinearly chirped soliton pulses we obtained are stable.

    Finally,in order to strictly answer the question of stability of the chirped solitons presented here,we will use the stability criterion based on the theory of optical nonlinear dispersive waves [35,36] to analyze their stability analytically.We will also investigate the regimes for the modulation instability of a cw signal propagating inside the optical system by employing the standard linear stability analysis [37].Detailed stability analyses are now under investigation.

    5.Conclusion

    In conclusion,we have obtained the chirped soliton solutions on a cw background for the Gerdjikov–Ivanov model describing pulse evolution in a non-Kerr optical medium with higher-order effects such as self-steepening effect and quintic nonlinearity.The newly found chirped soliton solutions are essentially of the bright,gray and kink types and their accompanying frequency chirp is intensity dependent.The results show that the presence of the self-steepening effect contributes positively to create a nonlinearity in the pulse chirp for which the amplitude can readily be controlled through the change of the self-steepening parameter.We have also demonstrated the stability of the chirped solitons numerically with respect to finite perturbations of the additive white noise.The results showed that the obtained chirped structures can propagate stably under finite initial perturbations,such as white noise.Because of their exact nature,the localized pulses on a cw background obtained here may be profitably exploited in designing the optimal non-Kerr quintic optical material experiments.The present results report the first analytical demonstration of the existence of nonlinearly chirped solitons on a cw background obtained within the Gerdjikov–Ivanov equation framework.

    Acknowledgments

    Chun Wei is supported by the Ministry of Education’s Industry School Cooperation Collaborative Education Project of China under grant number 220405078262706.

    Disclosures

    The authors declare no conflicts of interest.

    久久狼人影院| 免费av不卡在线播放| 成人午夜精彩视频在线观看| 日韩欧美精品免费久久| 精品国产国语对白av| 99久久综合免费| 久久ye,这里只有精品| 2018国产大陆天天弄谢| av免费在线看不卡| 菩萨蛮人人尽说江南好唐韦庄| 99国产综合亚洲精品| 黑丝袜美女国产一区| 国产av精品麻豆| 一级毛片黄色毛片免费观看视频| 色网站视频免费| 91精品三级在线观看| 免费人成在线观看视频色| videos熟女内射| 亚洲国产成人一精品久久久| 春色校园在线视频观看| 久久久午夜欧美精品| 大话2 男鬼变身卡| 亚洲av欧美aⅴ国产| 亚洲熟女精品中文字幕| 汤姆久久久久久久影院中文字幕| 日本免费在线观看一区| 日韩欧美一区视频在线观看| 成人国产av品久久久| 一边亲一边摸免费视频| 色婷婷av一区二区三区视频| 十分钟在线观看高清视频www| 99热国产这里只有精品6| 久久精品国产自在天天线| 亚洲怡红院男人天堂| 色婷婷av一区二区三区视频| 97超视频在线观看视频| 欧美国产精品一级二级三级| 人人澡人人妻人| 免费观看性生交大片5| 一区二区三区免费毛片| 在现免费观看毛片| 国产日韩欧美视频二区| 欧美日韩亚洲高清精品| 欧美成人精品欧美一级黄| 日本黄色片子视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品999| 日韩电影二区| 丝袜喷水一区| 满18在线观看网站| 夜夜看夜夜爽夜夜摸| 99re6热这里在线精品视频| 伦精品一区二区三区| 国产精品国产av在线观看| 少妇的逼水好多| 亚洲国产精品999| www.av在线官网国产| 成人亚洲精品一区在线观看| 永久网站在线| 热re99久久国产66热| 国产精品无大码| 精品亚洲乱码少妇综合久久| 999精品在线视频| av线在线观看网站| 国产免费又黄又爽又色| 在线播放无遮挡| 久久久久久久久久久免费av| 久久99一区二区三区| 免费观看a级毛片全部| 精品午夜福利在线看| 最近最新中文字幕免费大全7| 精品少妇内射三级| 十八禁高潮呻吟视频| 岛国毛片在线播放| 亚洲综合色惰| 一本一本综合久久| 免费看不卡的av| 一级,二级,三级黄色视频| 国产男女内射视频| 亚洲高清免费不卡视频| 五月天丁香电影| 色婷婷久久久亚洲欧美| 亚洲精品日本国产第一区| 91精品国产国语对白视频| 亚洲国产最新在线播放| 水蜜桃什么品种好| 亚洲精品一区蜜桃| 国产不卡av网站在线观看| 国产白丝娇喘喷水9色精品| 最黄视频免费看| 亚洲情色 制服丝袜| 一级黄片播放器| 18+在线观看网站| 国产黄色免费在线视频| av天堂久久9| 91久久精品国产一区二区三区| 春色校园在线视频观看| 国产亚洲av片在线观看秒播厂| 不卡视频在线观看欧美| av福利片在线| 午夜91福利影院| 久久久久久人妻| 成年女人在线观看亚洲视频| 22中文网久久字幕| 欧美性感艳星| 免费黄网站久久成人精品| 国产白丝娇喘喷水9色精品| 一区二区av电影网| 好男人视频免费观看在线| 18禁观看日本| 人体艺术视频欧美日本| 午夜激情久久久久久久| av女优亚洲男人天堂| 亚洲国产毛片av蜜桃av| 天堂中文最新版在线下载| 各种免费的搞黄视频| 国产在视频线精品| 秋霞伦理黄片| 亚洲精品视频女| 亚洲情色 制服丝袜| 国产一级毛片在线| 熟女电影av网| 欧美另类一区| 青春草国产在线视频| 亚洲,欧美,日韩| 欧美日韩在线观看h| 久久99热这里只频精品6学生| 晚上一个人看的免费电影| 免费大片黄手机在线观看| 日韩不卡一区二区三区视频在线| 在线 av 中文字幕| 99久久精品一区二区三区| 亚洲精品自拍成人| xxxhd国产人妻xxx| 91成人精品电影| 色网站视频免费| 大码成人一级视频| 青春草国产在线视频| 久久精品国产亚洲av涩爱| 69精品国产乱码久久久| 久久韩国三级中文字幕| 精品视频人人做人人爽| av播播在线观看一区| 欧美性感艳星| 老女人水多毛片| 色网站视频免费| 亚洲av福利一区| 成年人午夜在线观看视频| 亚洲人成网站在线观看播放| 制服诱惑二区| 久久综合国产亚洲精品| 熟女人妻精品中文字幕| 国产日韩欧美在线精品| 九九在线视频观看精品| 久久99精品国语久久久| 色哟哟·www| 日日摸夜夜添夜夜爱| 日韩亚洲欧美综合| 美女视频免费永久观看网站| 免费看不卡的av| 最近中文字幕2019免费版| 亚洲精品久久久久久婷婷小说| 精品一区二区免费观看| 美女福利国产在线| 欧美 日韩 精品 国产| 国产高清三级在线| 老司机影院毛片| 午夜日本视频在线| xxx大片免费视频| 校园人妻丝袜中文字幕| 热99国产精品久久久久久7| 欧美成人精品欧美一级黄| 男女无遮挡免费网站观看| 日本黄色日本黄色录像| 国产极品天堂在线| 一级a做视频免费观看| 精品国产国语对白av| 久久99热6这里只有精品| 丝袜喷水一区| 一级毛片黄色毛片免费观看视频| 国产一区二区在线观看av| 成人18禁高潮啪啪吃奶动态图 | 欧美亚洲日本最大视频资源| 插逼视频在线观看| 青春草亚洲视频在线观看| 午夜精品国产一区二区电影| 精品人妻偷拍中文字幕| 美女内射精品一级片tv| a级片在线免费高清观看视频| 观看av在线不卡| 最后的刺客免费高清国语| 一级毛片aaaaaa免费看小| 2022亚洲国产成人精品| 91精品伊人久久大香线蕉| 国产亚洲精品第一综合不卡 | xxx大片免费视频| 久久精品夜色国产| 夫妻性生交免费视频一级片| 久久ye,这里只有精品| 中文字幕免费在线视频6| 大香蕉久久网| 国产精品免费大片| 亚洲图色成人| 欧美日韩成人在线一区二区| 国产精品熟女久久久久浪| 免费看不卡的av| 欧美日韩在线观看h| 丰满少妇做爰视频| 国产成人一区二区在线| 久久久久久久久大av| 嫩草影院入口| 亚洲人成网站在线观看播放| 十分钟在线观看高清视频www| 最近2019中文字幕mv第一页| 岛国毛片在线播放| 多毛熟女@视频| 特大巨黑吊av在线直播| 色94色欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 51国产日韩欧美| 免费大片黄手机在线观看| 97超视频在线观看视频| 另类精品久久| 99精国产麻豆久久婷婷| 久久ye,这里只有精品| 成年av动漫网址| 肉色欧美久久久久久久蜜桃| 黄色怎么调成土黄色| 如何舔出高潮| 在线天堂最新版资源| 自线自在国产av| 91久久精品电影网| 国产av国产精品国产| 在线观看人妻少妇| 国产极品天堂在线| 日本欧美国产在线视频| 国产免费现黄频在线看| 精品久久国产蜜桃| 日日啪夜夜爽| 一区二区三区精品91| 一区二区三区免费毛片| 久久婷婷青草| 菩萨蛮人人尽说江南好唐韦庄| 最近的中文字幕免费完整| 精品酒店卫生间| 日韩av免费高清视频| 热re99久久精品国产66热6| 一级毛片黄色毛片免费观看视频| 综合色丁香网| 青春草视频在线免费观看| av播播在线观看一区| 一本大道久久a久久精品| 午夜免费男女啪啪视频观看| 日韩中文字幕视频在线看片| 国产精品蜜桃在线观看| 亚洲av日韩在线播放| 极品人妻少妇av视频| 性色avwww在线观看| h视频一区二区三区| 亚洲天堂av无毛| 国产av国产精品国产| 性色av一级| 大陆偷拍与自拍| 国产国语露脸激情在线看| 亚洲色图综合在线观看| 免费黄频网站在线观看国产| 国产精品一国产av| 国产成人aa在线观看| 精品酒店卫生间| 亚洲欧洲日产国产| 中文字幕人妻熟人妻熟丝袜美| 三级国产精品欧美在线观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲综合精品二区| 国产精品一区www在线观看| 高清毛片免费看| 一级毛片黄色毛片免费观看视频| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽av亚洲精品天堂| 久久久久久人妻| 日本黄大片高清| 久久久精品94久久精品| 国语对白做爰xxxⅹ性视频网站| 国产深夜福利视频在线观看| 国产精品不卡视频一区二区| 母亲3免费完整高清在线观看 | 啦啦啦中文免费视频观看日本| 91精品国产九色| 亚洲国产精品999| 国产一区二区在线观看日韩| 王馨瑶露胸无遮挡在线观看| 精品人妻一区二区三区麻豆| 另类亚洲欧美激情| 美女大奶头黄色视频| av又黄又爽大尺度在线免费看| av天堂久久9| 特大巨黑吊av在线直播| 国产男女超爽视频在线观看| 亚洲综合色网址| 最近2019中文字幕mv第一页| 黄色一级大片看看| 久久久久久伊人网av| 一区二区三区乱码不卡18| 免费人成在线观看视频色| 欧美日韩成人在线一区二区| 亚洲成人手机| 久久狼人影院| 日本与韩国留学比较| 王馨瑶露胸无遮挡在线观看| 亚洲欧美色中文字幕在线| 午夜日本视频在线| 午夜福利视频精品| 精品亚洲成a人片在线观看| 免费少妇av软件| 一级,二级,三级黄色视频| 桃花免费在线播放| 国产精品嫩草影院av在线观看| 又黄又爽又刺激的免费视频.| 亚洲激情五月婷婷啪啪| 久久99热这里只频精品6学生| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 精品一区二区免费观看| 五月天丁香电影| 亚洲人成网站在线观看播放| 五月伊人婷婷丁香| 丝袜美足系列| 日日啪夜夜爽| 久久久午夜欧美精品| 亚洲婷婷狠狠爱综合网| 亚洲国产毛片av蜜桃av| 亚洲激情五月婷婷啪啪| 久久 成人 亚洲| 免费少妇av软件| 亚洲av中文av极速乱| 午夜福利视频精品| 亚洲欧美色中文字幕在线| 人人妻人人澡人人爽人人夜夜| 一边亲一边摸免费视频| 精品久久久精品久久久| 一级黄片播放器| 在线精品无人区一区二区三| 久久久亚洲精品成人影院| 亚洲av男天堂| 男女国产视频网站| 丰满少妇做爰视频| 国产69精品久久久久777片| 亚洲av成人精品一区久久| 亚洲,欧美,日韩| 亚洲精品视频女| av免费在线看不卡| 精品少妇久久久久久888优播| 永久网站在线| 亚洲综合色网址| 九色成人免费人妻av| xxxhd国产人妻xxx| 色婷婷久久久亚洲欧美| a 毛片基地| 三级国产精品片| 国产成人午夜福利电影在线观看| 爱豆传媒免费全集在线观看| 精品人妻偷拍中文字幕| 九草在线视频观看| 久久精品国产自在天天线| 在线观看免费高清a一片| 国产亚洲精品第一综合不卡 | 一个人看视频在线观看www免费| 天天躁夜夜躁狠狠久久av| 啦啦啦中文免费视频观看日本| 国产成人精品一,二区| 欧美精品一区二区大全| 制服人妻中文乱码| 超碰97精品在线观看| 黑丝袜美女国产一区| 在线观看三级黄色| 亚洲人与动物交配视频| 亚洲中文av在线| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久久久免| 国产精品久久久久久久电影| 一级二级三级毛片免费看| 国产日韩欧美亚洲二区| 91午夜精品亚洲一区二区三区| 能在线免费看毛片的网站| 91精品一卡2卡3卡4卡| 中国三级夫妇交换| 久久久a久久爽久久v久久| 99久久中文字幕三级久久日本| av线在线观看网站| 一本—道久久a久久精品蜜桃钙片| 日日啪夜夜爽| 最近最新中文字幕免费大全7| 97在线人人人人妻| 九九久久精品国产亚洲av麻豆| 久久久久久人妻| 国产伦精品一区二区三区视频9| 欧美日韩亚洲高清精品| 日韩制服骚丝袜av| 国产日韩欧美亚洲二区| 亚洲国产欧美在线一区| 免费人成在线观看视频色| 色哟哟·www| 亚洲丝袜综合中文字幕| 97在线视频观看| av专区在线播放| 97在线视频观看| 两个人免费观看高清视频| 国产片内射在线| 青春草视频在线免费观看| 精品久久久久久久久av| 赤兔流量卡办理| 制服人妻中文乱码| 亚洲精品一二三| 黑人欧美特级aaaaaa片| 日本黄色日本黄色录像| 久久午夜福利片| 免费大片黄手机在线观看| 久久韩国三级中文字幕| 亚洲成人av在线免费| 中国国产av一级| 人妻一区二区av| 国产高清有码在线观看视频| 成年人免费黄色播放视频| 亚洲,一卡二卡三卡| 大香蕉久久网| 国语对白做爰xxxⅹ性视频网站| 全区人妻精品视频| 国产精品熟女久久久久浪| 天堂中文最新版在线下载| 美女国产高潮福利片在线看| 成人亚洲精品一区在线观看| 精品久久久精品久久久| 插逼视频在线观看| 国产 精品1| 日韩人妻高清精品专区| 免费看av在线观看网站| 人人妻人人澡人人看| 久久精品国产亚洲av天美| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看| 一级片'在线观看视频| 成年女人在线观看亚洲视频| 狂野欧美激情性xxxx在线观看| 成人午夜精彩视频在线观看| 国产精品欧美亚洲77777| 热99久久久久精品小说推荐| 国产高清国产精品国产三级| 亚洲丝袜综合中文字幕| 国产综合精华液| 日韩,欧美,国产一区二区三区| 亚洲,一卡二卡三卡| 亚洲成色77777| av电影中文网址| 日本黄大片高清| 久久久久国产精品人妻一区二区| 亚洲av中文av极速乱| 国产精品久久久久久精品古装| 婷婷色综合大香蕉| 精品亚洲成a人片在线观看| 午夜激情久久久久久久| 18+在线观看网站| 黄片播放在线免费| 五月开心婷婷网| 美女cb高潮喷水在线观看| 制服丝袜香蕉在线| 国产乱来视频区| 国产精品国产三级专区第一集| 人妻系列 视频| 91国产中文字幕| 美女视频免费永久观看网站| 少妇人妻 视频| 一个人免费看片子| 狂野欧美激情性xxxx在线观看| 久久久久久久久久成人| 99九九在线精品视频| 日本-黄色视频高清免费观看| 九色亚洲精品在线播放| 国产精品成人在线| 国产成人freesex在线| 国产亚洲最大av| 午夜福利,免费看| 国产成人a∨麻豆精品| 国产熟女欧美一区二区| 在线免费观看不下载黄p国产| 永久免费av网站大全| 一边摸一边做爽爽视频免费| 亚洲欧美成人综合另类久久久| av黄色大香蕉| 色哟哟·www| 久久精品熟女亚洲av麻豆精品| 美女xxoo啪啪120秒动态图| 麻豆成人av视频| 嫩草影院入口| 日本黄大片高清| 建设人人有责人人尽责人人享有的| 精品久久久久久久久亚洲| 丁香六月天网| 色哟哟·www| 日本黄色日本黄色录像| 久久国内精品自在自线图片| 国产精品 国内视频| 欧美 日韩 精品 国产| 亚洲av男天堂| 免费看不卡的av| 亚洲,一卡二卡三卡| 欧美三级亚洲精品| 美女cb高潮喷水在线观看| 国产成人精品在线电影| 一区二区三区四区激情视频| 伦精品一区二区三区| 久久影院123| 秋霞伦理黄片| 免费av中文字幕在线| 黄色欧美视频在线观看| 日本vs欧美在线观看视频| 亚洲国产精品国产精品| 久久久久精品久久久久真实原创| 国产精品蜜桃在线观看| 国产精品成人在线| 亚洲欧美中文字幕日韩二区| 狠狠婷婷综合久久久久久88av| 亚洲色图综合在线观看| 精品少妇黑人巨大在线播放| 中国国产av一级| 国产成人午夜福利电影在线观看| 男女国产视频网站| 午夜视频国产福利| 夫妻午夜视频| 精品人妻在线不人妻| 亚洲精品国产色婷婷电影| 熟女av电影| 亚洲av电影在线观看一区二区三区| 一区二区日韩欧美中文字幕 | 国产高清有码在线观看视频| 美女中出高潮动态图| 少妇丰满av| 久久精品国产a三级三级三级| 婷婷色综合大香蕉| 国产无遮挡羞羞视频在线观看| 久久久午夜欧美精品| 曰老女人黄片| 美女脱内裤让男人舔精品视频| 91久久精品国产一区二区成人| 久久av网站| 最近中文字幕高清免费大全6| 高清视频免费观看一区二区| 久久久久人妻精品一区果冻| 精品人妻在线不人妻| 国产亚洲午夜精品一区二区久久| 国产免费又黄又爽又色| 爱豆传媒免费全集在线观看| tube8黄色片| 久久久久久伊人网av| 日日啪夜夜爽| 日本色播在线视频| 亚洲综合色网址| 国产亚洲av片在线观看秒播厂| 久久久久久久久大av| 纯流量卡能插随身wifi吗| 亚洲欧洲国产日韩| 亚洲人成网站在线播| 极品人妻少妇av视频| av在线app专区| 色婷婷av一区二区三区视频| 又黄又爽又刺激的免费视频.| 日韩三级伦理在线观看| 丝袜喷水一区| 免费不卡的大黄色大毛片视频在线观看| 天天影视国产精品| 中文精品一卡2卡3卡4更新| 亚洲精品久久成人aⅴ小说 | 校园人妻丝袜中文字幕| 欧美日本中文国产一区发布| 免费观看无遮挡的男女| 精品少妇黑人巨大在线播放| 91在线精品国自产拍蜜月| 精品酒店卫生间| 国语对白做爰xxxⅹ性视频网站| 全区人妻精品视频| 黄色视频在线播放观看不卡| freevideosex欧美| 亚洲精品456在线播放app| 69精品国产乱码久久久| 国产精品蜜桃在线观看| 搡女人真爽免费视频火全软件| 亚洲av在线观看美女高潮| 777米奇影视久久| 国产色婷婷99| 日韩成人av中文字幕在线观看| 两个人的视频大全免费| 国产精品蜜桃在线观看| a级毛片免费高清观看在线播放| 人体艺术视频欧美日本| 在线观看www视频免费| 国产成人精品婷婷| 亚洲性久久影院| 99久国产av精品国产电影| 成人黄色视频免费在线看| 一级毛片aaaaaa免费看小| 在线观看免费高清a一片| 亚洲精品乱码久久久久久按摩| 在线观看人妻少妇| 欧美另类一区| 国产男女超爽视频在线观看| 另类精品久久| 欧美精品国产亚洲| 亚洲成色77777| 人妻系列 视频| 自拍欧美九色日韩亚洲蝌蚪91| videosex国产| 国产精品国产三级国产专区5o| 精品久久蜜臀av无| 国产成人精品福利久久| 人妻系列 视频| 久久久国产一区二区|