• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ENTIRE SOLUTIONS OF LOTKA-VOLTERRA COMPETITION SYSTEMS WITH NONLOCAL DISPERSAL?

    2023-12-14 13:05:48郝玉霞李萬同

    (郝玉霞) (李萬同)

    1. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

    2. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

    E-mail: haoyx15@lzu.edu.cn; wtli@lzu.edu.cn

    Jiabing WANG (王佳兵)

    School of Mathematics and Physics, Center for Mathematical Sciences, China University of Geosciences, Wuhan 430074, China

    E-mail: wangjb@cug.edu.cn

    Wenbing XU (許文兵)

    School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

    E-mail: 6919@cnu.edu.cn

    Abstract This paper is mainly concerned with entire solutions of the following two-species Lotka-Volterra competition system with nonlocal (convolution) dispersals:Here a ≠ 1, b ≠ 1, d,and r are positive constants.By studying the eigenvalue problem of (0.1) linearized at (φc(ξ),0),we construct a pair of super-and sub-solutions for (0.1),and then establish the existence of entire solutions originating from (φc(ξ),0) as t →-∞,where φc denotes the traveling wave solution of the nonlocal Fisher-KPP equation ut=k ?u-u+u(1-u).Moreover,we give a detailed description on the long-time behavior of such entire solutions as t →∞.Compared to the known works on the Lotka-Volterra competition system with classical diffusions,this paper overcomes many difficulties due to the appearance of nonlocal dispersal operators.

    Key words entire solutions;Lotka-Volterra competition systems;nonlocal dispersal;traveling waves

    1 Introduction

    In this paper,we study entire solutions of the following nonlocal (convolution) dispersal Lotka-Volterra competition system:

    (K)k ∈C1(R),k(x)=k(-x)≥0,andk(·) is compactly supported.

    (H)d ≥r>1.

    In (H),r>1 implies thatvhas a higher inherent growth rate thanu,and the assumption thatd ≥r,which is a technical requirement to obtain the Lipschitz continuity of the entire solution with respect tox,can be regarded as an acknowledgement that the dispersal term ofvplays a more important role than the reaction term.

    Model (1.1) can capture the spatial dynamics of two competing species,which relies precisely on the choice of the initial data and the parametersaandb.In particular,whenkis a Dirac delta function,(1.1) becomes the following ordinary differential system:

    The solution (u(t),v(t)) exhibits the following asymptotic behavior ast →+∞(see [27,38]):

    (i) if 0

    (ii) if 0

    (iii) if 0

    (iv) ifa,b>1,then (u(t),v(t)) converges to one of the equilibria u1and u2depending on the initial data (strong competition).

    For when the movements of the two competing species happen only between adjacent spatial locations,the following reaction-diffusion Lotka-Volterra competition system,as a counterpart of (1.1),has been widely studied:

    We refer to [5,16,26,35,49]for the stability of the steady states u?,u1,and u2in (1.2).

    We consider the wave propagation phenomena of (1.1),which include the studies of traveling wave solutions,entire solutions,and spreading speeds.The traveling wave solution describes the propagation mode of the two competing species,which connects one equilibrium to another equilibrium.We recall some results about the traveling wave solutions of (1.1).The function(u,v)(x,t)=(?c,ψc)(ξ) (ξ=x-ct) is called a traveling wave solution of (1.1) with a speedc ∈R if it satisfies that

    The existence of positive solutions to(1.3)depends on the parametersaandband the following asymptotic boundary conditions:

    (i) when 0

    and also admits a positive solution satisfying that (?c,ψc)(-∞)=u?and (?c,ψc)(+∞)=u2for each speed

    (see Houet al.[25]);

    (ii) when 0

    (iii) similarly to(ii),when 0

    (iv) whena,b>1,system (1.3) admits a unique positive solution satisfying that (?c,ψc)(-∞)=u2and (?c,ψc)(+∞)=u1with the unique speedc=Cuv ∈R (see Zhang and Zhao[51]).

    We refer to [1,7,11,19,53]for more works about traveling wave solutions for (1.1) and[13,23,24]for (1.2).

    The entire solution,(which means the solution defined for allx ∈R andt ∈R) is another important research topic.The study of entire solutions can be traced back to the pioneering work of Hamel and Nadirashvili [20,21],in which the authors constructed entire solutions for classical KPP equations in the one-dimensional and high-dimensional spaces by considering the interaction of traveling wave solutions.Since then,many efforts have been made to construct entire solutions of various types;these include the annihilating-front type,which behaves as two opposite wave fronts with positive speed(s) approaching each other from both sides of the real axis and then annihilating as time increases (see e.g.[4,17,31,48]);the merging-front type,which behaves as two monostable fronts approaching each other from both side of the real axis and merging and converging to a bistable front or behaves as a monostable front merging with a bistable front and one chases another from the same side of the real axis (see e.g.[37,47]);the catching-up/invading type,which behaves ast →-∞,like two monostable/bistable fronts moving in the same direction,the faster one then invading the slower one ast →+∞(see,e.g.[22,42]).

    In (1.1),different types of entire solutions can provide different propagation and invasion modes of the competing species.For the case 01,Zhanget al.[50]showed the existence of traveling wave solutions and the asymptotic behavior of traveling wave solutions at infinity.For the system (1.2),Duet al.[8,9]studied front-like entire solutions in a periodic habitat.Guo and Wu [18]constructed some new entire solutions which behave as two traveling wave fronts moving towards each other from both sides of thex-axis for discrete diffusive equations.Morita and Tachibana [38]proved the existence of an entire solution which behaves as two monotone waves propagating from both sides of thex-axis.Wanget al.[45]considered the entire solution,which behaves as two wave fronts coming from both sides of thex-axis,for a diffusive and the competitive Lotka-Volterra type system with nonlocal delays.In particular,a new type of entire solution of (1.2),which is different from the aforementioned results,was constructed recently by Lamet al.[29].They showed the existence of entire solutions which asymptotically converge,ast →-∞,to a traveling wave solution consisting of a single species of (1.2) for both the weak and the strong competition cases.Moreover,these entire solutions evolve to distinctive diverging front,whose profiles ast →+∞r(nóng)ely heavily on the competency of each species.

    In this paper,we are interested in whether or not the new entire solutions constructed in [29]also exist in (1.1),and in what influence the appearance of the nonlocal dispersals operator has on the construction of this type of entire solution.We show the existence of entire solutions of (1.1) corresponding to (φc(ξ),0) att →-∞,where (φc(ξ),0) is the traveling wave solution of (1.1)consisting of a single species.We also describe the asymptotic behavior of these entire solutions ast →+∞.In the study of the entire solutions,the appearance of a nonlocal dispersal(convolution)operator creates many difficulties.For example,nonlocal dispersal leads to the lack of a regularizing effect;this leads us to encounter a lot of difficulties in sense of the calculation process.Concretely,for the classical Lotka-Volterra competition system studied in[29],the authors studied the existence of entire solutions by introducing co-moving frame,and the existence on entire solutions can be resolved by super-and sub-solutions and estimates for parabolic equations,where the super-and sub-solutions were constructed by considering an eigenvalue-problem.However,we cannot use the estimate for parabolic equations,so we give some estimates and use the Lebesgue dominated convergence theorem to overcome this.Additionally,some methods used for the classical system cannot be applied;these include the fact that the existence of a solution to the eigenvalue-problem for a local system can be obtained directly by virtue of the Hille-Yosida Theorem,but we cannot verify that the Hille-Yosida Theorem is suitable for the system we study,since we cannot prove that the linear operator we construct generates an analytic semigroup of contractions onC0(R),due to the addition of a derivative with respect tox.Hence,we utilize the super-and sub-solutions method to resolve this.During this process,we introduce a technical condition (H) to prove Theorem 2.1.We conjecture that the condition (H) may be non-essential,and that it can be removed by constructing other super-and sub-solutions.Meanwhile,there are many difficulties when we consider the asymptotic behavior of entire solutions ast →∞,since the spreading speed of system(1.1),which will help us to obtain asymptotic behavior att →∞,is not solved for cases 0

    Finally,we recall some results on the spreading speed of (1.1).For the casea,b>1,the spreading speed of (1.1) was studied by [51].Moreover,the authors of [12]mentioned that ifa<1

    The rest of this paper is organized as follows: Section 2 is devoted to the study of an eigenvalue-problem.Then we construct some new types of entire solutions and study their properties in Section 3.Finally,we present some simulations to illustrate the analytical results in Section 4.

    2 Eigenvalue Problems

    In this section,we consider the eigenvalue problem of the linearized system of (1.3) at(φc,0).Hereφc(x) is the traveling wave solution of

    The equation (2.1) is referred to as the nonlocal version of the classical Fisher-KPP equation[14,28].By the work of Carr and Chmaj [2]and Schumacher [41],we know that (2.1) admits a unique (up to translation) traveling wave solutionu(x,t)=φc(x-ct) connecting 1 to 0 with each wave speed

    that is,φc(ξ) solves

    For eachc>c?,there exist some constantsα ∈(α(c),min{1,2α(c)}),A0?1,x0?0,(c)>0 andA1such that,by a proper translation the wave profile,φcsatisfies that

    whereα(c) and(c) are the smallest positive solutions of

    respectively;see [6,36].

    In what follows,we always assume (K) and thatr>1.Forc ∈[c?,+∞),define that

    Then there exists a uniqueλ0>0 such that

    andF(·) is strictly decreasing on (0,λ0) and strictly increasing on (λ0,+∞).We have that

    Byr>1 andb>0,the set ??(c) is nonempty.For anyλ ∈??(c),we denote thatμ?F(λ)>r(1-b).For anyc ≥c?,define that

    Note that

    Then there exists a uniqueγ>0 such that

    The following theorem is the main result of this section:

    Theorem 2.1Let (K) and (H) hold.For anyc ∈[c?,+∞) andλ ∈??(c),we denote thatμ?F(λ).Then there exists a solutionwith?,ψ ∈C1(R)∩L∞(R) of the following system:

    Furthermore,if there existsM<0 such that

    then we have that

    In order to obtain Theorem 2.1,we first prove the following two lemmas about the existence ofψsatisfying (2.6):

    Lemma 2.2Under the same assumptions of Theorem 2.1,there existsψ ∈C1(R)∩L∞(R)satisfying that

    whereL>0,λ′∈(λ,min{λ0,λ+α(c)}) withF(λ′)

    ProofFor anyλ′∈(λ,min{λ0,λ+α(c)}),the strictly decreasing property ofF(·) on(0,λ0) implies thatF(λ′)

    Now we construct a super-solution.For anyβ ∈(0,γ),it follows from(2.5)thatG(β)<μ.Byφc(-∞)=1,we can find a constant∈R small enough such that

    Define that

    This completes the proof.

    Next we recall an important tool called Ikehara’s theorem,whose proof can be found in[10,46].

    Theorem 2.3(Ikehara’s) Letwithz ∈C,where?(·)is a positive increasing function on R-.For some real number Λ>0,assume thatP(z) can be written as

    wherek>-1,and there is a positive numberεsuch thatQ(z) is analytic in the strip Λ-ε

    By Ikehara’s theorem,we can give a more accurate description of the decaying behavior of the solutionψo(hù)f (2.9) asx →-∞.

    Lemma 2.4If there existsM<0 such that

    where the functionψis given in Lemma 2.2,then we have that

    ProofWe first prove that the equationG(z)=μwithz ∈C has no root exceptz=γin the strip 0

    IfG(z)=μ,then

    Whenp=γ,byG(γ)=μand the first equation of (2.10),we get that

    which implies thatq=0.Whenp ∈(0,γ),by (2.5),we have that

    HenceG(z)=μhas no root exceptz=γin the strip 0

    Multiplying (2.9) by e-zxand integrating it over R,we obtain that

    We have that

    which implies that

    Define that

    It follows from (2.5) that

    Theng(·) is continuous on (0,γ].In the strip 0

    and it holds that

    ThusQ(z) is analytic in the strip 0

    which is essentially equivalent to the case whereψ′/ψ ≥Mfor allx<0.This completes the proof.

    Now we are ready to prove Theorem 2.1.

    Proof of Theorem 2.1By Lemmas 2.2 and 2.4,we only need to prove the existence of?(x).Byψ(x)∈L∞(R) in Lemma 2.2,there existsZ>0 such thatψ(x)≤Z.Define

    whereA ≥a/2 andB>aZ/(μ-1).Clearly,(x) is a super-solution of the first equation of (2.6).We next verify thatis a sub-solution of the first equation of (2.6).Whenx≥-λ-1ln(B/A),we have that(x)=-Ae-λx,which,along withψ(x)≤e-λxand (H),implies that

    Whenx≤-λ-1ln(B/A),we can get that(x)=-Band

    By the standard method of super-and sub-solutions,there is a solution?<0 of the first equation of (2.6) satisfying that?(∞)=0.This completes the proof.

    3 Entire Solutions

    In this section,we construct some entire solutions of (1.1) and study some qualitative properties of them.We first introduce some notations.For anyc ≥c?andλ ∈??(c),denote thatμ?F(λ),and let (?,ψ) be the solution of (2.6) obtained in Theorem 2.1.For simplicity,we rewrite (1.1) as

    where u=(u,v) and

    We introduce two increasing functions,p(t) andq(t),satisfying that

    whereEis an arbitrary positive constant andω ∈(0,μ/E).Some calculations imply that

    It follows that

    Define that

    It is easy to check thatCλ>Cuv,whereCuvis the unique speed that admits the traveling wave solution connecting u1and u2.Moreover,for eachc ≥c?,since-cλ+r>0,?λ ∈??(c),it follows thatCλ>c.The next two theorems are the main results in this paper.

    Theorem 3.1Suppose that (K) and (H) hold.Letc ≥c?andλ ∈??(c).Then there exists a unique entire solution uc,λ(x,t)=(uc,λ(x,t),vc,λ(x,t)) of (1.1) satisfying that

    Furthermore,for anyν ∈R{0},there exist two positive constantsandsuch that,for any(x,t)∈R2,uc,λ(x,t) satisfies that

    Theorem 3.2Suppose that all of the assumptions in Theorem 3.1 hold.Let uc,λ?(uc,λ(x,t),vc,λ(x,t)) be the entire solution of (1.1) obtained in Theorem 3.1.Then

    Furthermore,we have the following statements,which imply that,ast →+∞,the asymptotic behavior of the entire solution depends essentially on the competitiveness of the two species,i.e.,the range ofaandb:

    (i) if 0c>C2?>-C1?and it holds that

    (ii) if 0c>C2?and it holds that

    (iii) ifa,b>1,then there existsξ1∈R such that

    where uuv=(?uv,ψu(yù)v) is the traveling wave solution connecting u1at-∞to u2at +∞,with speedCuv.Furthermore,it holds that

    Remark 3.3Notice that the conclusions (3.14) and (3.18) in Theorem 3.2 are obtained onx ∈[(c+?)t,(Cλ-?)t]ast →+∞.Actually,we expect that (3.14) and (3.18) hold onx ∈[(C2?+?)t,(Cλ-?)t]ast →+∞,but this is challenging,and fails,sinceC2?is the minimal wave speed of the traveling waves of the corresponding linearized system (1.1) at (0,1).A classical way of constructing the super-solution of(1.1)iswhenx-ct>0 for some appropriateb,c>0.However,the initial functionvc,λ(x,0) is essentially compactly supported,which does not satisfy that(x,0)≤vc,λ(x,0)whenxis large enough.Hence,we usein (3.8) as a super-solution;this method makes us only prove that uc,λ(x,t) converges to u2forx ∈[(c+?)t,(Cλ-?)t]ast →+∞.It is not clear whether or not uc,λ(x,t) converges to u2forx ∈[(C2?+?)t,(c+?)t) ast →+∞;we will leave this for now and hope to solve it later.

    For the rest of this section,we focus on the proofs of Theorems 3.1 and 3.2.We first recall the definitions of sub-/super-solutions and the comparison principle of (1.1);see[51,Definition 4.6 and Lemma 4.8].In the next Definition,the definitions of sub-/super-solutions in the weak sense mean that sub-/super-solutions satisfy the integral-differential inequality for all but finite manyt ∈R.

    Definition 3.4Let u(x,t)=(u(x,t),v(x,t)) be a piecewise smooth function on R×I,whereI ?R is an open interval.Then,

    (i) the function u(x,t)=(u(x,t),v(x,t)) is called a sub-solution of (1.1) on R×Iif

    (ii) the function u(x,t)=(u(x,t),v(x,t)) is called a super-solution of (1.1) on R×Iif

    The following lemma states that,defined by (3.7) and (3.8),are,respectively,sub-and super-solutions of (1.1):

    Lemma 3.6Suppose that all the assumptions in Theorem 2.1 hold.Then,forE>max{‖?+aψ‖∞,r‖b?+ψ‖∞} and 0<ω<,we have that

    ProofBy (2.2),(2.6) and (3.1),we have that,for any (x,t)∈R×(-∞,0],

    Similarly,by (2.6) and (3.1),some calculations imply that

    Note that?<0<ψ,as stated in Theorem 2.1.By (3.5) and the definitions ofandin (3.8) and (3.7),the proof of (ii) is obvious.

    This completes the proof.

    The following lemma is a direct consequence of Proposition 3.5 and Lemma 3.6:

    Lemma 3.7For anyn ∈Z+,x ∈R andt ∈[-n,0],we have that

    In particular,whent=0,it follows that

    Now define that

    By (3.24),we obtain un(x,t),which,together with the definition of(x,t),yields thatun(x,t)≤1,and there is a constant?>0 such that

    For any givent?∈(-∞,0],there existsn ∈Z+such thatt?>-nand

    whereh1=1+a?,h2=d+r?+rb,and

    Then it follows that

    The following lemma states some properties about the Lipschitz continuity of(un(x,t),vn(x,t))with respect tox,and the purpose of this lemma is to prove (3.11):

    Lemma 3.8Let (K) hold.There is a positive constant,which is independent ofn,xandt,such that,for any (x,t)∈R×(-n,0],

    In addition,if(H)holds,then,for anyν ∈R{0}and(x+ν,t),(x,t)∈??R×(-n,0],where? is any compact set,there are some constantsN0andindependent ofn,t,andνsuch that

    ProofSinceun(x,t)≤1 andvn(x,t)≤?,we can get from (3.28) that,for (x,t)∈R×(-n,0],

    By a similar argument as to that for (un)tand (vn)t,we have that

    Then (3.32) is proved by taking that

    Now,we prove(3.33)and(3.34)on an arbitrary compact set ?.For anyν ∈R,define that

    By the assumptions ofk(x),we have that K′(x)∈L1.Then there is a positive constantKsuch that

    Denote that U(x,t)=(U(x,t),V(x,t))=un(x+ν,t)-un(x,t).In order to prove (3.33),we only need to show that

    and

    Now consider the case in which U(x,t)≥0.Noting that(·,-n)∈C1(R×(-n,0]),there exists a constantM>0 such that

    From the first equation of (3.28),we have that

    whereM>0 is defined as in (3.35).Then,fort ∈(-n,0],there existsN1>0 such that

    SinceUsatisfies that

    by the comparison method of ODE,we have that,forx ∈R andt ∈(-n,0],

    which implies that

    From the second equation of (3.28) and (H),it follows that

    Then,fort ∈(-n,0],there existsN2>0 such that

    SinceVsatisfies that

    by using the comparison method of ODE again,we obtain that,forx ∈R andt ∈(-n,0],

    which implies that

    For the case where U(x,t)≤0,the proof of U(x,t)≥-N0|ν| is similar.Then (3.33) is proven by taking thatN0=max{N1,N2}.

    Forx ∈R,t ∈(-n,0]andν ∈R{0},we can get that

    Then we obtain (3.34) by taking thatwhich completes the proof.

    Define that

    It follows from (3.2) and (3.3) that

    We prove the uniqueness of the entire solution satisfying (3.10) by showing that the pair of super-and sub-solutions are deterministic via translation,where the definition is given in [4,Definition 1].Suppose that uc,λ,i(x,t)=(uc,λ,i(x,t),vc,λ,i(x,t)) withi=1,2 are two solutions of (1.1) satisfying (3.10).Then,for anyn ≥|t| and (x,t)∈R×R,we have that

    According to (3.8),(3.7),(3.36) and (3.10),we can obtain that

    Fori,j ∈{1,2},it follows from (3.36) that

    Asn →∞,we get from (3.36) that

    which implies that uc,λ,1(x,t)=uc,λ,2(x,t),?(x,t)∈R2.

    According to Lemma 3.8,by the Arzela-Ascoli Theorem and a diagonal extraction process,there exists a function (uc,λ+(x,t),vc,λ+(x,t)) and a subsequence (uni(x,t),vni(x,t)) of(un(x,t),vn(x,t)) such that

    converge uniformly in any compact set ?∈R2to

    By the uniqueness of the limit,we have that

    Hence,it holds that

    The second inequality in (3.11) can be obtained similarly,so the proof is completed.

    In order to prove Theorem 3.2,we need to study the asymptotic behavior at infinity of the entire solution uc,λ=(uc,λ,vc,λ) of system (1.1).Notice that the asymptotic behavior of uc,λatt →-∞is a direct result of (3.10).Then we show the asymptotic behavior of uc,λatt →+∞.

    Lemma 3.9It holds that

    ProofRecall the definition of(x,t) in(3.8).We know that the upper bound in(3.10)holds for allt ∈R;that is,

    Therefore,for each?>0,

    On the other hand,the proof of Lemma 2.2 indicates thatψ(x)≤e-λxfor anyx ∈R.Combined with the definition of(x,t) in (3.7),there exists a constantE1>1 such that

    Note that e-λ(x-Cλt) andvc,λ(x,t) are a pair of super-and sub-solutions of the following Fisher-KPP equation:

    Then the comparison principle yields that

    Thus,(3.39) and (3.40) imply (3.37),which completes the proof.

    Lemma 3.10It holds that

    ProofLemma 3.9 implies that,for any?>0,

    It remains to show that

    Similarly to [51,Proposition 4.13],we can prove that

    The proof of (3.42) is a straightforward consequence of (3.43).Indeed,if (3.42) is not true,we can suppose,to the contrary,that there exist sequences (tn)n∈N,(xn)n∈Nsatisfying that(c+?)tn

    Lemma 3.11Assuming that 0

    ProofFromb<1 anda<1,it follows thatC1?>0 andC2?>0,which implies thatC2?>-C1?.

    We only provide a detailed proof for(ii),since(i)and(iii)can be proven by similar methods.Suppose,by contradiction,that (ii) is false.Then there exists (xn,tn) satisfying that

    with initial data (U(0),V(0))=(θ,?),so that (U,V)(∞)=(u?,v?).For eachT>0,we have thatand then the comparison in the time interval [-T,0]yields that

    In particular,for everyT>0,(,)(0,0)(U,V)(T).LettingT → ∞,we have thatThen it holds that

    This is a contradiction,so (ii) is proven.

    Finally,we are ready to prove Theorem 3.2.

    Proof of Theorem 3.2Note that (3.12) is a direct consequence of (3.10).Now we prove the asymptotic behavior of uc,λast →+∞.

    (i) According to the definitions ofCλ,c?,C2?,we have thatCλ>c ≥c?>C2?.Also,the definitions ofC1?,C2?anda,b<1 imply thatC2?,C1?>0,and thusCλ>c>C2?>-C1?.Furthermore,the conclusion ofc

    Next,we prove that

    It is clear thatvc,λ(x,t) and?form a pair of super-and sub-solutions of the equation

    withvc,λ(x,t)≥?on the boundary of the domain

    Then the maximum principle implies thatvc,λ ≥?in ?.Thus,(3.44) holds.

    Analogously,we can get that

    Naturally,

    which,along with (3.45),implies (3.19),by Lemma 3.11 (iii).

    (iii) Letξ1∈R,s1,s2,? ∈R+,and define thatThen,similarly to [51,Lemmas 4.16 and 4.19],we can construct a pair of super-and sub-solutions

    of (1.1)to prove(3.20).Furthermore,(3.21)–(3.23)follows from[51,Theorem 4.10].The proof is complete.

    4 The Exponential Decay Estimates of the Entire Solutions

    In this section,we state the exponential decay estimates ofuc,λatx=+∞under the conditions that

    Theorem 4.1Letc ≥c?andλ ∈??(c).Then we have that

    whereα(c) is the smallest positive root of the equationFurthermore,whenb ∈(0,1),we have that

    whereγsatisfies (2.5) andNis the constant given by Theorem 2.1.

    ProofFrom (3.10),we obtain that

    whereψis given by Theorem 2.1.Then (4.2) follows from (2.3),(4.4) and

    Since the proof of (4.3) is similar to that of (4.1),we can now prove (4.1) by considering only the following two claims:

    Claim 1If there isω0>0 andt0∈R such thatvc,λ(x+Cλt0,t0)≤ω0e-λxforx ∈R,then

    Obviously,vc,λ(x+Cλt,t) andω0e-λxform a pair of sub-and super-solutions of the equation

    As a consequence,Claim 1 is true.

    Claim 2If there existsλ′∈(λ,min{α(c)+λ,λ0}),t0∈R,B0>0 andω0>0 such that

    then there existsB1∈(B0,∞) such that

    By the second equation of (1.1)anduc,λ(x+Cλt,t)≤φc(x+(Cλ-c)t)≤min{1,e-α(c)(x+(Cλ-c)t)},it can be proven thatvc,λ(x+Cλt,t) is a super-solution of

    On the other hand,using a similar argument to that of the proof of Lemma 2.2,we can show that max{0,ω0(e-λx-B1e-λ′x)} is a sub-solution of (4.6),provided thatB1?B0.Then Claim 2 is obtained.

    In virtue of Lemma 2.2 and (4.5),there isB0>0 such that,for any (x,)∈R×R-,

    Furthermore,combining this with Claims 1 and 2,we can obtain that,for any<0,there existssuch that

    Similarly,one can obtain (4.3).The proof is complete.

    Remark 4.2Note that the assumptionis reasonable.Indeed,sinceφc(x)→0 andψ(x)→0 asx →+∞,then,whenx →+∞,the first equation of (2.6)which is satisfied by?(x) becomes

    Let?=-e-δxfor someδ>0.Thenδsatisfies thatNote thatα(c) is the smallest positive solution of

    and due toT(0)=1<μ,it follows thatδ>α(c).This,together withyields thatFurthermore,note that the exponential decay estimate ofuc,λwas obtained only atx=+∞(it was absent atx=-∞).The primary reason for this is that the exponential decay estimate ofuc,λwas proven by virtue of (4.4),but the decay estimate of function?in (4.4) is not clear atx=-∞,hence we leave this for the further study.

    5 Numeric Simulations

    We present some numeric simulation results for system (1.1) to demonstrate our analytic.To be computable,we choose the following kernel:

    Next,we give a visual description on the behavior of the entire solutions ast →±∞.According to Theorem 3.2,the entire solutions behave like (φc,0) ast →-∞;see Figure 1.

    Figure 1 The behavior of entire solutions as t →-∞

    Choosea=0.6,b=0.5,d=2 andr=1.7,and clearly 0

    According to Theorem 3.2 (i),the two species invade (1,0) from (u?,v?) to the left ofxwith speed-Cλ,invade (0,1) from (u?,v?) to the right ofxwith speedC2?

    Figure 2 The profiles of (u,v) at t=20,30,40 in the case where 0

    Choosea=0.6,b=1.2,d=2 andr=1.7,and clearly 0

    Figure 3 The profiles of (u,v) at t=20,30,40 in the case where 0

    Choosea=1.1,b=1.2,d=2.3 andr=2.2,and clearlya,b>1,we have that

    By Theorem 3.2 (iii),the two species invade (0,1) from (1,0) to the right ofxwith speedCuv,invade (0,0) from (0,1) to the right ofxwith speedCλ,and finally,the long-time behavior of the entire solutions ast →∞is described by (3.20)–(3.23);see Figure 4 for details.

    Figure 4 The profiles of (u,v) at t=15,30,45 in the case where a,b>1

    Conflict of InterestThe authors declare no conflict of interest.

    亚洲欧美日韩另类电影网站| 亚洲成a人片在线一区二区| 18禁观看日本| 韩国av一区二区三区四区| 麻豆国产av国片精品| 亚洲视频免费观看视频| 99国产极品粉嫩在线观看| 成人国产一区最新在线观看| 国产午夜精品久久久久久| 久久九九热精品免费| 成人18禁在线播放| 国产精品一区二区精品视频观看| 久久国产精品男人的天堂亚洲| 亚洲精品国产精品久久久不卡| 两性夫妻黄色片| 丰满人妻熟妇乱又伦精品不卡| 久久久久国产精品人妻aⅴ院 | tocl精华| 91老司机精品| 不卡一级毛片| 国产精品.久久久| 午夜精品久久久久久毛片777| 91大片在线观看| 国产精品一区二区精品视频观看| 亚洲av美国av| 99香蕉大伊视频| 国产成人av激情在线播放| 日韩中文字幕欧美一区二区| www.999成人在线观看| 一边摸一边抽搐一进一小说 | 一二三四社区在线视频社区8| 99riav亚洲国产免费| svipshipincom国产片| 一边摸一边抽搐一进一出视频| 无遮挡黄片免费观看| 一个人免费在线观看的高清视频| 久久午夜亚洲精品久久| 亚洲欧美一区二区三区黑人| 亚洲欧美一区二区三区久久| 色播在线永久视频| 天天躁日日躁夜夜躁夜夜| 亚洲精品一卡2卡三卡4卡5卡| 国产无遮挡羞羞视频在线观看| 新久久久久国产一级毛片| 亚洲精品久久成人aⅴ小说| 亚洲久久久国产精品| 久久久久久久午夜电影 | 精品国产一区二区三区久久久樱花| 久久亚洲真实| 视频区图区小说| 亚洲国产中文字幕在线视频| 久久午夜综合久久蜜桃| 黄色a级毛片大全视频| 亚洲中文av在线| 欧美av亚洲av综合av国产av| 黄色 视频免费看| 国产精品影院久久| av在线播放免费不卡| 男女床上黄色一级片免费看| 中文字幕另类日韩欧美亚洲嫩草| 久久精品91无色码中文字幕| 99久久国产精品久久久| 亚洲avbb在线观看| 高潮久久久久久久久久久不卡| 欧美精品啪啪一区二区三区| 12—13女人毛片做爰片一| 在线免费观看的www视频| 桃红色精品国产亚洲av| 色尼玛亚洲综合影院| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久免费高清国产稀缺| 精品少妇一区二区三区视频日本电影| 久热爱精品视频在线9| 十八禁人妻一区二区| 欧美日韩视频精品一区| 中文字幕色久视频| 精品国内亚洲2022精品成人 | 久久久精品区二区三区| av天堂在线播放| 精品乱码久久久久久99久播| 亚洲精品中文字幕一二三四区| 男女免费视频国产| 制服诱惑二区| 亚洲第一欧美日韩一区二区三区| 久久人人爽av亚洲精品天堂| 国产高清视频在线播放一区| 性色av乱码一区二区三区2| 18禁裸乳无遮挡动漫免费视频| 亚洲va日本ⅴa欧美va伊人久久| 国产又色又爽无遮挡免费看| 青草久久国产| 免费观看精品视频网站| 91字幕亚洲| 一个人免费在线观看的高清视频| 免费久久久久久久精品成人欧美视频| 日本黄色视频三级网站网址 | 好看av亚洲va欧美ⅴa在| 亚洲成人免费av在线播放| 狠狠婷婷综合久久久久久88av| 中文字幕色久视频| 一区二区三区激情视频| 天天添夜夜摸| 美女扒开内裤让男人捅视频| 亚洲精品在线美女| 极品教师在线免费播放| 国产精品永久免费网站| 女人被躁到高潮嗷嗷叫费观| 国产免费现黄频在线看| av网站在线播放免费| 国产精品98久久久久久宅男小说| 日本黄色日本黄色录像| 精品久久久久久电影网| 一边摸一边抽搐一进一出视频| 欧美午夜高清在线| 一进一出抽搐动态| 岛国在线观看网站| 亚洲av美国av| 首页视频小说图片口味搜索| 一边摸一边做爽爽视频免费| 成年人免费黄色播放视频| 99久久国产精品久久久| 777久久人妻少妇嫩草av网站| 国产真人三级小视频在线观看| 亚洲片人在线观看| 国产成+人综合+亚洲专区| 午夜日韩欧美国产| 午夜福利影视在线免费观看| 国产亚洲av高清不卡| 国产日韩欧美亚洲二区| 国产蜜桃级精品一区二区三区 | 在线看a的网站| 免费观看a级毛片全部| 美女扒开内裤让男人捅视频| netflix在线观看网站| 欧美日韩黄片免| 国产精品国产av在线观看| 免费女性裸体啪啪无遮挡网站| 操出白浆在线播放| 久久人人爽av亚洲精品天堂| 黄色成人免费大全| 国产淫语在线视频| 99精国产麻豆久久婷婷| 中文字幕人妻熟女乱码| 男女高潮啪啪啪动态图| 黑人猛操日本美女一级片| 中文字幕精品免费在线观看视频| 精品人妻在线不人妻| 桃红色精品国产亚洲av| 中文字幕精品免费在线观看视频| 18禁国产床啪视频网站| 99热网站在线观看| 亚洲熟女毛片儿| 久久久水蜜桃国产精品网| 老司机午夜十八禁免费视频| 欧美成人午夜精品| 露出奶头的视频| 精品久久蜜臀av无| 亚洲三区欧美一区| 中文字幕人妻丝袜制服| 成人影院久久| 亚洲 国产 在线| 国产伦人伦偷精品视频| 丰满人妻熟妇乱又伦精品不卡| 悠悠久久av| 精品国产乱码久久久久久男人| 多毛熟女@视频| 亚洲精品国产区一区二| 最近最新中文字幕大全免费视频| 人人妻人人添人人爽欧美一区卜| 无遮挡黄片免费观看| 一边摸一边抽搐一进一小说 | 日本精品一区二区三区蜜桃| 精品国产一区二区三区久久久樱花| 69精品国产乱码久久久| 高清av免费在线| 香蕉久久夜色| 中文字幕制服av| 日本精品一区二区三区蜜桃| 美女午夜性视频免费| 婷婷成人精品国产| 国产野战对白在线观看| 欧美老熟妇乱子伦牲交| 久久亚洲真实| 大片电影免费在线观看免费| 亚洲专区字幕在线| 涩涩av久久男人的天堂| 国产男女超爽视频在线观看| 欧美日韩一级在线毛片| 人人妻人人添人人爽欧美一区卜| 久久久久久免费高清国产稀缺| 黄片小视频在线播放| a在线观看视频网站| 制服人妻中文乱码| 亚洲精品一卡2卡三卡4卡5卡| 久久精品aⅴ一区二区三区四区| 最近最新中文字幕大全免费视频| 精品国产乱子伦一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 90打野战视频偷拍视频| 中文欧美无线码| 午夜成年电影在线免费观看| 国产蜜桃级精品一区二区三区 | av国产精品久久久久影院| 国产一区有黄有色的免费视频| 又大又爽又粗| 欧美精品啪啪一区二区三区| videosex国产| 国产成人av激情在线播放| 亚洲国产毛片av蜜桃av| 无人区码免费观看不卡| 国产一区二区三区视频了| 18禁美女被吸乳视频| 高潮久久久久久久久久久不卡| 国产一区有黄有色的免费视频| 国产av又大| 超碰成人久久| 老司机影院毛片| 91麻豆av在线| 男女午夜视频在线观看| 在线免费观看的www视频| 久久九九热精品免费| 天天躁日日躁夜夜躁夜夜| 亚洲视频免费观看视频| 熟女少妇亚洲综合色aaa.| 欧美 日韩 精品 国产| 久久精品国产亚洲av高清一级| 看免费av毛片| av在线播放免费不卡| 日韩有码中文字幕| 日本黄色视频三级网站网址 | 国产亚洲一区二区精品| 日韩欧美免费精品| 国产激情欧美一区二区| 日本欧美视频一区| 日韩有码中文字幕| 超碰97精品在线观看| 99国产精品一区二区蜜桃av | 亚洲av欧美aⅴ国产| 啦啦啦在线免费观看视频4| 国产主播在线观看一区二区| 中出人妻视频一区二区| 极品少妇高潮喷水抽搐| 午夜精品久久久久久毛片777| 下体分泌物呈黄色| 亚洲av第一区精品v没综合| 窝窝影院91人妻| 一区福利在线观看| 精品欧美一区二区三区在线| videos熟女内射| 国产精品成人在线| 黄色成人免费大全| 国产成人精品无人区| 一级毛片精品| 亚洲,欧美精品.| 777米奇影视久久| 老熟妇仑乱视频hdxx| 日韩人妻精品一区2区三区| 看黄色毛片网站| 国产91精品成人一区二区三区| 久久精品国产99精品国产亚洲性色 | 老鸭窝网址在线观看| 丝袜美足系列| 久久久久精品人妻al黑| 国产精品一区二区免费欧美| 韩国精品一区二区三区| 国产又色又爽无遮挡免费看| 一级a爱视频在线免费观看| 亚洲精品国产区一区二| 亚洲第一青青草原| 国产精品美女特级片免费视频播放器 | 久久久国产成人精品二区 | 麻豆乱淫一区二区| 日本精品一区二区三区蜜桃| 国产成人一区二区三区免费视频网站| 91在线观看av| 啦啦啦免费观看视频1| 麻豆av在线久日| 人妻丰满熟妇av一区二区三区 | 国产精品av久久久久免费| 少妇的丰满在线观看| 午夜激情av网站| 国产91精品成人一区二区三区| 精品熟女少妇八av免费久了| 搡老熟女国产l中国老女人| 亚洲国产看品久久| 老司机午夜福利在线观看视频| 老汉色∧v一级毛片| 亚洲精华国产精华精| 欧美 亚洲 国产 日韩一| 欧美激情极品国产一区二区三区| 精品国产乱子伦一区二区三区| 80岁老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 久久亚洲精品不卡| 人妻久久中文字幕网| 99国产极品粉嫩在线观看| 国产熟女午夜一区二区三区| 欧美日韩黄片免| 一边摸一边抽搐一进一小说 | 成人黄色视频免费在线看| 国产乱人伦免费视频| 国产伦人伦偷精品视频| 无限看片的www在线观看| 大香蕉久久网| av国产精品久久久久影院| a级片在线免费高清观看视频| 精品午夜福利视频在线观看一区| 亚洲第一av免费看| 色综合欧美亚洲国产小说| 涩涩av久久男人的天堂| 最新在线观看一区二区三区| 村上凉子中文字幕在线| aaaaa片日本免费| 成人av一区二区三区在线看| 18禁裸乳无遮挡免费网站照片 | 51午夜福利影视在线观看| 成人18禁高潮啪啪吃奶动态图| 18禁观看日本| 人人澡人人妻人| 国产无遮挡羞羞视频在线观看| 成人亚洲精品一区在线观看| 大码成人一级视频| 亚洲欧美精品综合一区二区三区| 在线免费观看的www视频| 99久久国产精品久久久| 美女国产高潮福利片在线看| 午夜福利,免费看| 免费在线观看亚洲国产| 成年人午夜在线观看视频| 亚洲av美国av| 亚洲成a人片在线一区二区| 亚洲专区国产一区二区| 亚洲精品美女久久av网站| 久久草成人影院| 精品国产超薄肉色丝袜足j| 国产av精品麻豆| 法律面前人人平等表现在哪些方面| 国产欧美日韩一区二区三区在线| 国产精品久久久久久人妻精品电影| 脱女人内裤的视频| 精品一区二区三卡| 99精品久久久久人妻精品| 久久久久久免费高清国产稀缺| 18禁裸乳无遮挡免费网站照片 | 亚洲第一av免费看| 人成视频在线观看免费观看| 精品国产乱子伦一区二区三区| 亚洲成人免费av在线播放| 亚洲五月婷婷丁香| 日韩免费高清中文字幕av| 久久天堂一区二区三区四区| 国产国语露脸激情在线看| 欧美精品亚洲一区二区| 久久精品人人爽人人爽视色| 欧美中文综合在线视频| 伊人久久大香线蕉亚洲五| 电影成人av| 亚洲成人手机| 亚洲av美国av| 人妻久久中文字幕网| 亚洲专区中文字幕在线| 一区在线观看完整版| 身体一侧抽搐| 一进一出抽搐动态| 日本五十路高清| 很黄的视频免费| 婷婷精品国产亚洲av在线 | 亚洲片人在线观看| 在线播放国产精品三级| 美女高潮喷水抽搐中文字幕| 精品少妇久久久久久888优播| 日本精品一区二区三区蜜桃| 亚洲精品av麻豆狂野| 国产一区二区激情短视频| 国产1区2区3区精品| 久久久久久久午夜电影 | 女人高潮潮喷娇喘18禁视频| 欧美黄色淫秽网站| 国产真人三级小视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产毛片av蜜桃av| 法律面前人人平等表现在哪些方面| 午夜福利乱码中文字幕| 成人18禁高潮啪啪吃奶动态图| 日韩欧美三级三区| 国精品久久久久久国模美| 日韩熟女老妇一区二区性免费视频| 一区二区三区国产精品乱码| 欧美激情高清一区二区三区| 女性被躁到高潮视频| 亚洲av日韩在线播放| 黑丝袜美女国产一区| 日本a在线网址| 亚洲第一欧美日韩一区二区三区| 女人高潮潮喷娇喘18禁视频| 欧美人与性动交α欧美精品济南到| 97人妻天天添夜夜摸| 天天添夜夜摸| 丁香六月欧美| 一进一出好大好爽视频| x7x7x7水蜜桃| 欧美亚洲日本最大视频资源| 亚洲av欧美aⅴ国产| 精品卡一卡二卡四卡免费| 两个人免费观看高清视频| 亚洲成国产人片在线观看| 12—13女人毛片做爰片一| 欧美成狂野欧美在线观看| 黑人巨大精品欧美一区二区mp4| 大型av网站在线播放| 中文字幕精品免费在线观看视频| 国产男女超爽视频在线观看| 精品久久久久久久久久免费视频 | 757午夜福利合集在线观看| 成年人免费黄色播放视频| √禁漫天堂资源中文www| 国产精品98久久久久久宅男小说| 天天添夜夜摸| 高潮久久久久久久久久久不卡| 日韩欧美三级三区| 搡老乐熟女国产| 午夜免费观看网址| 多毛熟女@视频| 国产淫语在线视频| 欧美另类亚洲清纯唯美| 9热在线视频观看99| 大香蕉久久网| 啦啦啦视频在线资源免费观看| 欧美激情极品国产一区二区三区| 一级毛片女人18水好多| 高清视频免费观看一区二区| 9色porny在线观看| 91麻豆精品激情在线观看国产 | 久久国产精品人妻蜜桃| 村上凉子中文字幕在线| 女警被强在线播放| 午夜视频精品福利| 1024视频免费在线观看| 一本大道久久a久久精品| 国内毛片毛片毛片毛片毛片| 啦啦啦视频在线资源免费观看| 亚洲第一青青草原| 高清在线国产一区| 黄色女人牲交| 精品午夜福利视频在线观看一区| 日本欧美视频一区| 中出人妻视频一区二区| 国产成人系列免费观看| 久久久精品国产亚洲av高清涩受| 一区二区三区国产精品乱码| 老司机在亚洲福利影院| a级毛片在线看网站| 亚洲第一欧美日韩一区二区三区| 日韩制服丝袜自拍偷拍| 久久午夜亚洲精品久久| 精品国产超薄肉色丝袜足j| 青草久久国产| 黄网站色视频无遮挡免费观看| 最近最新免费中文字幕在线| 国产成人精品久久二区二区91| 亚洲精品av麻豆狂野| 欧美激情极品国产一区二区三区| 免费一级毛片在线播放高清视频 | 一进一出抽搐动态| 老熟妇仑乱视频hdxx| 视频区图区小说| av线在线观看网站| 老司机午夜十八禁免费视频| 99久久人妻综合| 久99久视频精品免费| 一区二区三区激情视频| 夜夜爽天天搞| 在线观看66精品国产| 精品福利永久在线观看| 欧美国产精品va在线观看不卡| 90打野战视频偷拍视频| xxx96com| 国产精品久久久人人做人人爽| 欧美大码av| 人妻 亚洲 视频| 欧美另类亚洲清纯唯美| 两个人免费观看高清视频| 最新美女视频免费是黄的| 亚洲视频免费观看视频| 亚洲欧洲精品一区二区精品久久久| 亚洲国产精品sss在线观看 | 亚洲黑人精品在线| 色老头精品视频在线观看| 视频区欧美日本亚洲| 人妻丰满熟妇av一区二区三区 | 久久精品成人免费网站| www日本在线高清视频| 午夜福利在线免费观看网站| 中文字幕av电影在线播放| 一二三四社区在线视频社区8| 免费在线观看日本一区| 日本黄色日本黄色录像| 亚洲 欧美一区二区三区| 在线天堂中文资源库| 亚洲色图综合在线观看| 日韩三级视频一区二区三区| 91精品国产国语对白视频| 久久精品人人爽人人爽视色| 亚洲精华国产精华精| 少妇 在线观看| 欧美黑人欧美精品刺激| 大陆偷拍与自拍| 精品卡一卡二卡四卡免费| 99国产综合亚洲精品| 色精品久久人妻99蜜桃| 动漫黄色视频在线观看| 久99久视频精品免费| videos熟女内射| 热99re8久久精品国产| 国产精品98久久久久久宅男小说| 电影成人av| 黑人巨大精品欧美一区二区mp4| 日韩大码丰满熟妇| 成人特级黄色片久久久久久久| 丝袜人妻中文字幕| 中文亚洲av片在线观看爽 | 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| 老司机福利观看| 午夜福利乱码中文字幕| 丰满迷人的少妇在线观看| 99re6热这里在线精品视频| 国产亚洲欧美98| 亚洲 国产 在线| 国产精品亚洲av一区麻豆| videos熟女内射| 99香蕉大伊视频| 麻豆乱淫一区二区| 日韩人妻精品一区2区三区| 亚洲专区国产一区二区| 国产精品成人在线| 黑人巨大精品欧美一区二区蜜桃| 国产单亲对白刺激| 在线观看免费视频日本深夜| 波多野结衣一区麻豆| 黑人巨大精品欧美一区二区蜜桃| 欧美乱妇无乱码| 麻豆成人av在线观看| 99国产精品一区二区蜜桃av | 黄片大片在线免费观看| 不卡一级毛片| 一级片免费观看大全| 国产成+人综合+亚洲专区| 亚洲黑人精品在线| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区精品| 日韩制服丝袜自拍偷拍| 自拍欧美九色日韩亚洲蝌蚪91| 国产一卡二卡三卡精品| 精品少妇久久久久久888优播| 午夜福利免费观看在线| 欧美乱色亚洲激情| 亚洲av欧美aⅴ国产| 成年版毛片免费区| 国产黄色免费在线视频| 一二三四在线观看免费中文在| 久久亚洲真实| 成年版毛片免费区| 男人操女人黄网站| 国产高清视频在线播放一区| 亚洲成a人片在线一区二区| 日韩 欧美 亚洲 中文字幕| 国产精品一区二区在线不卡| 美女高潮喷水抽搐中文字幕| 久久国产亚洲av麻豆专区| 国产精品av久久久久免费| 色老头精品视频在线观看| 十八禁人妻一区二区| 丰满饥渴人妻一区二区三| 精品无人区乱码1区二区| 久久国产精品男人的天堂亚洲| 久久草成人影院| av视频免费观看在线观看| 最新美女视频免费是黄的| 啦啦啦 在线观看视频| 中文字幕av电影在线播放| 亚洲性夜色夜夜综合| 色婷婷久久久亚洲欧美| 日韩大码丰满熟妇| 成人av一区二区三区在线看| av片东京热男人的天堂| 国产一区在线观看成人免费| 久久ye,这里只有精品| 欧美日本中文国产一区发布| 王馨瑶露胸无遮挡在线观看| 男女免费视频国产| 国产亚洲精品久久久久久毛片 | 欧美亚洲日本最大视频资源| 美女 人体艺术 gogo| 国产一区有黄有色的免费视频| 黑人猛操日本美女一级片| 亚洲精品美女久久久久99蜜臀| 亚洲午夜理论影院| 满18在线观看网站| 建设人人有责人人尽责人人享有的| 日本一区二区免费在线视频| 国产一区有黄有色的免费视频| 久久久久精品国产欧美久久久| 亚洲熟妇熟女久久| 天天躁日日躁夜夜躁夜夜| 日韩人妻精品一区2区三区| 丝袜在线中文字幕| 国产区一区二久久| 午夜福利乱码中文字幕| 免费观看精品视频网站| 18禁美女被吸乳视频| 成人国产一区最新在线观看| 欧美另类亚洲清纯唯美| 欧美黑人欧美精品刺激| 久久精品国产综合久久久|