• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Poisoning attack detection scheme based on data integrity sampling audit algorithm in neural network

    2023-12-05 07:36:40ZhaoNingningJiangRui

    Zhao Ningning Jiang Rui

    (School of Cyber Science and Engineering,Southeast University,Nanjing 210096,China)

    Abstract:To address the issue that most existing detection and defense methods can only detect known poisoning attacks but cannot defend against other types of poisoning attacks,a poisoning attack detecting scheme with data recovery (PAD-DR) is proposed to effectively detect the poisoning attack and recover the poisoned data in a neural network.First,the PAD-DR scheme can detect all types of poisoning attacks.The data sampling detection algorithm is combined with a real-time data detection method for input layer nodes using a neural network so that the system can ensure the integrity and availability of the training data to avoid being changed or corrupted.Second,the PAD-DR scheme can recover corrupted or poisoned training data from poisoning attacks.Cauchy Reed-Solomon (CRS) code technology can encode training data and store them separately.Once the poisoning attack is detected,the original training data is recovered,and the system may get data from any k nodes from all n stores to recover the original training data.Finally,the security objectives of the PAD-DR scheme to withstand poisoning attacks,resist forgery and tampering attacks,and recover the data accurately are formally proved.

    Key words:poisoning attack; neural network; deep learning; data integrity sampling audit

    Deep learning (DL)[1]is the foundation for several modern artificial intelligence applications.It has rapidly matured and entered safety-critical applications such as self-driving cars[2-3],drones,and robots[4-5].Deep neural network (DNN)[6]is a machine learning technique that tries to imitate the neurons of the human brain to transmit information and interpret data.

    Unfortunately,the defense methods against poisoning attacks are not systematic enough.Zhang et al.[14]designed a strong defense scheme called DUTI to deal with the label-flipping attack.Given a small portion of the trusted items,the DUTI scheme could learn the difference between the distribution of trusted items and training samples to find the potentially corrupted labels and then get the corrupted labels to a domain expert for further examination.To defend against tool command language (TCL) attacks[12],Peri et al.[15]proposed a scheme named Deep-kNN to remove poisoning samples.In Ref.[15],the authors compared the class labels of each testing sample with itskneighbors.If most neighbor samples differed from the testing sample,this testing sample should be removed.Using the cooperative deep learning system,Shen et al.[16]proposed a defense method called AUROR to defend against poisoning attacks.The AUROR scheme could automatically identify and display the process of abnormal distribution features and then detect malicious users in the system according to the abnormal features.Based on a prior observation that poisoned samples may exploit spare capacity in the neural network,Liu et al.[17]proposed a fine-pruning technology as a defense method to enhance the security of deep neural networks by eliminating some dormant neurons to turn off poisoning behaviors.

    Considering that the previous schemes[14-17]can only defend against specific attacks,Diakonikolas et al.[18]proposed a robust algorithm named Server that could defend against poisoning attacks in classification and regression models.Chen et al.[19]proposed a generic and attack-agnostic defense approach called De-Pois.The key idea of De-Pois was to train a mimic model to imitate the behavior of the target model with clean samples.

    In this study,we proposed a poisoning attack-detecting scheme with data recovery (PAD-DR).First,we designed a data sampling audit algorithm and combined it with a real-time data detection method to detect all kinds of poisoning attacks.Second,we applied Cauchy Reed-Solomon (CRS) code technology to encode training data and store them on multiple servers to recover the corrupted training data.Finally,we formally proved the security goals of our PAD-DR scheme to withstand poisoning attacks and to recover the data accurately.

    1 Preliminaries

    1.1 Bilinear mapping

    Definition1LetG1andG2be multiplicative cyclic groups of a large prime orderp; a pairing is a bilinear mape:G1×G1→G2.It satisfies the following properties:

    1) Bilinear.e(ua,vb)=e(u,v)ab,?u,v∈G1;a,b∈Zp.

    2) Non-degeneracy.?u,v∈G1,thuse(u,v)≠1∈G1.

    3) Computability.?u,v∈G1; there is a polynomial time algorithm to calculatee(u,v).

    4) Safety.It is difficult to calculate the discrete logarithm problem inG1andG2.

    1.2 Discrete logarithm problem (DLP)

    1.3 Computational Diffie-Hellman problem

    1.4 Co-computational bilinear Diffie-Hellman problem (CO-CDH)

    2 Proposed PAD-DR Scheme

    2.1 System model

    In our PAD-DR scheme,as shown in Fig.1,the system consists of five types of entities: system administrator (SA),third party auditor (TPA),coded data stores (CDSi),training data store (TDS),and nodes of the neural network for input layer (NNs).SA is responsible for processing the original training data.TPA is responsible for generating challenges to detect whether poisoning attacks are launched.

    Fig.1 System model for Our PAD-DR scheme

    CDSiare cloud spaces for storing regenerating backup data,where the regenerating backup data are distributed onnmultiple CDSi.TDS stores the original training data with tags and sends them to the NNs.NNs receive the training data and feed them to the neural network.Besides,NNs are responsible for detecting the poisoning attacks in real-time with the data tags.

    2.2 Threat model

    Our PAD-DR scheme defines the threat model in terms of the SA,TPA CDSi,TDS,NNs,and network attackers (NAs).

    The SA is credible.The SA encodes the training data,generates tags for the original data,and collects regenerating data blocks to help recover the poisoned data.

    The TPA is semitrusted.The TPA may run the algorithm and protocol in the system.However,the TPA is curious about the contents of training data and tries to obtain the contents of training data in the verification process.

    The TDS is semitrusted.The TDS may faithfully run the algorithm and protocol in the system.However,to maintain the reputation,they may conceal the truth when poisoning samples attack the training data.At that time,TDS may attempt to forge proofs to cheat TPA for passing the auditing process.CDSiare credible and may store encoded regenerating data for backup.NNs are credible and may run the algorithm and protocol in the system and transmit the training data to the nodes of the next layer.

    NAs are malicious.NAs attempt to launch poisoning sample attacks.Furthermore,to pass the audit by TPA and NNs,NAs may attempt to launch tempering and forgery attacks by forging data and signature proofs.

    3 Construction of PAD-DR Scheme

    We proposed the detailed construction of our PAD-DR scheme.The scheme includes three phases: the setup,detection and recovery phases.Details of each phase are as follows.

    3.1 Setup phase

    The setup phase includes setup,encoding and SigGen algorithms.Among them,the setup algorithm generates system parameters,the encoding algorithm applies CRS code technology to encode the original training data for backup,and the SigGen algorithm generates tags for the original training data.Three algorithms are described in detail as follows.

    3.1.1 Setup algorithm

    3.1.2 Encoding algorithm

    Supposem,k,w∈Z+,a Galois field GF(2w),for data fileF={m1,m2,…,mk},SA utilizes CRS[22]technology to generaten=m+kencoded data blocks by constructing a code matrixC=ΨM,where the encoding matrixΨisn×k,and the message matrixMisk×1.

    Then,the encoding matrixΨis designed as follows:

    Hence,thei-th row ofΨis defined as the encoding vectorΨi(i∈{1,2,…,n}).

    For example,letk=6,m=4,andn=10,the Cauchy matrixGis with dimensions 4×6 on GF(28).LetX={0,1,2,3,4,5},Y={6,7,8,9},the encoding process is shown as follows:

    C=Encode(M)=ΨM=

    3.1.3 SigGen

    3.2 Detection phase

    The detection phase consists of TPA detection and node detection algorithms.With our proposed sampling audit algorithm,the TPA detection algorithm can detect poisoning attacks on the training data stored in TDS.In real-time,a node detection algorithm can detect poisoning attacks on the training data at the input layer for NNs.

    3.2.1 TPA detection

    Having received the response proof from the TDS,the TPA verifies the proof as follows.TPA checks the verification equation as

    (1)

    If Eq.(1) holds,the training data stored on TDS are securely protected.Otherwise,the training data stored on TDS should be changed or corrupted by the poisoning attacks.When the training data is detected to be poisoned,the TPA immediately makes an alarm for the poisoning attack and sends feedback {error} to the SA.Then,the SA performs the recovery operation to recover the poisoned data on TDS.

    3.2.2 Node detection

    After receiving training data with signatures from TDS,NNs run a node detection algorithm to detect poisoning attacks as follows.First,NNs verify the correctness of the signatureStsk(F‖μ′‖σ′) by TDS’s public key according to the RSA signature algorithm.If the verification fails,the NNs abort the message and send {error} to SA.Otherwise,we have to design the real-time data detection method for the NNs to check the verification equation as follows:

    (2)

    If Eq.(2) holds,the training data sent by TDS are complete and correct.Otherwise,the poisoning attacks could change or corrupt the training data.NNs may send error feedback to inform SA that the training data could be attacked and request SA to recover the training data.

    3.3 Recovery phase

    In the recovery phase,there is a data recovery algorithm.Once SA receives error feedback from TPA or NNs,implying that the training data has been poisoned and attacked,SA may execute the data recovery algorithm to recover the original training data.

    With the data recovery algorithm,the original data fileF={m1,m2,…,mk} can be recovered by collecting anyknodes of CDSifor itsciandΨi.Thus,the original data fileFcan be recovered through linear operations on the entries of anykrows of the code matrixC.

    Next,based on the definition in the preliminaries,we provided a theorem indicating that the entire process of the PAD-DR scheme is correct.

    Theorem1Our PAD-DR scheme can correctly run to detect the poisoning attack and recover the original training data accurately.

    4 Security Analysis

    In this section,we formally proved that our PAD-DR scheme can resist tampering and forgery attacks.Also,we proved that the poisoned data can be correctly recovered.

    4.1 Related theorems

    Some theorems formally showed that our PAD-DR scheme can resist tampering and forgery attacks.Furthermore,we showed that the poisoned data can be correctly recovered.

    Theorem2In our PAD-DR scheme,it is computationally infeasible for the TDS and NAs to forge proof for passing the TPA’s auditing.Suppose there is a (t,?)-algorithm to forge a proof.Then,if a (t′,?′) adversary can solve the Co-CDH problem witht′≤t+qcG1and ?′=?/e(1+qs),whereqcG1denotes one exponentiation time inG1,andqsdenotes the number of requests.

    Theorem3In our PAD-DR scheme,NNs can detect poisoned samples in real-time training data received from TDS.

    Theorem4In our PAD-DR scheme,the original data fileFcan be recovered by collectingciandΨifrom anyknodes of CDSi.

    4.2 Security goals comparison

    In this section,the security goals of our PAD-DR scheme are compared with that of DUTI[14],Deep-kNN[15],Server[18]and De-Pois[19].The comparison includes specific poisoning attack detection,arbitrary poisoning attack detection,and poisoned data recovery.In Tab.1,“√” depicts that the security problem has been solved,“×” indicates that the problem has not been solved.

    Tab.1 Security goals comparison

    According to Tab.1,our PAD-DR scheme can realize all the security goals mentioned above,while other schemes cannot.

    5 Experiment and Performance Analysis

    This section begins by describing the experimental setup and the accuracy under different attacks.Then,we analyzed the communication overhead and computation costs in detecting poisoning attacks of training data and evaluated the performance of our PAD-DR scheme.

    5.1 Experiment setup

    5.1.1 Datasets

    The training data used in our scheme are from MNIST,CIFAR-10,and house pricing.MNIST is a database of handwritten digits containing 60 000 training sample sets and 10 000 test sample sets stored in binary form.The width and height of each sample image are 28×28.The CIFAR-10 database contains 32×32 color images in 10 different classes,with 50 000 training and 10 000 testing images.The 10 different classes include cars,dogs,frogs,airplanes,cars,ships,horses,birds,and trucks.The house pricing dataset utilizes predictor variables such as the number of bedrooms and lot square footage.It contains 1 460 houses and 81 features.In the experiment,we randomly split this dataset into training and testing datasets with 70% and 30% of the data,respectively.

    5.1.2 Experimental environment and parameter setting

    We evaluated the process of detecting poisoning samples on NVIDIA 2080Ti GPU and applied Ali Cloud to store training data.The operating system is Windows 10.The RAM size is 8 GB.Matrix multiplication algorithms are implemented with the open-source library Jerasure Version (1.2).Auditing algorithms are implemented onCwith a pairing-based cryptography library.The curve utilized in the experiment is an MNT curve.We set the length ofG1to 175.In our experiment,we adopted a common neural network that applies three full connection layers with ReLU activation and one full connection layer with sigmoid activation,and we applied the cross-entropy loss function to calculate its loss.

    5.1.3 Generation of poisoning training data

    To verify the performance of our PAD-DR scheme,we randomly extracted 10%,15%,20%,25%,and 30% of the training data to generate poisoning samples.To compare the detection rate of poisoned samples for our PAD-DR scheme,TCL[12],LF[8],and R[13]attacks are used to generate poisoning data.For MNIST,the number of iterations is 400,the learning rate is set to 0.1,and the initial value is set to 0.01.For CIFAR-10,the number of iterations is 6 000,the learning rate is 0.01,and the initial value is 0.01.

    5.2 Detection rate for poisoning attacks

    In this section,we evaluated the detection rate of poisoned samples for our PAD-DR scheme compared with that of TRIM[13],DUTI[14],Deep-kNN[15],Server[18],and De-Pois[19].The results are presented in Figs.2,3,and 4,respectively.

    As shown in Fig.2,for TCL attacks,the detection rate of our PAD-DR scheme is always 100%,which is higher than that of Refs.[15,19].There are two reasons for the relatively low detection rate of Ref.[15].One is that the authors only compared the samples with the surroundingksamples,which was not sufficient or accurate.The other reason is that the authors should set an artificial setting threshold to distinguish poisoned samples from clean samples.The main reason for the relatively low detection rate of Ref.[19]is that the authors adopted conditional GAN technology to expand a small part of a trusted dataset as the whole training data,which could not fully reflect the features of the real training data.In our PAD-DR scheme,we could only detect any changed or poisoned samples in the training data by verifying Eqs.(1) and (2).Hence,the detection rate of our PAD-DR scheme is always 100%.

    Fig.2 Detection rate under TCL attacks

    As illustrated in Fig.3,for TF attacks,the detection rate of our PAD-DR scheme is always 100%,which is higher than that of Refs.[14,18-19].In Ref.[14],the main reason for the relatively low detection rate is that the authors required a small piece of completely reliable data,which could not be ensured in the system to detect the TF attack.In Ref.[18],the detection rate decreased rapidly with the increase of the poisoning rate.The main reason to detect the TF attack is that the authors should set an artificial setting threshold,which could not accurately distinguish poisoned samples from clean samples.In Ref.[19],the main reason for the relatively low detection rate is that the authors should train the mimic model,which was ineffective in obtaining accurate prediction results.

    Fig.3 Detection rate under LF attacks

    As depicted in Fig.4,for R attacks,the detection rate of our PAD-DR scheme is always 100%,which is higher than that of Refs.[13-14,19].With the increase of the poisoning rate,the detection rate of Refs.[13-14,19]decreased rapidly.In Ref.[13],to detect R attacks,the authors ignored the influence of poisoned samples in the lowest residual set with iteration,which may cause the failure of R-attack detection.In Ref.[14],the authors required a small piece of completely reliable data to detect an R attack,which could not be ensured in the system.In Ref.[19],the authors should train the mimic model to detect R attacks,which was not effective enough to obtain accurate prediction results.In our PAD-DR scheme,we could only detect any changed or poisoned samples in the training data using verifying Eqs.(1) and (2).Hence,the detection rate of our PAD-DR scheme for R attacks is always 100%.

    Fig.4 Detection rate under R attacks

    5.3 Computation cost

    We evaluated the computation cost for our PAD-DR scheme,whereLdenotes the length of each encoded data block,EGdenotes one exponentiation inG1andG2,EZdenotes one exponentiation inZp,MGindicates a multiplication operation on groupsG1andG2,MZindicates a multiplication operation on the number fieldZp,MFrepresents a matrix multiplication in a finite fieldF(2n),MIrepresents the cost of computing the inverse of the matrixM,AZindicates an addition operation on the number fieldZp,Pedenotes the computation cost of one pairing operatione,andHdenotes the computation cost of an operation of calculating the hash value for a number.Furthermore,|I|represents the number of challenged data blocks.All the statistical results are the averages of 20 trials.

    Tab.2 depicts the computation cost of our PAD-DR scheme in the setup,detection,and recovery phases.

    Tab.2 Computation cost of our PAD-DR scheme

    In the detection phase,the computation cost refers to two parts: TPA detection and node detection.The computation cost of TPA detection is|I|(MZ+H+EG)+(|I|-1)(AZ+MG)+Pe,where|I|(MZ+H)+(|I|-1)AZand|I|EG+(|I|-1)MGare the computation cost of TDS to generate a linear combination of data blocks and an aggregated tag,respectively,wherePeis the computation cost of TPA to verify the proof.The computation cost of node detection is|I|(MZ+H+EG)+(|I|-1)(AZ+MG)+Pe,where|I|(MZ+H)+(|I|-1)AZand|I|EG+(|I|-1)MGare the computation cost of TDS to generate a linear combination of data blocks and an aggregated tag,respectively,Peis the computation cost of NNs to verify the proof.Hence,the computation cost in the detection phase is 2|I|(MZ+H+EG)+2(|I|-1)(AZ+MG)+2P.

    5.4 Communication overhead

    We assessed the communication overhead in the setup,detection,and recovery phases.In this section,|Zp|represents the size ofZp,|G|represents the size of groupG,and|GF|represents the size ofGF(2w).Tab.3 presents the communication overhead for the three phases.

    Tab.3 Communication overhead for our PAD-DR scheme

    In the setup phase,communication overhead mainly includes two parts.The one is SA uploads data and tags {F,Φ} to TDS.The other is SA sends the encoded data {ci}i=1,2,…,nto CDSi.Hence,the communication overhead in the setup phase is sizeof(F)+k|G|+n|GF|.

    In the detection phase,the communication overhead mainly refers to two parts: TPA detection and node detection.The communication overhead for TPA detection includes two parts.One is that TPA sends a challenge chal={(i,vi)} to TDS.The other is that TDS replies as proofP={μ,σ}.Hence,the communication overhead for TPA detection is 2|I||Zp|and|G|+|Zp|.The communication overhead for node detection is sizeof(F)+|G|+(k+1)|Zp|which arises from TDS sending {F,μ′,σ′,Sssk(F‖μ′‖σ′),vi}i∈Ito NNs.Thus,the total communication overhead in the detection phase is sizeof(F)+2|G|+(k+2+2|I|)|Zp|.

    In the recovery phase,the communication overhead is decided by the data size of {ci,Ψi},which arises from theknodes of CDSi.Hence,the communication overhead of our PAD-DR scheme is 2k|GF|.

    6 Conclusions

    1) An algorithm combining data sampling audit and real-time data detection is designed,and experiments show that the algorithm can accurately detect toxic data contained in the data.

    2) A data recovery algorithm based on CRS encoding is designed,and experiments show that it can efficiently restore poisoned data to clean data.

    3) The current algorithm cannot guarantee the security of parameters during transmission.We will conduct further research on improving the integrity and confidentiality of parameters in the future.

    91麻豆精品激情在线观看国产| 久久中文字幕一级| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人与动物交配视频| 99国产综合亚洲精品| 亚洲欧美日韩东京热| 少妇的丰满在线观看| 久久久色成人| 国产精品日韩av在线免费观看| 美女午夜性视频免费| www.自偷自拍.com| 国产伦在线观看视频一区| 人妻丰满熟妇av一区二区三区| 精品无人区乱码1区二区| 在线观看美女被高潮喷水网站 | 亚洲成a人片在线一区二区| 日韩高清综合在线| 黄片大片在线免费观看| 亚洲国产精品成人综合色| 一个人免费在线观看的高清视频| 久久婷婷人人爽人人干人人爱| 日本 av在线| 日本 av在线| 欧美午夜高清在线| 国产黄a三级三级三级人| 久久香蕉国产精品| 亚洲av第一区精品v没综合| 18禁美女被吸乳视频| 美女cb高潮喷水在线观看 | 精品国产乱码久久久久久男人| 成年女人永久免费观看视频| 国产av不卡久久| 日韩三级视频一区二区三区| 99在线人妻在线中文字幕| 国产一区二区三区在线臀色熟女| 这个男人来自地球电影免费观看| 最新在线观看一区二区三区| 久久久精品大字幕| 亚洲中文日韩欧美视频| 中文亚洲av片在线观看爽| 久久欧美精品欧美久久欧美| 日韩免费av在线播放| 99国产极品粉嫩在线观看| 波多野结衣巨乳人妻| 久久久久久九九精品二区国产| 女同久久另类99精品国产91| 老汉色∧v一级毛片| 最好的美女福利视频网| 宅男免费午夜| 五月玫瑰六月丁香| 国产高清视频在线观看网站| 巨乳人妻的诱惑在线观看| 日韩欧美国产一区二区入口| 欧美一区二区精品小视频在线| 又黄又爽又免费观看的视频| 国产精品电影一区二区三区| 国产激情久久老熟女| 最新在线观看一区二区三区| 黄色片一级片一级黄色片| 给我免费播放毛片高清在线观看| 色精品久久人妻99蜜桃| 88av欧美| 五月玫瑰六月丁香| 亚洲,欧美精品.| 久久久久久久久久黄片| 男人舔女人的私密视频| 午夜福利18| 午夜a级毛片| 色吧在线观看| 19禁男女啪啪无遮挡网站| 国产精品精品国产色婷婷| 亚洲精品中文字幕一二三四区| 欧美黑人巨大hd| 午夜免费激情av| 久久久久九九精品影院| 男插女下体视频免费在线播放| 一夜夜www| 久久香蕉国产精品| 国产蜜桃级精品一区二区三区| 久久久国产欧美日韩av| 不卡一级毛片| 国产视频一区二区在线看| 757午夜福利合集在线观看| 亚洲av中文字字幕乱码综合| av片东京热男人的天堂| 欧美乱妇无乱码| 免费看十八禁软件| 欧美zozozo另类| 色综合站精品国产| 国产一区二区激情短视频| 亚洲av成人av| 18禁黄网站禁片免费观看直播| 亚洲一区二区三区色噜噜| 亚洲欧美精品综合一区二区三区| 国产精品国产高清国产av| 91九色精品人成在线观看| 国内精品一区二区在线观看| 亚洲av五月六月丁香网| 日本成人三级电影网站| 欧美日韩黄片免| 日本免费一区二区三区高清不卡| 18禁观看日本| 日韩成人在线观看一区二区三区| 亚洲国产精品999在线| 国产三级在线视频| 精品人妻1区二区| av天堂在线播放| 久久久国产欧美日韩av| 精华霜和精华液先用哪个| 热99在线观看视频| av欧美777| 欧美av亚洲av综合av国产av| 国产一区二区在线观看日韩 | 脱女人内裤的视频| 人妻丰满熟妇av一区二区三区| 在线观看免费视频日本深夜| 美女午夜性视频免费| 国产欧美日韩精品亚洲av| 亚洲18禁久久av| 亚洲国产欧美人成| 国产精品一及| 精品久久久久久,| 午夜福利高清视频| 精品福利观看| 国产精品一区二区免费欧美| 法律面前人人平等表现在哪些方面| 亚洲精品乱码久久久v下载方式 | 成人无遮挡网站| 色精品久久人妻99蜜桃| 国产精品自产拍在线观看55亚洲| 中文字幕熟女人妻在线| 国产成人精品久久二区二区91| 亚洲人与动物交配视频| www国产在线视频色| 国内精品久久久久久久电影| 18禁黄网站禁片午夜丰满| 国产日本99.免费观看| 性色avwww在线观看| 久久精品91无色码中文字幕| 99久久无色码亚洲精品果冻| 性色avwww在线观看| 在线观看午夜福利视频| 1024手机看黄色片| 午夜激情欧美在线| 麻豆国产av国片精品| 亚洲国产色片| 久久久国产成人精品二区| 怎么达到女性高潮| 99国产精品一区二区三区| av天堂中文字幕网| 此物有八面人人有两片| 精品乱码久久久久久99久播| 亚洲欧美日韩卡通动漫| 久久这里只有精品19| 亚洲第一电影网av| 成人一区二区视频在线观看| 曰老女人黄片| 老熟妇仑乱视频hdxx| 成人av一区二区三区在线看| 国产午夜福利久久久久久| 国产高潮美女av| 老汉色∧v一级毛片| 国产主播在线观看一区二区| 午夜福利免费观看在线| 成人午夜高清在线视频| 精品一区二区三区视频在线 | 俺也久久电影网| 高清在线国产一区| 757午夜福利合集在线观看| 麻豆久久精品国产亚洲av| 香蕉av资源在线| 最近视频中文字幕2019在线8| 黄片大片在线免费观看| 亚洲一区高清亚洲精品| 最近最新中文字幕大全电影3| 亚洲av片天天在线观看| 曰老女人黄片| 2021天堂中文幕一二区在线观| 欧美午夜高清在线| www.999成人在线观看| 亚洲av电影在线进入| 国产黄色小视频在线观看| 免费看十八禁软件| 青草久久国产| 青草久久国产| 99在线视频只有这里精品首页| 国产黄色小视频在线观看| 欧美黑人巨大hd| 这个男人来自地球电影免费观看| 在线观看午夜福利视频| 午夜激情福利司机影院| av女优亚洲男人天堂 | 一区二区三区国产精品乱码| 手机成人av网站| 亚洲 国产 在线| 日本精品一区二区三区蜜桃| 亚洲国产精品成人综合色| 在线观看午夜福利视频| 美女cb高潮喷水在线观看 | 日本成人三级电影网站| 少妇熟女aⅴ在线视频| 国产亚洲精品av在线| 亚洲欧美日韩东京热| 成人特级黄色片久久久久久久| 久久国产精品影院| 老熟妇仑乱视频hdxx| 亚洲成人中文字幕在线播放| 久久久久久久午夜电影| 99riav亚洲国产免费| 熟女少妇亚洲综合色aaa.| 亚洲国产日韩欧美精品在线观看 | 精品电影一区二区在线| 久久久成人免费电影| 最近最新免费中文字幕在线| 高清在线国产一区| 手机成人av网站| 亚洲成人精品中文字幕电影| 亚洲狠狠婷婷综合久久图片| 亚洲五月天丁香| 午夜久久久久精精品| av天堂中文字幕网| 午夜a级毛片| 欧美zozozo另类| 国产精品 欧美亚洲| av天堂中文字幕网| 国产精品av视频在线免费观看| 哪里可以看免费的av片| 国产高清有码在线观看视频| 久久精品91无色码中文字幕| 国产成人av教育| 法律面前人人平等表现在哪些方面| 麻豆一二三区av精品| 九九在线视频观看精品| 国内揄拍国产精品人妻在线| 久久精品国产清高在天天线| 久久久国产精品麻豆| 又大又爽又粗| 国产日本99.免费观看| 日韩欧美国产在线观看| 国产精品亚洲美女久久久| 一进一出抽搐gif免费好疼| 午夜福利欧美成人| 中文字幕熟女人妻在线| 日韩有码中文字幕| 国产aⅴ精品一区二区三区波| 国产伦一二天堂av在线观看| 999精品在线视频| 国产男靠女视频免费网站| 在线免费观看的www视频| 国产成人精品久久二区二区91| 午夜精品在线福利| 九色国产91popny在线| 欧美高清成人免费视频www| 999精品在线视频| 国产精品av视频在线免费观看| 免费看美女性在线毛片视频| 亚洲色图 男人天堂 中文字幕| 午夜成年电影在线免费观看| 成人高潮视频无遮挡免费网站| 国产乱人视频| 欧美黑人欧美精品刺激| 99久久无色码亚洲精品果冻| 在线观看免费午夜福利视频| 99久久成人亚洲精品观看| 老司机深夜福利视频在线观看| 国产精品98久久久久久宅男小说| 国产主播在线观看一区二区| 在线观看美女被高潮喷水网站 | 禁无遮挡网站| 亚洲精品中文字幕一二三四区| 国产欧美日韩精品亚洲av| 国产精品av久久久久免费| 久久九九热精品免费| 亚洲成a人片在线一区二区| 日本一本二区三区精品| 成人高潮视频无遮挡免费网站| 老汉色∧v一级毛片| 久久这里只有精品中国| 欧美一区二区国产精品久久精品| 欧美xxxx黑人xx丫x性爽| 国产日本99.免费观看| 国产 一区 欧美 日韩| 国产亚洲精品一区二区www| 999久久久精品免费观看国产| 久久精品aⅴ一区二区三区四区| 欧美成人性av电影在线观看| 国产成人av教育| 国产又黄又爽又无遮挡在线| 亚洲专区字幕在线| 2021天堂中文幕一二区在线观| 成年女人永久免费观看视频| 久久性视频一级片| 一本精品99久久精品77| 中文亚洲av片在线观看爽| 欧美又色又爽又黄视频| 一进一出好大好爽视频| 亚洲av熟女| 亚洲人成伊人成综合网2020| 国产伦人伦偷精品视频| 男女床上黄色一级片免费看| 俺也久久电影网| 国内精品久久久久久久电影| 久久国产精品人妻蜜桃| 国产精品一区二区三区四区免费观看 | 99国产精品99久久久久| 黄色成人免费大全| 亚洲精品一区av在线观看| 国产一区在线观看成人免费| 变态另类丝袜制服| 性色avwww在线观看| 欧美日韩亚洲国产一区二区在线观看| 91老司机精品| 成人永久免费在线观看视频| 两个人的视频大全免费| 久久99热这里只有精品18| 这个男人来自地球电影免费观看| 久久伊人香网站| 成人特级黄色片久久久久久久| 欧美黄色片欧美黄色片| 免费观看人在逋| 国产日本99.免费观看| 日日夜夜操网爽| 女同久久另类99精品国产91| 一a级毛片在线观看| 嫩草影院精品99| 日韩有码中文字幕| 日本一本二区三区精品| 两个人的视频大全免费| 国产精品久久久人人做人人爽| 黄频高清免费视频| 一级作爱视频免费观看| 男女那种视频在线观看| 又黄又爽又免费观看的视频| 亚洲真实伦在线观看| 亚洲18禁久久av| 男女视频在线观看网站免费| e午夜精品久久久久久久| 欧美一级a爱片免费观看看| 免费无遮挡裸体视频| 亚洲国产精品999在线| 成人特级av手机在线观看| 成年人黄色毛片网站| 国产精品久久电影中文字幕| 超碰成人久久| 亚洲美女黄片视频| 天天添夜夜摸| 很黄的视频免费| 中文字幕av在线有码专区| 亚洲专区中文字幕在线| 亚洲av成人av| 成年人黄色毛片网站| 日韩欧美国产在线观看| 国产黄片美女视频| 亚洲国产看品久久| 久久久水蜜桃国产精品网| 1024手机看黄色片| 国产在线精品亚洲第一网站| 欧美不卡视频在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久久毛片微露脸| 99久久国产精品久久久| 99热精品在线国产| 精品一区二区三区视频在线观看免费| 国产91精品成人一区二区三区| 一个人观看的视频www高清免费观看 | 床上黄色一级片| 99久久国产精品久久久| 欧美日韩国产亚洲二区| 欧美av亚洲av综合av国产av| 国产黄色小视频在线观看| 欧美一级毛片孕妇| 757午夜福利合集在线观看| 啦啦啦免费观看视频1| 99国产精品一区二区蜜桃av| 色尼玛亚洲综合影院| 国产精品1区2区在线观看.| avwww免费| 一个人观看的视频www高清免费观看 | 无人区码免费观看不卡| 99国产精品99久久久久| 99久久久亚洲精品蜜臀av| 亚洲精品美女久久久久99蜜臀| 青草久久国产| 亚洲 欧美一区二区三区| 午夜视频精品福利| 欧美日韩乱码在线| 两人在一起打扑克的视频| 国产成人精品久久二区二区免费| 国产精品久久久久久亚洲av鲁大| 久久久久久久午夜电影| 亚洲成人久久爱视频| 亚洲午夜理论影院| 1000部很黄的大片| 色综合站精品国产| 色视频www国产| 国产精品99久久久久久久久| 亚洲美女黄片视频| 香蕉丝袜av| 首页视频小说图片口味搜索| 特级一级黄色大片| 色噜噜av男人的天堂激情| 国产精品久久久久久人妻精品电影| 国产成人欧美在线观看| 亚洲欧美日韩东京热| 一a级毛片在线观看| 欧美xxxx黑人xx丫x性爽| 欧美国产日韩亚洲一区| 国产乱人伦免费视频| 国产蜜桃级精品一区二区三区| 俺也久久电影网| 精品国内亚洲2022精品成人| 久久久久久人人人人人| 亚洲av日韩精品久久久久久密| 美女 人体艺术 gogo| 超碰成人久久| 亚洲片人在线观看| 最近最新免费中文字幕在线| 精品久久久久久成人av| 日本黄色视频三级网站网址| 国产三级黄色录像| 免费在线观看成人毛片| 又黄又粗又硬又大视频| 国产精品久久久av美女十八| 国内毛片毛片毛片毛片毛片| 免费看日本二区| 久久久久免费精品人妻一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av第一区精品v没综合| 午夜福利高清视频| 不卡一级毛片| 偷拍熟女少妇极品色| 国产麻豆成人av免费视频| 久久中文字幕人妻熟女| 国产亚洲av嫩草精品影院| 精品久久久久久久人妻蜜臀av| av中文乱码字幕在线| 搡老妇女老女人老熟妇| 日本在线视频免费播放| 麻豆久久精品国产亚洲av| 精品久久久久久久毛片微露脸| 国产v大片淫在线免费观看| 麻豆成人av在线观看| 亚洲精品粉嫩美女一区| 欧美3d第一页| 在线观看免费视频日本深夜| 日韩三级视频一区二区三区| 国产视频内射| 黄色成人免费大全| 国产黄a三级三级三级人| 最新在线观看一区二区三区| 黄色日韩在线| 一二三四社区在线视频社区8| 99久久精品国产亚洲精品| 老司机在亚洲福利影院| 亚洲av美国av| xxxwww97欧美| 在线a可以看的网站| 欧美一区二区国产精品久久精品| 色尼玛亚洲综合影院| 亚洲av成人不卡在线观看播放网| 老鸭窝网址在线观看| 人妻丰满熟妇av一区二区三区| 人人妻人人澡欧美一区二区| 日本 欧美在线| 成人欧美大片| 最新中文字幕久久久久 | 久久午夜亚洲精品久久| 欧美高清成人免费视频www| 热99在线观看视频| 国产成人一区二区三区免费视频网站| 免费av不卡在线播放| 午夜福利免费观看在线| 美女高潮的动态| 国产精品国产高清国产av| 日韩欧美三级三区| 熟女人妻精品中文字幕| 99国产精品99久久久久| 久久这里只有精品中国| av女优亚洲男人天堂 | 国产私拍福利视频在线观看| 在线观看日韩欧美| 国产伦在线观看视频一区| 欧美午夜高清在线| 国产97色在线日韩免费| 在线观看66精品国产| 欧美黄色片欧美黄色片| 可以在线观看的亚洲视频| 超碰成人久久| 日韩三级视频一区二区三区| 亚洲国产精品久久男人天堂| 免费看a级黄色片| 在线观看免费午夜福利视频| 午夜两性在线视频| 国产伦人伦偷精品视频| 国产精品电影一区二区三区| 午夜免费观看网址| 老司机午夜福利在线观看视频| 99视频精品全部免费 在线 | 99国产精品99久久久久| 日韩欧美三级三区| 中文字幕最新亚洲高清| 少妇丰满av| 成人鲁丝片一二三区免费| 日本免费一区二区三区高清不卡| 国产精品久久视频播放| 欧美精品啪啪一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 午夜久久久久精精品| 99国产极品粉嫩在线观看| 成人性生交大片免费视频hd| 一区二区三区激情视频| 国产精品 国内视频| 久久久久国产精品人妻aⅴ院| 国产精品自产拍在线观看55亚洲| 看片在线看免费视频| 亚洲av美国av| 欧美3d第一页| 男女午夜视频在线观看| 国产精品美女特级片免费视频播放器 | 变态另类成人亚洲欧美熟女| 搡老妇女老女人老熟妇| 国产亚洲精品综合一区在线观看| 十八禁网站免费在线| 久久午夜综合久久蜜桃| 国产高清激情床上av| 久久久久国产一级毛片高清牌| 日本黄大片高清| 后天国语完整版免费观看| 一区二区三区激情视频| 中亚洲国语对白在线视频| 好看av亚洲va欧美ⅴa在| 狂野欧美白嫩少妇大欣赏| 曰老女人黄片| 51午夜福利影视在线观看| 国产精品野战在线观看| 亚洲激情在线av| 99热这里只有精品一区 | 国产主播在线观看一区二区| 国产69精品久久久久777片 | 精品欧美国产一区二区三| av天堂中文字幕网| 亚洲av电影在线进入| 一区二区三区国产精品乱码| 嫩草影院精品99| 日本熟妇午夜| 色精品久久人妻99蜜桃| 亚洲成人免费电影在线观看| 后天国语完整版免费观看| 色哟哟哟哟哟哟| 国产成人av教育| 99国产极品粉嫩在线观看| 国产麻豆成人av免费视频| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 国产三级在线视频| 国产v大片淫在线免费观看| 国产精品久久久av美女十八| 欧美极品一区二区三区四区| 欧美在线黄色| 精品日产1卡2卡| 亚洲片人在线观看| 中文字幕最新亚洲高清| 哪里可以看免费的av片| 欧美高清成人免费视频www| 欧美一区二区国产精品久久精品| 高清在线国产一区| 男女下面进入的视频免费午夜| 男人和女人高潮做爰伦理| 亚洲电影在线观看av| 在线观看日韩欧美| 午夜免费成人在线视频| 亚洲一区高清亚洲精品| 97人妻精品一区二区三区麻豆| 精品午夜福利视频在线观看一区| 国产高清激情床上av| 亚洲第一欧美日韩一区二区三区| av国产免费在线观看| 精品日产1卡2卡| 免费av毛片视频| 国产综合懂色| АⅤ资源中文在线天堂| 一区二区三区国产精品乱码| 久久久国产精品麻豆| 亚洲av片天天在线观看| 国产精品av久久久久免费| 韩国av一区二区三区四区| 国产一区二区在线av高清观看| 国产av一区在线观看免费| 色吧在线观看| 啦啦啦观看免费观看视频高清| 他把我摸到了高潮在线观看| 欧美大码av| 亚洲精品国产精品久久久不卡| 国产亚洲精品综合一区在线观看| av视频在线观看入口| 国产毛片a区久久久久| 中亚洲国语对白在线视频| 一区二区三区激情视频| 久9热在线精品视频| 国产精品久久久久久亚洲av鲁大| av片东京热男人的天堂| 精品国产三级普通话版| 国产精品一区二区免费欧美| 国产午夜精品久久久久久| 在线观看舔阴道视频| 亚洲国产精品成人综合色| av福利片在线观看| 国产亚洲精品久久久com| 精品电影一区二区在线| 夜夜夜夜夜久久久久| 国产又色又爽无遮挡免费看| 亚洲天堂国产精品一区在线| 国产高清视频在线观看网站| 看免费av毛片| 久久久国产精品麻豆|