• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-damage photolithography for magnetically doped(Bi,Sb)2Te3 quantum anomalous Hall thin films

    2023-12-02 09:22:48ZhitingGao高志廷MinghuaGuo郭明華ZichenLian連梓臣YaoxinLi李耀鑫YunheBai白云鶴XiaoFeng馮硝KeHe何珂YayuWang王亞愚ChangLiu劉暢andJinsongZhang張金松
    Chinese Physics B 2023年11期
    關(guān)鍵詞:劉暢高志白云

    Zhiting Gao(高志廷), Minghua Guo(郭明華), Zichen Lian(連梓臣),Yaoxin Li(李耀鑫), Yunhe Bai(白云鶴), Xiao Feng(馮硝),2,4,5, Ke He(何珂),2,4,5,Yayu Wang(王亞愚),4,5, Chang Liu(劉暢), and Jinsong Zhang(張金松),4,5,§

    1State Key Laboratory of Low Dimensional Quantum Physics,Department of Physics,Tsinghua University,Beijing 100084,China

    2Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    3School of Integrated Circuits,Tsinghua University,Beijing 100084,China

    4Frontier Science Center for Quantum Information,Beijing 100084,China

    5Hefei National Laboratory,Hefei 230088,China

    6Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-Nano Devices,Department of Physics,

    Renmin University of China,Beijing 100872,China

    7Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education),Renmin University of China,Beijing 100872,China

    Keywords: topological insulator,quantum anomalous Hall effect,fabrication techniques

    1.Introduction

    Magnetic topological insulators(TIs)have attracted wide attention in condensed matter physics in the past decade.The intricate interplay between magnetic order and band topology gives rise to a variety of exotic topological quantum phenomena.[1,2]A prominent example is the QAH effect[3]that was first realized in Cr-doped (Bi,Sb)2Te3magnetic TI thin films grown by molecular beam epitaxy (MBE).As a contemporary version of the integer quantum Hall(QH)effect without magnetic field,[4,5]the QAH effect is characterized by a quantized Hall resistanceRyx ~h/e2and a zero longitudinal resistanceRxx ~0 at zero magnetic field, wherehrepresents the Plank constant andedenotes the elementary charge.Distinct from the integer QH effect that originates from the formation of Landau levels in strong magnetic field,[6]the QAH effect arises from the interplay between magnetic order and spin–orbit coupling,which opens an exchange gap at the Dirac point of the surface state.[7,8]When the Fermi level (EF) is tuned within the band gap, the QAH effect appears and the transport is carried by 1D dissipationless chiral edge state.[9,10]The realization of the QAH effect not only opens a new avenue for exploring exotic topological quantum physics,[11–20]but also holds great potential for practical applications, such as the low power consumption electronic devices,[9]topological quantum computation,[21,22]and metrology for quantum resistance.[23,24]

    Since the first experimental observation of the QAH effect in Cr-doped (Bi,Sb)2Te3magnetic TIs,[3,11,12]the optimization of the QAH effect has become an important target in both condensed matter physics and material science.On the one hand,the adjustment of the sample growth conditions,such as by changing the magnetic dopant from Cr to V[25,26]or developing the magnetic modulation doping method instead of single doping,[26]can significantly enhance the observable temperature from 50 mK to 1 K.On the other hand,the continuously being discovered new materials such as MnBi2Te4intrinsic magnetic TI,[27,28]twisted bilayer graphene,[29,30]and AB-stacked MoTe2/WSe2heterobilayers[31]provide alternative routes to realize the QAH effect.In addition to the progress in searching for new materials, developing effective sample protection scheme represents another important direction in the study of the QAH effect.[32,33]However, in real experiment,even starting with the optimized materials,it does not guarantee that the fabricated device would retain its electronic properties as the original materials.The protective layer may also react with the chemical reagents during the fabrication process.In order to control and manipulate the dissipationless chiral edge states in functional electronic devices,artificially fabricating micro-structures by lithography are unavoidable.Therefore, considering the sensitivity of the electronic properties of TI films,[34,35]it is of great importance to develop a low-damage lithography method for magnetically doped(Bi,Sb)2Te3QAH films.

    Previous researches on magnetic TIs along this direction mainly focused on the electron-beam-lithography (EBL), by which nanostructures down to tens of nm can be easily patterned.By developing low-damage EBL for nanostructures on Bi2Te3family TIs,various interesting quantum transport phenomena have been observed in experiment.[36–38]However,for another lithography method, the photolithography, which is more compatible with modern integrated circuit manufacture, its influence on the QAH behaviors has not been thoroughly explored.It is unclear whether the chemical reagents in photolithography would shift theEFposition or affect the magnetism.Therefore, it is highly desirable to develop lowdamage photolithography methods and perform control experiments on the influence of different fabrication methods on the properties of QAH thin films.Here, we have developed a low-damage photolithography method for magnetically doped (Bi,Sb)2Te3QAH thin films incorporating two resist layers of PMMA and AR-P 3740 (manufactured by AllResist),two commonly used positive resists in conventional EBL and photolithography, respectively.By measuring the transport behaviors of five QAH thin films fabricated by mechanical scratching,conventional photolithography with single resist, and modified photolithography scheme with two resists,we found that the new photolithography method enables the fabrication of QAH thin films with the transport and magnetic properties almost identical to those of the films fabricated by mechanical scratching.Our result represents a key step towards the production of novel micro-structured devices based on the dissipationless QAH chiral edge states.

    2.Experimental details

    The three QAH samples used in this study were 5-QL thick Cr/V doped (Bi,Sb)2Te3thin films grown by MBE on three SrTiO3(111)substrates following the recipes in our previous work.[19,25]Samples #1 and #2 were deposited with a 2-nm thick Al layerin-situin the MBE chamber at room temperature, which was then oxidized naturally into highly insulating AlOxwhen the samples were taken out of the MBE chamber [Fig.1(a)].The deposition of AlOxcan protect the QAH thin films from aging effect and is one of the most efficient methods for QAH sample protection.To explore the influences of photolithography on the transport properties,both samples#1 and#2 were cut into two pieces(#1-A,#1-B,#2-A,and#2-B).For samples#1-A and#2-A,Hall bar structures were mechanically scratched by hand using a sharp needle.For samples#1-B and#2-B,we adopted the conventional photolithography with single resist(AR-P 3740)and the modified photolithography method with two resists(PMMA and AR-P 3740),along with the etching method to pattern Hall bar structures(see the following paragraph for details).For sample#3,no capping layer was covered on the surface,which was used to determine the effect of heating on the transport properties.For transport measurements, a standard low-frequency fourprobe lock-in method was adopted with an excitation current of 200 nA at the frequency of 13 Hz.The SiTiO3substrate served as the gate dielectric due to its large dielectric constant at low temperature.The magnetic field was applied perpendicular to the film plane in a commercial He4refrigerator with the base temperature of 1.5 K.To eliminate the pick-up signals from geometrical misalignments,all the collectedRyxdata were antisymmetrized with respect to the magnetic field.

    Figure 1 illustrates the schematic process of the modified photolithography method with two resists of PMMA and ARP 3740.We started by spin-coating the QAH thin films with a layer of 120 nm thick PMMA(marked by blue color)in an argon-filled glovebox with the O2and H2O levels lower than 0.1 PPM [Fig.1(b)].The sample was then transferred to a low-pressure environment pumped down to 5 Pa for 20 min to drive off excess resist solvent.Next,another 700 nm thick resist AR-P 3740(marked by yellow color)was coated on top of the PMMA layer [Fig.1(c)].Then the film was baked at 85?C for 5 min to solidify the resists.After baking, the device was first exposed to a pattern of intense ultraviolet(UV)light with the dose of 55 mJ/cm2.In the next,the exposed area of AR-P 3740 was then dissolved by the sodium hydroxide developer for 20 s and rinsed with deionized water, leaving a Hall-shaped photoresist layer on the top of the PMMA layer[Fig.1(d)].Subsequently, oxygen plasma was employed to etch the PMMA layer [Fig.1(e)], with the Hall-shaped photoresist layer serving as a mask.The oxygen flow rate and pressure were controlled at 15 SCCM and 200 Pa, and the frequency and power of the radio-frequency field were set to be 13.56 MHz and 60 W.Although the AR-P 3740 layer also became slightly thinner during the oxygen plasma ashing process,the remaining layer was sufficient to serve as a mask during the etching of the PMMA layer.For the AlOxprotective layer and the QAH thin film, argon ion beam etching (IBE)with a beam current of 70 mA was employed at the rate of 15 SCCM and pressure of 2.2×10-2Pa[Fig.1(f)].After that,the sample was cleaned with acetone,rinsed with isopropanol and deionized water, and dried with nitrogen to remove the PMMA and AR-P 3740 resists completely[Fig.1(g)].Finally,electrical contacts were made by pressing indium pieces onto the films[Fig.1(h)].Commonly adopted deposition methods such as evaporation or sputtering can also be used for making electrodes.Compared to conventional photolithography, the modified method contains two additional steps of spin-coating PMMA and oxygen plasma ashing for the PMMA layer.

    3.Results and discussion

    To study the effect of standard photolithography on the properties of the QAH thin films, we first explored the magnetic field dependentRyxandRxxat various gate voltages(Vgs) for samples #1-A and #1-B, which were fabricated by mechanical scratching and conventional photolithography,respectively.Figure 2(a) displays the magnetic field dependentRyxandRxxfor sample#1-A.All the transport data shown in this work were taken at 1.5 K.The Hall traces exhibit wellsquared hysteresis loops, indicating the formation of longrange ferromagnetic order.AtVg=50 V,Ryxreaches the maximum value of 21.8 k? at zero magnetic field.Such high value ofRyxsuggests that the sample has already entered the incipient QAH state.[3]AsVgis moved away from 50 V,electronand hole-like carriers are injected into the sample.As a result, the zero-magnetic-fieldRyxis progressively reduced to 16.0 k? and 17.9 k? at-200 V and 200 V.The magnetoresistance curves exhibit the typical shape for a ferromagnet with two symmetric peaks at the coercive field.AtVg=50 V,Rxxreaches the minimum value of 20.1 k? at zero magnetic field,and increases to 41.6 k? at the plateau transition.To check if the conventional photolithography affects the transport properties of QAH thin films, we measured the transport properties on sample#1-B at the same conditions,with the data displayed in Fig.2(b).For sample #1-B, the shape of the Hall hysteresis is much less-squared than that of the sample #1-A.And the maximum value ofRyxis only as low as 3.3 k?at 150 V,significantly reduced by nearly one order of magnitude.Meanwhile,the overall value ofRxxalso increases significantly,along with two broad and gentle peaks.These results clearly indicate the severe degradation of QAH sample quality during the conventional photolithography process.

    In previous studies, people have already found that the QAH thin films are fragile and very sensitive to ambient conditions.[32–35]Therefore, a layer of AlOxis usually deposited on the surface to protect the sample from degradation.However, during the developing process of photolithography,the sodium hydroxide developer could react with the AlOxlayer and is also detrimental to the QAH films.To figure out this issue, we came up with the idea of adding an additional capping layer to isolate the AlOxlayer from directly contacting with the developer.In this case,the transport properties of the QAH films can be largely retained after fabrication.In order to verify our conjecture,we performed another control experiment on two QAH devices(samples#2-A and#2-B)obtained from one film, which were fabricated by mechanical scratching and modified photolithography,respectively.As shown in Figs.2(c) and 2(d), the Hall and magnetoresistance traces of the film by the modified photolithography(#2-B)show similar transport behaviors to those of the film fabricated by mechanical scratching (#2-A).The maximumRyxat zero magnetic field of sample#2-B reaches as high as 18.9 k?,only slightly lower than that of sample #2-A, which is 20.1 k?.The values ofRxxand their variation in magnetic field for negativeVgs of sample#2-B are very close to those of sample#2-A.Only a small decrease is observed inRxxfor positiveVgs, which is far away from the charge neutrality point.These observations strongly suggest that the modified photolithography with two resists is of low damage to the sample quality.

    To amplify the different transport behaviors between the three fabrication methods, we extracted the values ofRyxat zero magnetic field and summarized its variation as a function ofVg.As shown in Fig.3(a),the conventional photolithography process not only reduces the value ofRyx, but also shifts the position ofEF.For sample #1-A,Ryxreaches the maximum at the charge neutrality point of around 50 V.However,for sample #1-B, theVgof the maximumRyxshifts to 150 V,indicating that the sample is p-doped during the photolithography.In contrast,for samples#2-A and#2-B,we found that theVgdependent transport data are almost overlapped.There is no obvious doping effect after the modified photolithography process.In Figs.3(c)and 3(d), we summarized the values of coercive field(Hc)as a function ofVgfor the two sets of data.The sharp contrast between the two curves in Fig.3(c)clearly demonstrates that the conventional photolithography scheme is detrimental to the properties of the QAH thin films.In contrast, the PMMA-protected photolithography method can largely keep the magnetism less affected by fabrication,as displayed in Fig.3(d).

    Fig.3.Comparison of transport and magnetic behaviors of the samples fabricated by different methods.(a)Vg dependent Ryx at zero magnetic field for samples #1-A and #1-B.The data for #1-B are multiplied by 3 for clarity.(b)Ryx at zero magnetic field as a function of Vg for samples#2-A and#2-B.(c)Vg dependent coercive field(μ0Hc)for samples#1-A and#1-B.(d)μ0Hc as a function of Vg for samples#2-A and#2-B.

    Finally, we discuss a heating issue in the baking process during the lithography.In both EBL and photolithography,after the spin coating of the resist, a baking process is required to solidify the resist.The typical heating temperature for photoresist and e-beam resist ranges from 90?C to 180?C, and the baking time depends on the temperature and the thickness of resist,usually from 5 to 20 minutes.However,as displayed in Fig.4(a)for sample#3,Ryxdecreases from 18 k? to 11 k?when the sample is heated at 90?C in vacuum for 5 min, indicating that the properties of the QAH thin film are sensitive to heating and can be damaged at high temperature.Therefore,the up limits of baking temperature and time throughout our experiment are controlled to be 85?C and 5 minutes.To make sure that both resists can be tempered enough at such a low temperature and a short total time,we conducted only one baking process after the spin coating of both resists.However,it brings in another issue that micrometer size holes appeared in the PMMA layer after the development of the photoresist.Figures 4(b) and 4(c) display the typical optical image of a fabricated device after the photoresist development and the atomic force microscopy (AFM) measurement result for the holes, respectively.We found that the depth of the holes is exactly the thickness of the PMMA layer, indicating that the holes run through the PMMA layer.Such result indicates that the sodium hydroxide developer can touch the film through these holes,making the protection ineffective.The appearance of the holes is attributed to the mutual dissolving of PMMA and AR-P 3740 due to the lack of baking of the PMMA layer before spin-coating AR-P 3740 photoresist.Exposure and development of the AR-P 3740 droplets in the PMMA layer give rise to the formation of holes in the PMMA layer,as illustrated in Figs.4(f)–4(h).To address this issue,we introduced a vacuuming process before spin coating of AR-P 3740, in which the pressure was reduced to 5 Pa for 20 min to solidify the PMMA layer.As shown in Figs.4(d) and 4(e), no obvious holes are observed in the optical image after the vacuuming process,and the AFM result displays a step edge with a height of 700 nm,which corresponds to the thickness of the photoresist.The schematic illustration of a device without holes is depicted in Fig.4(i).

    4.Conclusion

    In summary,we found that the conventional photolithography scheme with single resist cannot retain the properties of the original QAH thin film.Compared to the device fabricated by mechanical scratching,photolithography process reduces the Hall resistance and weakens the magnetic coercive field.By covering a layer of PMMA to isolate the protective layer of AlOxfrom the photoresist, we demonstrated that the PMMA-protected photolithography method enables the fabrication of QAH devices with the transport and magnetic properties almost identical to those of the pristine films.Our result represents a key step towards the production of microstructured electronic devices based on the dissipationless QAH chiral edge states.Additionally,this method could also be effectively applied to other sensitive two-dimensional thin film materials.

    Acknowledgements

    This work was supported by the National Key Research and Development Program of China (Grant No.2018YFA0307100), the Basic Science Center Project of the National Natural Science Foundation of China (Grant No.52388201), the National Natural Science Foundation of China (Grant Nos.12274453 and 92065206), and the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302502).Chang Liu was also supported by Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No.KF202204).Yayu Wang was also supported by the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE.

    猜你喜歡
    劉暢高志白云
    本期名家—高志祥
    高志剛
    Shallow-water sloshing motions in rectangular tank in general motions based on Boussinesq-type equations *
    白云(外三首)
    天津詩人(2017年2期)2017-11-29 01:24:14
    春來啦
    尋找丟失的快樂
    The dynamics of the floodwater and the damaged ship in waves*
    珍視自我
    白云的來歷
    夏天咋來的
    日日夜夜操网爽| 国产亚洲av高清不卡| 亚洲一码二码三码区别大吗| 他把我摸到了高潮在线观看| 国产主播在线观看一区二区| 精品不卡国产一区二区三区| 成人精品一区二区免费| 中出人妻视频一区二区| 麻豆成人午夜福利视频| 99riav亚洲国产免费| 成在线人永久免费视频| 91麻豆精品激情在线观看国产| av中文乱码字幕在线| 国产一级毛片七仙女欲春2 | 2021天堂中文幕一二区在线观 | 男女下面进入的视频免费午夜 | 女生性感内裤真人,穿戴方法视频| 久久精品aⅴ一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看 | 97人妻精品一区二区三区麻豆 | 精品久久久久久,| 欧美日本亚洲视频在线播放| 婷婷精品国产亚洲av在线| 老司机靠b影院| 欧美日韩黄片免| 午夜两性在线视频| 亚洲全国av大片| 欧美日韩瑟瑟在线播放| 亚洲av成人一区二区三| 国产亚洲精品综合一区在线观看 | 美女扒开内裤让男人捅视频| 少妇的丰满在线观看| 欧美丝袜亚洲另类 | a在线观看视频网站| 亚洲久久久国产精品| 精品人妻1区二区| 精品久久久久久,| 精品电影一区二区在线| 超碰成人久久| 麻豆成人午夜福利视频| 亚洲精品色激情综合| 美女午夜性视频免费| 老汉色∧v一级毛片| 欧美日韩瑟瑟在线播放| 夜夜躁狠狠躁天天躁| 亚洲在线自拍视频| 18禁黄网站禁片午夜丰满| 欧美乱妇无乱码| 久久香蕉激情| www.www免费av| 久久精品国产亚洲av高清一级| 淫秽高清视频在线观看| 国产亚洲欧美在线一区二区| 久久久水蜜桃国产精品网| 国产精品,欧美在线| www日本黄色视频网| 国产精品香港三级国产av潘金莲| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人成人乱码亚洲影| 欧美一区二区精品小视频在线| 视频区欧美日本亚洲| 久久久久亚洲av毛片大全| 好男人电影高清在线观看| 国产高清视频在线播放一区| 亚洲精品一卡2卡三卡4卡5卡| 日韩高清综合在线| 69av精品久久久久久| 亚洲精品一区av在线观看| 天天躁夜夜躁狠狠躁躁| 香蕉久久夜色| 亚洲 欧美一区二区三区| 高清在线国产一区| 久久精品国产99精品国产亚洲性色| 1024手机看黄色片| 香蕉国产在线看| 黑丝袜美女国产一区| 91成人精品电影| 国产主播在线观看一区二区| 男人舔女人的私密视频| 日韩欧美 国产精品| 亚洲中文日韩欧美视频| 色婷婷久久久亚洲欧美| 亚洲国产精品合色在线| 免费在线观看影片大全网站| 久久国产乱子伦精品免费另类| 亚洲专区中文字幕在线| 波多野结衣高清无吗| 国产私拍福利视频在线观看| 一个人免费在线观看的高清视频| 国产欧美日韩精品亚洲av| 久久精品国产清高在天天线| 欧美性猛交╳xxx乱大交人| 丝袜美腿诱惑在线| 亚洲久久久国产精品| 久久婷婷人人爽人人干人人爱| 长腿黑丝高跟| 18美女黄网站色大片免费观看| 男人的好看免费观看在线视频 | 久久国产乱子伦精品免费另类| 日本黄色视频三级网站网址| 国产一区二区三区视频了| 亚洲色图av天堂| 女同久久另类99精品国产91| 一进一出抽搐gif免费好疼| 韩国av一区二区三区四区| 国产精品乱码一区二三区的特点| 麻豆久久精品国产亚洲av| 国产男靠女视频免费网站| 国内揄拍国产精品人妻在线 | 亚洲精品中文字幕一二三四区| 欧美日韩福利视频一区二区| 久久这里只有精品19| 热99re8久久精品国产| 两人在一起打扑克的视频| 国产精品美女特级片免费视频播放器 | 一级片免费观看大全| 1024视频免费在线观看| 好男人在线观看高清免费视频 | 久久香蕉精品热| 两性午夜刺激爽爽歪歪视频在线观看 | а√天堂www在线а√下载| 国产三级黄色录像| 久久久国产精品麻豆| 色播亚洲综合网| 国产熟女午夜一区二区三区| 欧美丝袜亚洲另类 | 精品无人区乱码1区二区| 操出白浆在线播放| 免费看十八禁软件| 两性夫妻黄色片| 国产av又大| 99riav亚洲国产免费| 人人妻人人澡人人看| 国产单亲对白刺激| 我的亚洲天堂| 不卡av一区二区三区| 免费在线观看影片大全网站| 日韩 欧美 亚洲 中文字幕| 亚洲国产看品久久| 哪里可以看免费的av片| 国产精品免费一区二区三区在线| 黄色视频不卡| 88av欧美| 亚洲av电影在线进入| 国产一区二区三区在线臀色熟女| 亚洲成a人片在线一区二区| 91九色精品人成在线观看| 91成人精品电影| 久久精品国产亚洲av高清一级| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品中文字幕看吧| 国产主播在线观看一区二区| 欧美人与性动交α欧美精品济南到| 女同久久另类99精品国产91| 天堂动漫精品| 在线av久久热| 黄网站色视频无遮挡免费观看| 国产精品,欧美在线| 欧美成狂野欧美在线观看| 级片在线观看| 亚洲成人免费电影在线观看| 在线免费观看的www视频| 俺也久久电影网| 校园春色视频在线观看| 国产视频一区二区在线看| 国产精品,欧美在线| 国产色视频综合| 亚洲 欧美一区二区三区| 久久人人精品亚洲av| 99久久无色码亚洲精品果冻| 91老司机精品| 搡老岳熟女国产| 亚洲国产精品成人综合色| 丰满人妻熟妇乱又伦精品不卡| 欧美精品亚洲一区二区| 国产精品九九99| aaaaa片日本免费| 国产精品乱码一区二三区的特点| 久久久久久久久久黄片| 少妇的丰满在线观看| 又紧又爽又黄一区二区| 国产三级黄色录像| 国产高清videossex| 亚洲精品中文字幕在线视频| 亚洲欧美一区二区三区黑人| 午夜激情福利司机影院| 国产激情久久老熟女| 精品国产一区二区三区四区第35| 巨乳人妻的诱惑在线观看| 变态另类丝袜制服| 国产麻豆成人av免费视频| 日韩欧美在线二视频| av免费在线观看网站| 精品国产一区二区三区四区第35| 亚洲黑人精品在线| 午夜久久久在线观看| 白带黄色成豆腐渣| 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 青草久久国产| 欧美中文综合在线视频| 欧美国产精品va在线观看不卡| 久久 成人 亚洲| 一二三四在线观看免费中文在| 亚洲中文字幕一区二区三区有码在线看 | 久久精品夜夜夜夜夜久久蜜豆 | 在线免费观看的www视频| 一个人观看的视频www高清免费观看 | 成年女人毛片免费观看观看9| 精品一区二区三区av网在线观看| 国产亚洲欧美精品永久| 国产在线精品亚洲第一网站| 91九色精品人成在线观看| 久久精品人妻少妇| АⅤ资源中文在线天堂| 色精品久久人妻99蜜桃| 最新在线观看一区二区三区| 啦啦啦观看免费观看视频高清| 国产亚洲av高清不卡| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区| 国产免费男女视频| 午夜视频精品福利| 成人三级黄色视频| а√天堂www在线а√下载| 99热这里只有精品一区 | 国产亚洲av嫩草精品影院| 精品久久久久久久久久免费视频| 国产精品98久久久久久宅男小说| 好男人电影高清在线观看| 亚洲av成人av| 国产熟女午夜一区二区三区| 免费在线观看亚洲国产| 久久精品国产综合久久久| 变态另类成人亚洲欧美熟女| 草草在线视频免费看| 欧美成人性av电影在线观看| 老司机午夜十八禁免费视频| 脱女人内裤的视频| ponron亚洲| 久久天堂一区二区三区四区| 色精品久久人妻99蜜桃| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩高清在线视频| 黄网站色视频无遮挡免费观看| 国产成人系列免费观看| 国产精品,欧美在线| 欧美zozozo另类| 非洲黑人性xxxx精品又粗又长| 国产成人啪精品午夜网站| 好看av亚洲va欧美ⅴa在| 国语自产精品视频在线第100页| 久久精品夜夜夜夜夜久久蜜豆 | 2021天堂中文幕一二区在线观 | 国内久久婷婷六月综合欲色啪| 搡老熟女国产l中国老女人| 亚洲国产欧美日韩在线播放| 久久人人精品亚洲av| 巨乳人妻的诱惑在线观看| 亚洲九九香蕉| www国产在线视频色| 国内精品久久久久精免费| 国产伦在线观看视频一区| 欧美精品亚洲一区二区| 大型黄色视频在线免费观看| 99re在线观看精品视频| 国产三级黄色录像| 99在线视频只有这里精品首页| 男男h啪啪无遮挡| 99国产精品99久久久久| 欧美成人午夜精品| 日韩欧美 国产精品| 国产精品一区二区三区四区久久 | 男女视频在线观看网站免费 | 一本一本综合久久| 久久久久国产一级毛片高清牌| 在线国产一区二区在线| 悠悠久久av| 免费在线观看影片大全网站| 午夜a级毛片| 色综合亚洲欧美另类图片| 51午夜福利影视在线观看| 久久久国产成人精品二区| 淫妇啪啪啪对白视频| 国产亚洲精品久久久久久毛片| 女人高潮潮喷娇喘18禁视频| 久久精品aⅴ一区二区三区四区| 亚洲精品美女久久av网站| 叶爱在线成人免费视频播放| 老鸭窝网址在线观看| 91国产中文字幕| xxxwww97欧美| 两个人看的免费小视频| 一本综合久久免费| 欧美日韩精品网址| 韩国精品一区二区三区| 色综合亚洲欧美另类图片| 成人免费观看视频高清| 69av精品久久久久久| 国产精华一区二区三区| 成年免费大片在线观看| 亚洲 欧美一区二区三区| 岛国在线观看网站| 久久久久久人人人人人| 岛国视频午夜一区免费看| 成人午夜高清在线视频 | 国产亚洲精品av在线| 亚洲熟女毛片儿| 亚洲成人精品中文字幕电影| 亚洲,欧美精品.| 国产主播在线观看一区二区| 日本免费a在线| 久99久视频精品免费| 中文在线观看免费www的网站 | 色播亚洲综合网| 一进一出抽搐动态| www.精华液| 欧美大码av| 久久精品亚洲精品国产色婷小说| 最好的美女福利视频网| 美女高潮到喷水免费观看| tocl精华| 人妻久久中文字幕网| 国产精品野战在线观看| 亚洲精品中文字幕在线视频| 啦啦啦免费观看视频1| 亚洲av第一区精品v没综合| 亚洲精华国产精华精| 欧美一级毛片孕妇| 老熟妇乱子伦视频在线观看| 91成人精品电影| 听说在线观看完整版免费高清| 19禁男女啪啪无遮挡网站| 亚洲五月天丁香| 亚洲人成电影免费在线| 免费观看精品视频网站| 动漫黄色视频在线观看| 欧美午夜高清在线| 精品久久久久久久末码| 最近最新中文字幕大全电影3 | 无限看片的www在线观看| 啦啦啦免费观看视频1| 一边摸一边抽搐一进一小说| 精品欧美一区二区三区在线| 99精品在免费线老司机午夜| 91字幕亚洲| 国产精品一区二区三区四区久久 | 精品久久久久久久久久免费视频| 色婷婷久久久亚洲欧美| 欧美在线黄色| 久久午夜亚洲精品久久| 亚洲午夜理论影院| 一级作爱视频免费观看| 国产成人精品久久二区二区免费| 18禁观看日本| 天堂动漫精品| 精品欧美国产一区二区三| 怎么达到女性高潮| 最好的美女福利视频网| 日本精品一区二区三区蜜桃| 真人一进一出gif抽搐免费| 免费在线观看日本一区| 此物有八面人人有两片| 欧美性猛交黑人性爽| 97超级碰碰碰精品色视频在线观看| 不卡av一区二区三区| 日韩欧美一区视频在线观看| 日本 av在线| 黄片大片在线免费观看| 欧美乱码精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 亚洲欧美一区二区三区黑人| www.精华液| 国产精品亚洲美女久久久| 欧美+亚洲+日韩+国产| 久久久久久久久久黄片| 精品一区二区三区四区五区乱码| 窝窝影院91人妻| 亚洲精品在线观看二区| 国产伦人伦偷精品视频| 一卡2卡三卡四卡精品乱码亚洲| 国产精品99久久99久久久不卡| 日韩欧美一区二区三区在线观看| 亚洲黑人精品在线| 午夜成年电影在线免费观看| 中文亚洲av片在线观看爽| 亚洲久久久国产精品| 欧美日韩一级在线毛片| 精品卡一卡二卡四卡免费| 国产在线观看jvid| 亚洲国产欧美一区二区综合| xxx96com| 免费在线观看影片大全网站| 亚洲中文av在线| 久99久视频精品免费| 国产亚洲精品一区二区www| 91成人精品电影| 制服丝袜大香蕉在线| 欧美一级毛片孕妇| 国产免费男女视频| 两个人免费观看高清视频| 日韩有码中文字幕| 老司机在亚洲福利影院| 淫秽高清视频在线观看| 国产精品久久久人人做人人爽| 日本免费a在线| 日韩欧美国产在线观看| 欧美一区二区精品小视频在线| 一个人免费在线观看的高清视频| 欧美日韩亚洲国产一区二区在线观看| 黄网站色视频无遮挡免费观看| 88av欧美| 女警被强在线播放| 国产亚洲精品av在线| 久久精品国产亚洲av香蕉五月| 久久久久国内视频| 欧美一级a爱片免费观看看 | 国产乱人伦免费视频| 天堂动漫精品| 日本撒尿小便嘘嘘汇集6| 亚洲三区欧美一区| 欧美zozozo另类| 黑人操中国人逼视频| 欧美av亚洲av综合av国产av| 国产一区二区激情短视频| 老司机午夜福利在线观看视频| 熟妇人妻久久中文字幕3abv| 午夜免费成人在线视频| 夜夜爽天天搞| 国产精品一区二区免费欧美| 亚洲美女黄片视频| 99在线视频只有这里精品首页| 9191精品国产免费久久| av在线播放免费不卡| a级毛片在线看网站| 日日夜夜操网爽| 日韩 欧美 亚洲 中文字幕| av福利片在线| 免费看日本二区| 色老头精品视频在线观看| 亚洲熟妇熟女久久| 日韩一卡2卡3卡4卡2021年| 99国产精品一区二区三区| 97人妻精品一区二区三区麻豆 | 午夜激情福利司机影院| 欧美精品啪啪一区二区三区| 女生性感内裤真人,穿戴方法视频| 在线播放国产精品三级| 日韩成人在线观看一区二区三区| 亚洲欧美一区二区三区黑人| 精品国内亚洲2022精品成人| 国产精品香港三级国产av潘金莲| 欧美日韩一级在线毛片| 免费在线观看视频国产中文字幕亚洲| 老汉色av国产亚洲站长工具| 特大巨黑吊av在线直播 | 色精品久久人妻99蜜桃| 国产精品亚洲美女久久久| 免费高清视频大片| 国产亚洲欧美98| 侵犯人妻中文字幕一二三四区| 嫩草影院精品99| 欧美国产日韩亚洲一区| 日韩精品青青久久久久久| a级毛片在线看网站| 亚洲av中文字字幕乱码综合 | 热99re8久久精品国产| 欧美日韩精品网址| 一个人免费在线观看的高清视频| 国内久久婷婷六月综合欲色啪| 国产亚洲精品第一综合不卡| 欧美成狂野欧美在线观看| 亚洲一区中文字幕在线| 久久天堂一区二区三区四区| 操出白浆在线播放| 中文字幕久久专区| 一区福利在线观看| 亚洲欧美精品综合久久99| 精品国产亚洲在线| 国产亚洲精品久久久久5区| 黄色丝袜av网址大全| 欧美日本亚洲视频在线播放| 1024手机看黄色片| 亚洲一区中文字幕在线| 久久人妻福利社区极品人妻图片| 高清在线国产一区| 成人av一区二区三区在线看| 午夜免费激情av| 搡老熟女国产l中国老女人| 国产成年人精品一区二区| 亚洲欧美精品综合久久99| 久久精品人妻少妇| 男人操女人黄网站| 婷婷精品国产亚洲av| 免费观看人在逋| 日日摸夜夜添夜夜添小说| 免费电影在线观看免费观看| av片东京热男人的天堂| 12—13女人毛片做爰片一| 亚洲五月天丁香| 欧美 亚洲 国产 日韩一| 99在线人妻在线中文字幕| 色尼玛亚洲综合影院| 男女午夜视频在线观看| 免费在线观看成人毛片| 一区二区三区高清视频在线| 久久九九热精品免费| 一级黄色大片毛片| 免费观看人在逋| 我的亚洲天堂| 1024香蕉在线观看| e午夜精品久久久久久久| 精品国产超薄肉色丝袜足j| 两个人视频免费观看高清| 黑人操中国人逼视频| av欧美777| 中文字幕人妻熟女乱码| 欧美精品啪啪一区二区三区| 国产精品爽爽va在线观看网站 | 成人永久免费在线观看视频| 国产欧美日韩精品亚洲av| www.熟女人妻精品国产| 亚洲国产精品999在线| 久久香蕉激情| 白带黄色成豆腐渣| 黄色视频不卡| 精品一区二区三区av网在线观看| 亚洲第一青青草原| 看免费av毛片| 99在线人妻在线中文字幕| 一级毛片女人18水好多| 美女高潮到喷水免费观看| 成人一区二区视频在线观看| 欧美激情极品国产一区二区三区| 99精品在免费线老司机午夜| 美女高潮到喷水免费观看| 真人做人爱边吃奶动态| 国产精品一区二区三区四区久久 | 黑人操中国人逼视频| 在线天堂中文资源库| 亚洲av中文字字幕乱码综合 | 免费观看精品视频网站| 深夜精品福利| 精品国产乱子伦一区二区三区| 国产三级黄色录像| 特大巨黑吊av在线直播 | 精品欧美国产一区二区三| 成人特级黄色片久久久久久久| 十八禁人妻一区二区| 妹子高潮喷水视频| 国产av又大| 久久久久久九九精品二区国产 | 精品欧美国产一区二区三| 亚洲一区二区三区色噜噜| 中文字幕精品亚洲无线码一区 | 欧美黄色片欧美黄色片| 久久热在线av| 91字幕亚洲| 国产成人av教育| 日本黄色视频三级网站网址| 91国产中文字幕| 999久久久国产精品视频| 夜夜夜夜夜久久久久| 搡老岳熟女国产| 国产精品 欧美亚洲| 少妇被粗大的猛进出69影院| 高清在线国产一区| 亚洲成人国产一区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 男人舔女人下体高潮全视频| 亚洲一区高清亚洲精品| 国产野战对白在线观看| 免费看日本二区| 日本 av在线| 观看免费一级毛片| 婷婷六月久久综合丁香| 亚洲欧洲精品一区二区精品久久久| 岛国视频午夜一区免费看| 国产成人av激情在线播放| 亚洲精品粉嫩美女一区| 免费一级毛片在线播放高清视频| videosex国产| 国产亚洲精品综合一区在线观看 | 女生性感内裤真人,穿戴方法视频| 精品久久久久久久人妻蜜臀av| 女性生殖器流出的白浆| 日日摸夜夜添夜夜添小说| 亚洲熟妇中文字幕五十中出| 久久国产亚洲av麻豆专区| 精品国产乱码久久久久久男人| 亚洲午夜精品一区,二区,三区| 一夜夜www| 亚洲一区二区三区不卡视频| 久久久久久人人人人人| 欧美中文综合在线视频| 看片在线看免费视频| 久久天堂一区二区三区四区| 韩国精品一区二区三区| 听说在线观看完整版免费高清| 免费观看精品视频网站| 国产精品影院久久| 91国产中文字幕| 成人欧美大片| 18禁国产床啪视频网站| 国产麻豆成人av免费视频| 妹子高潮喷水视频| 成人亚洲精品一区在线观看| 99精品在免费线老司机午夜| 日韩精品免费视频一区二区三区| 久久久国产成人免费| 女性被躁到高潮视频| 成人午夜高清在线视频 | 国产精品野战在线观看| 黄色 视频免费看|