• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-damage photolithography for magnetically doped(Bi,Sb)2Te3 quantum anomalous Hall thin films

    2023-12-02 09:22:48ZhitingGao高志廷MinghuaGuo郭明華ZichenLian連梓臣YaoxinLi李耀鑫YunheBai白云鶴XiaoFeng馮硝KeHe何珂YayuWang王亞愚ChangLiu劉暢andJinsongZhang張金松
    Chinese Physics B 2023年11期
    關(guān)鍵詞:劉暢高志白云

    Zhiting Gao(高志廷), Minghua Guo(郭明華), Zichen Lian(連梓臣),Yaoxin Li(李耀鑫), Yunhe Bai(白云鶴), Xiao Feng(馮硝),2,4,5, Ke He(何珂),2,4,5,Yayu Wang(王亞愚),4,5, Chang Liu(劉暢), and Jinsong Zhang(張金松),4,5,§

    1State Key Laboratory of Low Dimensional Quantum Physics,Department of Physics,Tsinghua University,Beijing 100084,China

    2Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    3School of Integrated Circuits,Tsinghua University,Beijing 100084,China

    4Frontier Science Center for Quantum Information,Beijing 100084,China

    5Hefei National Laboratory,Hefei 230088,China

    6Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-Nano Devices,Department of Physics,

    Renmin University of China,Beijing 100872,China

    7Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education),Renmin University of China,Beijing 100872,China

    Keywords: topological insulator,quantum anomalous Hall effect,fabrication techniques

    1.Introduction

    Magnetic topological insulators(TIs)have attracted wide attention in condensed matter physics in the past decade.The intricate interplay between magnetic order and band topology gives rise to a variety of exotic topological quantum phenomena.[1,2]A prominent example is the QAH effect[3]that was first realized in Cr-doped (Bi,Sb)2Te3magnetic TI thin films grown by molecular beam epitaxy (MBE).As a contemporary version of the integer quantum Hall(QH)effect without magnetic field,[4,5]the QAH effect is characterized by a quantized Hall resistanceRyx ~h/e2and a zero longitudinal resistanceRxx ~0 at zero magnetic field, wherehrepresents the Plank constant andedenotes the elementary charge.Distinct from the integer QH effect that originates from the formation of Landau levels in strong magnetic field,[6]the QAH effect arises from the interplay between magnetic order and spin–orbit coupling,which opens an exchange gap at the Dirac point of the surface state.[7,8]When the Fermi level (EF) is tuned within the band gap, the QAH effect appears and the transport is carried by 1D dissipationless chiral edge state.[9,10]The realization of the QAH effect not only opens a new avenue for exploring exotic topological quantum physics,[11–20]but also holds great potential for practical applications, such as the low power consumption electronic devices,[9]topological quantum computation,[21,22]and metrology for quantum resistance.[23,24]

    Since the first experimental observation of the QAH effect in Cr-doped (Bi,Sb)2Te3magnetic TIs,[3,11,12]the optimization of the QAH effect has become an important target in both condensed matter physics and material science.On the one hand,the adjustment of the sample growth conditions,such as by changing the magnetic dopant from Cr to V[25,26]or developing the magnetic modulation doping method instead of single doping,[26]can significantly enhance the observable temperature from 50 mK to 1 K.On the other hand,the continuously being discovered new materials such as MnBi2Te4intrinsic magnetic TI,[27,28]twisted bilayer graphene,[29,30]and AB-stacked MoTe2/WSe2heterobilayers[31]provide alternative routes to realize the QAH effect.In addition to the progress in searching for new materials, developing effective sample protection scheme represents another important direction in the study of the QAH effect.[32,33]However, in real experiment,even starting with the optimized materials,it does not guarantee that the fabricated device would retain its electronic properties as the original materials.The protective layer may also react with the chemical reagents during the fabrication process.In order to control and manipulate the dissipationless chiral edge states in functional electronic devices,artificially fabricating micro-structures by lithography are unavoidable.Therefore, considering the sensitivity of the electronic properties of TI films,[34,35]it is of great importance to develop a low-damage lithography method for magnetically doped(Bi,Sb)2Te3QAH films.

    Previous researches on magnetic TIs along this direction mainly focused on the electron-beam-lithography (EBL), by which nanostructures down to tens of nm can be easily patterned.By developing low-damage EBL for nanostructures on Bi2Te3family TIs,various interesting quantum transport phenomena have been observed in experiment.[36–38]However,for another lithography method, the photolithography, which is more compatible with modern integrated circuit manufacture, its influence on the QAH behaviors has not been thoroughly explored.It is unclear whether the chemical reagents in photolithography would shift theEFposition or affect the magnetism.Therefore, it is highly desirable to develop lowdamage photolithography methods and perform control experiments on the influence of different fabrication methods on the properties of QAH thin films.Here, we have developed a low-damage photolithography method for magnetically doped (Bi,Sb)2Te3QAH thin films incorporating two resist layers of PMMA and AR-P 3740 (manufactured by AllResist),two commonly used positive resists in conventional EBL and photolithography, respectively.By measuring the transport behaviors of five QAH thin films fabricated by mechanical scratching,conventional photolithography with single resist, and modified photolithography scheme with two resists,we found that the new photolithography method enables the fabrication of QAH thin films with the transport and magnetic properties almost identical to those of the films fabricated by mechanical scratching.Our result represents a key step towards the production of novel micro-structured devices based on the dissipationless QAH chiral edge states.

    2.Experimental details

    The three QAH samples used in this study were 5-QL thick Cr/V doped (Bi,Sb)2Te3thin films grown by MBE on three SrTiO3(111)substrates following the recipes in our previous work.[19,25]Samples #1 and #2 were deposited with a 2-nm thick Al layerin-situin the MBE chamber at room temperature, which was then oxidized naturally into highly insulating AlOxwhen the samples were taken out of the MBE chamber [Fig.1(a)].The deposition of AlOxcan protect the QAH thin films from aging effect and is one of the most efficient methods for QAH sample protection.To explore the influences of photolithography on the transport properties,both samples#1 and#2 were cut into two pieces(#1-A,#1-B,#2-A,and#2-B).For samples#1-A and#2-A,Hall bar structures were mechanically scratched by hand using a sharp needle.For samples#1-B and#2-B,we adopted the conventional photolithography with single resist(AR-P 3740)and the modified photolithography method with two resists(PMMA and AR-P 3740),along with the etching method to pattern Hall bar structures(see the following paragraph for details).For sample#3,no capping layer was covered on the surface,which was used to determine the effect of heating on the transport properties.For transport measurements, a standard low-frequency fourprobe lock-in method was adopted with an excitation current of 200 nA at the frequency of 13 Hz.The SiTiO3substrate served as the gate dielectric due to its large dielectric constant at low temperature.The magnetic field was applied perpendicular to the film plane in a commercial He4refrigerator with the base temperature of 1.5 K.To eliminate the pick-up signals from geometrical misalignments,all the collectedRyxdata were antisymmetrized with respect to the magnetic field.

    Figure 1 illustrates the schematic process of the modified photolithography method with two resists of PMMA and ARP 3740.We started by spin-coating the QAH thin films with a layer of 120 nm thick PMMA(marked by blue color)in an argon-filled glovebox with the O2and H2O levels lower than 0.1 PPM [Fig.1(b)].The sample was then transferred to a low-pressure environment pumped down to 5 Pa for 20 min to drive off excess resist solvent.Next,another 700 nm thick resist AR-P 3740(marked by yellow color)was coated on top of the PMMA layer [Fig.1(c)].Then the film was baked at 85?C for 5 min to solidify the resists.After baking, the device was first exposed to a pattern of intense ultraviolet(UV)light with the dose of 55 mJ/cm2.In the next,the exposed area of AR-P 3740 was then dissolved by the sodium hydroxide developer for 20 s and rinsed with deionized water, leaving a Hall-shaped photoresist layer on the top of the PMMA layer[Fig.1(d)].Subsequently, oxygen plasma was employed to etch the PMMA layer [Fig.1(e)], with the Hall-shaped photoresist layer serving as a mask.The oxygen flow rate and pressure were controlled at 15 SCCM and 200 Pa, and the frequency and power of the radio-frequency field were set to be 13.56 MHz and 60 W.Although the AR-P 3740 layer also became slightly thinner during the oxygen plasma ashing process,the remaining layer was sufficient to serve as a mask during the etching of the PMMA layer.For the AlOxprotective layer and the QAH thin film, argon ion beam etching (IBE)with a beam current of 70 mA was employed at the rate of 15 SCCM and pressure of 2.2×10-2Pa[Fig.1(f)].After that,the sample was cleaned with acetone,rinsed with isopropanol and deionized water, and dried with nitrogen to remove the PMMA and AR-P 3740 resists completely[Fig.1(g)].Finally,electrical contacts were made by pressing indium pieces onto the films[Fig.1(h)].Commonly adopted deposition methods such as evaporation or sputtering can also be used for making electrodes.Compared to conventional photolithography, the modified method contains two additional steps of spin-coating PMMA and oxygen plasma ashing for the PMMA layer.

    3.Results and discussion

    To study the effect of standard photolithography on the properties of the QAH thin films, we first explored the magnetic field dependentRyxandRxxat various gate voltages(Vgs) for samples #1-A and #1-B, which were fabricated by mechanical scratching and conventional photolithography,respectively.Figure 2(a) displays the magnetic field dependentRyxandRxxfor sample#1-A.All the transport data shown in this work were taken at 1.5 K.The Hall traces exhibit wellsquared hysteresis loops, indicating the formation of longrange ferromagnetic order.AtVg=50 V,Ryxreaches the maximum value of 21.8 k? at zero magnetic field.Such high value ofRyxsuggests that the sample has already entered the incipient QAH state.[3]AsVgis moved away from 50 V,electronand hole-like carriers are injected into the sample.As a result, the zero-magnetic-fieldRyxis progressively reduced to 16.0 k? and 17.9 k? at-200 V and 200 V.The magnetoresistance curves exhibit the typical shape for a ferromagnet with two symmetric peaks at the coercive field.AtVg=50 V,Rxxreaches the minimum value of 20.1 k? at zero magnetic field,and increases to 41.6 k? at the plateau transition.To check if the conventional photolithography affects the transport properties of QAH thin films, we measured the transport properties on sample#1-B at the same conditions,with the data displayed in Fig.2(b).For sample #1-B, the shape of the Hall hysteresis is much less-squared than that of the sample #1-A.And the maximum value ofRyxis only as low as 3.3 k?at 150 V,significantly reduced by nearly one order of magnitude.Meanwhile,the overall value ofRxxalso increases significantly,along with two broad and gentle peaks.These results clearly indicate the severe degradation of QAH sample quality during the conventional photolithography process.

    In previous studies, people have already found that the QAH thin films are fragile and very sensitive to ambient conditions.[32–35]Therefore, a layer of AlOxis usually deposited on the surface to protect the sample from degradation.However, during the developing process of photolithography,the sodium hydroxide developer could react with the AlOxlayer and is also detrimental to the QAH films.To figure out this issue, we came up with the idea of adding an additional capping layer to isolate the AlOxlayer from directly contacting with the developer.In this case,the transport properties of the QAH films can be largely retained after fabrication.In order to verify our conjecture,we performed another control experiment on two QAH devices(samples#2-A and#2-B)obtained from one film, which were fabricated by mechanical scratching and modified photolithography,respectively.As shown in Figs.2(c) and 2(d), the Hall and magnetoresistance traces of the film by the modified photolithography(#2-B)show similar transport behaviors to those of the film fabricated by mechanical scratching (#2-A).The maximumRyxat zero magnetic field of sample#2-B reaches as high as 18.9 k?,only slightly lower than that of sample #2-A, which is 20.1 k?.The values ofRxxand their variation in magnetic field for negativeVgs of sample#2-B are very close to those of sample#2-A.Only a small decrease is observed inRxxfor positiveVgs, which is far away from the charge neutrality point.These observations strongly suggest that the modified photolithography with two resists is of low damage to the sample quality.

    To amplify the different transport behaviors between the three fabrication methods, we extracted the values ofRyxat zero magnetic field and summarized its variation as a function ofVg.As shown in Fig.3(a),the conventional photolithography process not only reduces the value ofRyx, but also shifts the position ofEF.For sample #1-A,Ryxreaches the maximum at the charge neutrality point of around 50 V.However,for sample #1-B, theVgof the maximumRyxshifts to 150 V,indicating that the sample is p-doped during the photolithography.In contrast,for samples#2-A and#2-B,we found that theVgdependent transport data are almost overlapped.There is no obvious doping effect after the modified photolithography process.In Figs.3(c)and 3(d), we summarized the values of coercive field(Hc)as a function ofVgfor the two sets of data.The sharp contrast between the two curves in Fig.3(c)clearly demonstrates that the conventional photolithography scheme is detrimental to the properties of the QAH thin films.In contrast, the PMMA-protected photolithography method can largely keep the magnetism less affected by fabrication,as displayed in Fig.3(d).

    Fig.3.Comparison of transport and magnetic behaviors of the samples fabricated by different methods.(a)Vg dependent Ryx at zero magnetic field for samples #1-A and #1-B.The data for #1-B are multiplied by 3 for clarity.(b)Ryx at zero magnetic field as a function of Vg for samples#2-A and#2-B.(c)Vg dependent coercive field(μ0Hc)for samples#1-A and#1-B.(d)μ0Hc as a function of Vg for samples#2-A and#2-B.

    Finally, we discuss a heating issue in the baking process during the lithography.In both EBL and photolithography,after the spin coating of the resist, a baking process is required to solidify the resist.The typical heating temperature for photoresist and e-beam resist ranges from 90?C to 180?C, and the baking time depends on the temperature and the thickness of resist,usually from 5 to 20 minutes.However,as displayed in Fig.4(a)for sample#3,Ryxdecreases from 18 k? to 11 k?when the sample is heated at 90?C in vacuum for 5 min, indicating that the properties of the QAH thin film are sensitive to heating and can be damaged at high temperature.Therefore,the up limits of baking temperature and time throughout our experiment are controlled to be 85?C and 5 minutes.To make sure that both resists can be tempered enough at such a low temperature and a short total time,we conducted only one baking process after the spin coating of both resists.However,it brings in another issue that micrometer size holes appeared in the PMMA layer after the development of the photoresist.Figures 4(b) and 4(c) display the typical optical image of a fabricated device after the photoresist development and the atomic force microscopy (AFM) measurement result for the holes, respectively.We found that the depth of the holes is exactly the thickness of the PMMA layer, indicating that the holes run through the PMMA layer.Such result indicates that the sodium hydroxide developer can touch the film through these holes,making the protection ineffective.The appearance of the holes is attributed to the mutual dissolving of PMMA and AR-P 3740 due to the lack of baking of the PMMA layer before spin-coating AR-P 3740 photoresist.Exposure and development of the AR-P 3740 droplets in the PMMA layer give rise to the formation of holes in the PMMA layer,as illustrated in Figs.4(f)–4(h).To address this issue,we introduced a vacuuming process before spin coating of AR-P 3740, in which the pressure was reduced to 5 Pa for 20 min to solidify the PMMA layer.As shown in Figs.4(d) and 4(e), no obvious holes are observed in the optical image after the vacuuming process,and the AFM result displays a step edge with a height of 700 nm,which corresponds to the thickness of the photoresist.The schematic illustration of a device without holes is depicted in Fig.4(i).

    4.Conclusion

    In summary,we found that the conventional photolithography scheme with single resist cannot retain the properties of the original QAH thin film.Compared to the device fabricated by mechanical scratching,photolithography process reduces the Hall resistance and weakens the magnetic coercive field.By covering a layer of PMMA to isolate the protective layer of AlOxfrom the photoresist, we demonstrated that the PMMA-protected photolithography method enables the fabrication of QAH devices with the transport and magnetic properties almost identical to those of the pristine films.Our result represents a key step towards the production of microstructured electronic devices based on the dissipationless QAH chiral edge states.Additionally,this method could also be effectively applied to other sensitive two-dimensional thin film materials.

    Acknowledgements

    This work was supported by the National Key Research and Development Program of China (Grant No.2018YFA0307100), the Basic Science Center Project of the National Natural Science Foundation of China (Grant No.52388201), the National Natural Science Foundation of China (Grant Nos.12274453 and 92065206), and the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302502).Chang Liu was also supported by Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No.KF202204).Yayu Wang was also supported by the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE.

    猜你喜歡
    劉暢高志白云
    本期名家—高志祥
    高志剛
    Shallow-water sloshing motions in rectangular tank in general motions based on Boussinesq-type equations *
    白云(外三首)
    天津詩人(2017年2期)2017-11-29 01:24:14
    春來啦
    尋找丟失的快樂
    The dynamics of the floodwater and the damaged ship in waves*
    珍視自我
    白云的來歷
    夏天咋來的
    国产午夜精品久久久久久一区二区三区 | 国产激情欧美一区二区| 欧美日韩精品网址| 美女免费视频网站| av在线天堂中文字幕| 久久九九热精品免费| 国产久久久一区二区三区| 国产熟女xx| 国内少妇人妻偷人精品xxx网站| 久久这里只有精品中国| 欧美日韩乱码在线| 亚洲成a人片在线一区二区| 成人一区二区视频在线观看| 国产精品99久久99久久久不卡| 久久人人精品亚洲av| 琪琪午夜伦伦电影理论片6080| 免费看十八禁软件| 中文字幕人妻熟人妻熟丝袜美 | 亚洲五月婷婷丁香| 真实男女啪啪啪动态图| 亚洲国产高清在线一区二区三| 热99在线观看视频| 久久亚洲真实| 成熟少妇高潮喷水视频| 亚洲av二区三区四区| www日本黄色视频网| 在线观看美女被高潮喷水网站 | 亚洲男人的天堂狠狠| 搡老熟女国产l中国老女人| 精品电影一区二区在线| 国产一区二区在线av高清观看| 久久性视频一级片| 国产成人av激情在线播放| 国产精品久久久久久久电影 | a级一级毛片免费在线观看| 欧美日韩黄片免| 宅男免费午夜| 久久性视频一级片| 99久久精品一区二区三区| 身体一侧抽搐| 有码 亚洲区| 日韩亚洲欧美综合| 日日夜夜操网爽| 日本黄大片高清| 日本精品一区二区三区蜜桃| 久久九九热精品免费| 黑人欧美特级aaaaaa片| 人妻夜夜爽99麻豆av| 精品国产美女av久久久久小说| 亚洲av熟女| 蜜桃亚洲精品一区二区三区| 亚洲欧美日韩东京热| 神马国产精品三级电影在线观看| 亚洲精品粉嫩美女一区| 在线免费观看不下载黄p国产 | 午夜久久久久精精品| 婷婷精品国产亚洲av| 一a级毛片在线观看| 国产高清有码在线观看视频| 欧美极品一区二区三区四区| 国产亚洲精品一区二区www| 午夜福利在线在线| 日本a在线网址| 狂野欧美激情性xxxx| 国产成+人综合+亚洲专区| 精品久久久久久,| 日本免费a在线| 亚洲一区高清亚洲精品| 在线十欧美十亚洲十日本专区| 村上凉子中文字幕在线| 一个人免费在线观看电影| 国产单亲对白刺激| 亚洲欧美日韩东京热| 日韩 欧美 亚洲 中文字幕| 51午夜福利影视在线观看| 久久久国产成人精品二区| 国产精品99久久久久久久久| 国产一区二区在线观看日韩 | netflix在线观看网站| 亚洲精品在线观看二区| 岛国在线免费视频观看| 亚洲天堂国产精品一区在线| 亚洲中文字幕一区二区三区有码在线看| 五月玫瑰六月丁香| 欧美色视频一区免费| 成人欧美大片| 中文字幕av成人在线电影| 成人特级av手机在线观看| 中文字幕精品亚洲无线码一区| 一级毛片高清免费大全| 精品久久久久久,| 岛国在线免费视频观看| 国产精品 欧美亚洲| 一个人看的www免费观看视频| 国产主播在线观看一区二区| 日韩高清综合在线| 可以在线观看毛片的网站| ponron亚洲| 亚洲国产欧美人成| 狂野欧美激情性xxxx| 国产精品一区二区三区四区免费观看 | 精品熟女少妇八av免费久了| 亚洲一区二区三区不卡视频| 一a级毛片在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲欧美激情综合另类| 日韩精品中文字幕看吧| 精品国产三级普通话版| 国产精华一区二区三区| 18+在线观看网站| 亚洲美女黄片视频| 亚洲av熟女| 亚洲久久久久久中文字幕| 欧美日韩精品网址| 床上黄色一级片| 热99re8久久精品国产| 国产亚洲精品av在线| 国产午夜精品久久久久久一区二区三区 | 日日干狠狠操夜夜爽| 国产v大片淫在线免费观看| 在线十欧美十亚洲十日本专区| 欧美在线黄色| 18美女黄网站色大片免费观看| 男女那种视频在线观看| 欧美又色又爽又黄视频| 免费人成视频x8x8入口观看| 国产高清videossex| 精品一区二区三区视频在线观看免费| 中文字幕熟女人妻在线| 亚洲av电影不卡..在线观看| 日本成人三级电影网站| 变态另类丝袜制服| 精品无人区乱码1区二区| 熟妇人妻久久中文字幕3abv| 18禁黄网站禁片免费观看直播| 一夜夜www| 亚洲精品乱码久久久v下载方式 | xxxwww97欧美| 黄色成人免费大全| 成年女人永久免费观看视频| 99久国产av精品| 国产精品1区2区在线观看.| 国产精品免费一区二区三区在线| 国产麻豆成人av免费视频| 成人永久免费在线观看视频| 国内揄拍国产精品人妻在线| 亚洲国产色片| 免费看光身美女| 国产欧美日韩一区二区三| 好男人在线观看高清免费视频| 午夜免费男女啪啪视频观看 | 最近最新中文字幕大全电影3| 1000部很黄的大片| 午夜亚洲福利在线播放| 亚洲人成网站高清观看| 国产真实伦视频高清在线观看 | 99国产综合亚洲精品| 熟女少妇亚洲综合色aaa.| 99视频精品全部免费 在线| 国产国拍精品亚洲av在线观看 | 国内精品美女久久久久久| 露出奶头的视频| 婷婷丁香在线五月| 国产免费一级a男人的天堂| 国产一区二区三区在线臀色熟女| 黄色丝袜av网址大全| 两个人的视频大全免费| 两个人视频免费观看高清| 男女那种视频在线观看| 2021天堂中文幕一二区在线观| 亚洲av第一区精品v没综合| 欧美国产日韩亚洲一区| 亚洲av成人不卡在线观看播放网| 男女视频在线观看网站免费| 午夜精品一区二区三区免费看| 国产男靠女视频免费网站| 91久久精品国产一区二区成人 | 一区福利在线观看| 午夜激情福利司机影院| 在线a可以看的网站| 国产成人福利小说| 在线播放国产精品三级| 亚洲av成人不卡在线观看播放网| 欧美成人一区二区免费高清观看| 中文字幕高清在线视频| 国产精品香港三级国产av潘金莲| 99精品久久久久人妻精品| 香蕉久久夜色| 少妇人妻一区二区三区视频| 观看美女的网站| 国产久久久一区二区三区| 一个人看视频在线观看www免费 | 看免费av毛片| 午夜a级毛片| 午夜精品久久久久久毛片777| 久久精品亚洲精品国产色婷小说| 免费av毛片视频| 给我免费播放毛片高清在线观看| 麻豆一二三区av精品| 色噜噜av男人的天堂激情| 久久性视频一级片| 婷婷亚洲欧美| 国产精品精品国产色婷婷| 99热这里只有精品一区| av中文乱码字幕在线| 老鸭窝网址在线观看| 看片在线看免费视频| 久久亚洲精品不卡| 日本撒尿小便嘘嘘汇集6| 手机成人av网站| 麻豆国产97在线/欧美| 免费看日本二区| 亚洲国产高清在线一区二区三| 深爱激情五月婷婷| 高潮久久久久久久久久久不卡| 久久国产乱子伦精品免费另类| 俺也久久电影网| 欧美日韩国产亚洲二区| 免费高清视频大片| 成人18禁在线播放| 搡老岳熟女国产| 亚洲av免费高清在线观看| 国产探花极品一区二区| 麻豆国产97在线/欧美| 蜜桃久久精品国产亚洲av| 日韩人妻高清精品专区| 亚洲欧美日韩卡通动漫| 欧美乱码精品一区二区三区| 国产成年人精品一区二区| 99久国产av精品| 欧美一区二区精品小视频在线| 欧美zozozo另类| 国产伦精品一区二区三区四那| 最新中文字幕久久久久| 色视频www国产| 精品国产超薄肉色丝袜足j| 一个人免费在线观看电影| 日韩大尺度精品在线看网址| 久久亚洲精品不卡| x7x7x7水蜜桃| 日韩欧美 国产精品| 亚洲精品影视一区二区三区av| 日韩欧美在线乱码| 久久中文看片网| 亚洲欧美激情综合另类| 夜夜看夜夜爽夜夜摸| 18禁美女被吸乳视频| 丁香六月欧美| 波多野结衣高清作品| 校园春色视频在线观看| 婷婷精品国产亚洲av在线| 日韩亚洲欧美综合| 免费无遮挡裸体视频| 色综合站精品国产| 中文在线观看免费www的网站| 人人妻人人澡欧美一区二区| 1024手机看黄色片| 日韩中文字幕欧美一区二区| 亚洲av第一区精品v没综合| 丁香六月欧美| 免费高清视频大片| 真实男女啪啪啪动态图| 婷婷六月久久综合丁香| 欧美色欧美亚洲另类二区| 亚洲成人免费电影在线观看| 亚洲国产精品成人综合色| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 99久久成人亚洲精品观看| 男女午夜视频在线观看| 午夜精品久久久久久毛片777| 黄色成人免费大全| 香蕉丝袜av| 成人欧美大片| 国产av不卡久久| 亚洲欧美精品综合久久99| 精品人妻偷拍中文字幕| 成年人黄色毛片网站| 久久精品亚洲精品国产色婷小说| 午夜福利免费观看在线| 国产精品电影一区二区三区| 在线免费观看的www视频| 亚洲av电影不卡..在线观看| 日韩成人在线观看一区二区三区| 很黄的视频免费| 亚洲中文字幕一区二区三区有码在线看| 亚洲黑人精品在线| 又黄又粗又硬又大视频| 久久久久久大精品| 看片在线看免费视频| 亚洲av免费在线观看| 午夜福利成人在线免费观看| 亚洲欧美日韩无卡精品| 免费在线观看成人毛片| 日韩精品青青久久久久久| 亚洲最大成人手机在线| 中文亚洲av片在线观看爽| 亚洲欧美日韩卡通动漫| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 丁香六月欧美| 亚洲国产欧美人成| 免费一级毛片在线播放高清视频| 少妇的逼好多水| 精品人妻一区二区三区麻豆 | 国产成人av教育| 久久精品91蜜桃| 亚洲五月天丁香| 两性午夜刺激爽爽歪歪视频在线观看| av在线天堂中文字幕| 国产伦精品一区二区三区四那| 99精品欧美一区二区三区四区| 国内久久婷婷六月综合欲色啪| 91av网一区二区| 97超级碰碰碰精品色视频在线观看| 人妻夜夜爽99麻豆av| a在线观看视频网站| 日韩精品中文字幕看吧| 久久久久久久精品吃奶| 少妇熟女aⅴ在线视频| or卡值多少钱| 日韩欧美在线乱码| 国产一区二区亚洲精品在线观看| 国产欧美日韩精品一区二区| 国产三级黄色录像| 少妇的逼水好多| 亚洲av成人av| 国产色婷婷99| 国产av不卡久久| 99热这里只有是精品50| 男女床上黄色一级片免费看| 黑人欧美特级aaaaaa片| 亚洲熟妇中文字幕五十中出| 夜夜躁狠狠躁天天躁| 高清日韩中文字幕在线| 级片在线观看| 久久精品国产清高在天天线| 黄色丝袜av网址大全| 国内揄拍国产精品人妻在线| 日本在线视频免费播放| 久久婷婷人人爽人人干人人爱| 一卡2卡三卡四卡精品乱码亚洲| 最好的美女福利视频网| 精品无人区乱码1区二区| 精品人妻偷拍中文字幕| 99热6这里只有精品| 国产精品综合久久久久久久免费| 成人性生交大片免费视频hd| 久久精品人妻少妇| 三级毛片av免费| 99久久久亚洲精品蜜臀av| 国产精品嫩草影院av在线观看 | 亚洲在线观看片| 91麻豆精品激情在线观看国产| 欧美中文综合在线视频| 他把我摸到了高潮在线观看| 久久国产精品人妻蜜桃| 男女床上黄色一级片免费看| 精品一区二区三区av网在线观看| 天堂√8在线中文| 亚洲av成人精品一区久久| 国产精品免费一区二区三区在线| 亚洲在线观看片| 五月玫瑰六月丁香| 美女被艹到高潮喷水动态| 亚洲熟妇中文字幕五十中出| 国产欧美日韩精品一区二区| 亚洲av电影在线进入| 看片在线看免费视频| 女生性感内裤真人,穿戴方法视频| 啦啦啦韩国在线观看视频| 国产欧美日韩精品亚洲av| 欧美一级a爱片免费观看看| 国产成年人精品一区二区| 亚洲av成人精品一区久久| 88av欧美| 亚洲在线观看片| 十八禁网站免费在线| 亚洲在线自拍视频| 麻豆国产97在线/欧美| 99久久精品一区二区三区| 国产亚洲欧美在线一区二区| 亚洲国产日韩欧美精品在线观看 | 婷婷亚洲欧美| 亚洲精品久久国产高清桃花| 日本黄色视频三级网站网址| 亚洲国产色片| 婷婷精品国产亚洲av在线| 国产视频内射| 欧美在线黄色| 99久久成人亚洲精品观看| 久久精品国产清高在天天线| 欧美一级a爱片免费观看看| 免费高清视频大片| 看黄色毛片网站| 亚洲无线在线观看| 一本综合久久免费| 色播亚洲综合网| 国产黄片美女视频| 亚洲五月婷婷丁香| 日本免费一区二区三区高清不卡| 午夜激情福利司机影院| 少妇人妻一区二区三区视频| 法律面前人人平等表现在哪些方面| avwww免费| 日韩欧美在线二视频| 久久99热这里只有精品18| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品国产精品久久久不卡| 国产激情偷乱视频一区二区| 最近视频中文字幕2019在线8| 国产精品亚洲美女久久久| 亚洲欧美一区二区三区黑人| av福利片在线观看| 国产亚洲精品久久久com| 国产一区二区三区视频了| 99在线视频只有这里精品首页| 日韩免费av在线播放| 久久久久性生活片| 国产一区在线观看成人免费| 成人18禁在线播放| 免费高清视频大片| 在线观看舔阴道视频| 免费大片18禁| 老司机在亚洲福利影院| 日本一二三区视频观看| 中文字幕av成人在线电影| 桃色一区二区三区在线观看| 男女下面进入的视频免费午夜| 亚洲精品乱码久久久v下载方式 | 国产亚洲精品一区二区www| 亚洲av第一区精品v没综合| 成年版毛片免费区| 午夜精品在线福利| 欧美又色又爽又黄视频| 午夜福利成人在线免费观看| 色av中文字幕| 久久精品人妻少妇| 别揉我奶头~嗯~啊~动态视频| 九九在线视频观看精品| 偷拍熟女少妇极品色| 国内精品久久久久精免费| 国产精品久久久人人做人人爽| 国产v大片淫在线免费观看| 欧美又色又爽又黄视频| 久久久国产成人免费| 婷婷精品国产亚洲av| 亚洲欧美一区二区三区黑人| 在线播放无遮挡| 婷婷六月久久综合丁香| 99久久综合精品五月天人人| 欧美又色又爽又黄视频| 国产淫片久久久久久久久 | www.熟女人妻精品国产| 精华霜和精华液先用哪个| 最新在线观看一区二区三区| 成人国产一区最新在线观看| 国产精品嫩草影院av在线观看 | 国产精品久久电影中文字幕| 美女高潮喷水抽搐中文字幕| netflix在线观看网站| 亚洲七黄色美女视频| 久久国产精品影院| 一级作爱视频免费观看| 欧美av亚洲av综合av国产av| 午夜久久久久精精品| 19禁男女啪啪无遮挡网站| 国产熟女xx| 国产精品 国内视频| 夜夜看夜夜爽夜夜摸| 国产精品美女特级片免费视频播放器| 搡老岳熟女国产| 中文在线观看免费www的网站| 有码 亚洲区| 老司机深夜福利视频在线观看| 一区二区三区免费毛片| 亚洲专区中文字幕在线| 欧美极品一区二区三区四区| 亚洲国产欧洲综合997久久,| 欧美日韩国产亚洲二区| 最后的刺客免费高清国语| 精品电影一区二区在线| 精品日产1卡2卡| 国产精品一及| 欧美高清成人免费视频www| 51午夜福利影视在线观看| 亚洲人成网站在线播放欧美日韩| 美女 人体艺术 gogo| 搡老岳熟女国产| xxx96com| 欧美一区二区亚洲| 又紧又爽又黄一区二区| 美女 人体艺术 gogo| 最新中文字幕久久久久| 啦啦啦韩国在线观看视频| 午夜亚洲福利在线播放| 欧美三级亚洲精品| 99久久精品国产亚洲精品| 草草在线视频免费看| 啦啦啦韩国在线观看视频| 一个人免费在线观看电影| 午夜两性在线视频| bbb黄色大片| 日本与韩国留学比较| 欧美色欧美亚洲另类二区| 男女午夜视频在线观看| 亚洲内射少妇av| 日本撒尿小便嘘嘘汇集6| 午夜免费成人在线视频| 99久国产av精品| 九九在线视频观看精品| 黄片大片在线免费观看| 免费av不卡在线播放| 午夜福利在线观看吧| 动漫黄色视频在线观看| 久99久视频精品免费| 此物有八面人人有两片| 又爽又黄无遮挡网站| 丁香欧美五月| 少妇的丰满在线观看| 成人三级黄色视频| 久久草成人影院| 国产真人三级小视频在线观看| 熟女少妇亚洲综合色aaa.| 国产不卡一卡二| 亚洲国产精品久久男人天堂| 日韩欧美一区二区三区在线观看| 在线播放国产精品三级| 在线免费观看的www视频| 精品久久久久久久久久免费视频| 国内揄拍国产精品人妻在线| 亚洲av电影不卡..在线观看| 久久精品夜夜夜夜夜久久蜜豆| 精品午夜福利视频在线观看一区| 亚洲成人精品中文字幕电影| e午夜精品久久久久久久| 嫩草影视91久久| 亚洲欧美激情综合另类| 亚洲真实伦在线观看| 桃色一区二区三区在线观看| av天堂在线播放| 成年免费大片在线观看| 日本与韩国留学比较| 99久久综合精品五月天人人| 亚洲片人在线观看| 亚洲av电影不卡..在线观看| 少妇人妻一区二区三区视频| 亚洲最大成人手机在线| 国产黄片美女视频| 免费搜索国产男女视频| 久久久久免费精品人妻一区二区| 色吧在线观看| 午夜久久久久精精品| 一进一出好大好爽视频| 国产在线精品亚洲第一网站| 岛国视频午夜一区免费看| 日韩大尺度精品在线看网址| 国产av不卡久久| 国产精品电影一区二区三区| 亚洲av日韩精品久久久久久密| 欧美高清成人免费视频www| 国产一区二区三区在线臀色熟女| 国产免费男女视频| 在线观看美女被高潮喷水网站 | 欧美成人一区二区免费高清观看| 国产视频一区二区在线看| 给我免费播放毛片高清在线观看| 又粗又爽又猛毛片免费看| www国产在线视频色| 国产精品av视频在线免费观看| 久久国产精品人妻蜜桃| АⅤ资源中文在线天堂| 国产亚洲精品综合一区在线观看| 国产黄色小视频在线观看| 网址你懂的国产日韩在线| 俺也久久电影网| 精品电影一区二区在线| 亚洲一区高清亚洲精品| 久久亚洲精品不卡| 精品久久久久久久久久免费视频| 久久久国产精品麻豆| 少妇熟女aⅴ在线视频| 最后的刺客免费高清国语| 久久久久久人人人人人| 99久久精品国产亚洲精品| 一区福利在线观看| 久久久久久久亚洲中文字幕 | 亚洲国产精品成人综合色| 中文亚洲av片在线观看爽| 可以在线观看的亚洲视频| 国产三级在线视频| 国产久久久一区二区三区| 波多野结衣高清作品| 人人妻人人看人人澡| 欧美在线一区亚洲| 午夜福利在线观看免费完整高清在 | 午夜福利18| 成人18禁在线播放| 亚洲熟妇熟女久久| 欧美+日韩+精品| 最近最新免费中文字幕在线| 国内精品美女久久久久久| 成年免费大片在线观看| 色综合亚洲欧美另类图片| 国产av麻豆久久久久久久| 精品免费久久久久久久清纯| 久久香蕉精品热| 午夜激情福利司机影院| 男女下面进入的视频免费午夜| 国产在线精品亚洲第一网站| 国产精品自产拍在线观看55亚洲| 欧美不卡视频在线免费观看| 国产亚洲av嫩草精品影院| 日韩精品青青久久久久久| 亚洲avbb在线观看|