• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability

    2023-12-02 09:23:06JinPingZhang張金平WeiChen陳偉ZiXunChen陳子珣andBoZhang張波
    Chinese Physics B 2023年11期
    關(guān)鍵詞:張波陳偉金平

    Jin-Ping Zhang(張金平), Wei Chen(陳偉), Zi-Xun Chen(陳子珣), and Bo Zhang(張波)

    1State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China

    2Chongqing Institute of Microelectronics Industry Technology,University of Electronic Science and Technology of China,Chongqing 401331,China

    Keywords: SiC trench MOSFET,switching power loss,figure of merit,safe operating area

    1.Introduction

    Silicon carbide metal–oxide–semiconductor field-effect transistor (SiC MOSFET) is suitable for high frequency and high voltage applications owing to its material properties.[1,2]It opens the ways to diverse industries, including new energy vehicles,rail transit,and smart grids.In these applications,it is necessary to deal with short circuit, high temperature, and other extreme cases, which requires SiC MOSFET to be improved not only in performance, but also in reliability.SiC planar gate MOSFET demonstrates good reliability and has been commercialized for a long time.Compared with the planar counterparts,SiC trench gate MOSFETs(TMOSs)are preferred to further improve the device performance, owing to higher channel density and absence of junction field-effect transistor (JFET) region.[3]However, in the case of conventional TMOS,the high electric field present in the trench oxide during the blocking state leads to premature breakdown prior to the drain bias reaching an avalanche breakdown voltage(BVav).

    With the development of the material and device manufacturing technology, many methods to optimize the SiC MOSFET structure have been proposed.Rohmet al.proposed an SiC double trench MOSFET(DTMOS)with a heavily doped p-type shielding region (P+SLD) at the sidewall and bottom of the source trench.[4,5]The DTMOS achieves an ultra-low specific on-resistance(Ron,sp).However,its large gate capacitance causes high switching power loss (Psw).In comparison with the DTMOS, the asymmetric TMOS (ATMOS) proposed in Refs.[6,7] shows better robustness, owing to the shielding effect provided by the half-surrounded P+SLD.[8]However, the inherently large MOS channel density of the trench structures results in a large saturation drain current(Id,sat),which reduces the short-circuit(SC)withstand time(tsc)and limits the improvement of the short circuit safe operating area (SCSOA).To further improve the switching characteristics and reduce thePsw,split/shield gate(SG)is introduced in Refs.[9–11].Introducing SG is an effective way to reduce gate–drain capacitance (Cgd).Moreover, unlike the Si counterpart, a thicker shield gate oxide thickness(Tsgox)is conducive to alleviating the maximum electric field in the gate oxide (Eox,peak) for the SiC SG-TMOS, which improves the gate oxide reliability.However,the coupling between the gate and source electrode still brings about large gate–source capacitance (Cgs) and the switching speed improvement is limited.

    In this paper, a novel SiC trench MOSFET with a dual shield gate(DSG)and optimized JFET layer(ODSG-TMOS)is proposed.Compared with the conventional ATMOS(Con-ATMOS),the proposed structure shows good trade-off among theRon,sp,breakdown voltage(BV),and gate oxide reliability.The DSG structure reduces not onlyCgdbut alsoCgssignificantly.Therefore,the gate–drain charge(Qgd)and gate charge(Qg)are both reduced.As a result,the switching speed is improved and thePswis reduced, which significantly improves the dynamic performance.In addition,thetscis increased withId,satdecreasing and the large-current turn-off capability is also enhanced substantially.

    2.Device structure and mechanism

    Figures 1(a) and 1(b) show schematic cross-sectional view of the proposed ODSG-TMOS and Con-ATMOS, respectively.Both devices have an asymmetric trench gate structure on the surface.Compared with the Con-ATMOS,the proposed device features a fin-shaped gate which is surrounded by dual source-connected SGs and an L-shaped JFET layer.The shielding effect provided by the lower SG conduces to reducing theCgdand the reduced overlapping area between the narrower fin-shaped gate and lower SG creates reducedCgs.Apart from that,the interaction between the gate and the side wall of the source-connected P+SLD for the Con-ATMOS is transformed into the interaction between the fin-shaped gate and fin-shaped source-connected SG.Since the oxide layer between the two fin-shaped electrodes is much thicker than that at the side wall of the gate trench,the interaction between them is greatly decoupled,which can further reduce theCgsof the proposed structure.Therefore,the reverse transfer capacitance(Crss),input capacitance(Ciss),gate charge(Qg)as well as gate–drain charge(Qgd)are reduced,which improve the dynamic performance of the device.Furthermore, the thicker oxide layer of the DSG reduces the peak electric field at the trench corner, and combined with an optimized JFET layer,Ron,spis reduced without sacrificing theBV.In addition,since the lower SG is connected to the source,its potential remains 0 V instead of the gate drive voltage of 15 V or 18 V when the ODSG-TMOS is under saturation.Therefore,electrons do not gather near the side wall nor in corner of the lower SG.The depletion region is expanded widely in that region,which reduces the width of electron conduction path and enhances the JFET effect.As a result, theId,satis reduced and thetscis increased.By using the Silvaco TCAD with the modified models used in our previous work, such as band gap narrowing (BGN), CONSRH, CONWELL, SULFMOB, incomplete ionization,Auger and analytic models,the performance of the device is simulated.[11–13]The device parameters used in the simulation are shown in Table 1.The parameters not listed are the same for the two structures.The device areas used in this work for the two devices are both 1 cm2,unless otherwise mentioned.

    Parameters Con-ATMOS ODSG-TMOS Gate oxide thickness,Tox (nm) 50 50 Trench width,Wtrench (μm) 1 1 Trench depth,Ttrench (μm) 1.15 1.15 P+ region width under trench,Wps (μm) 0.7 0.7 P+ region thickness under trench,Tps (μm) 0.4 0.4 N- drift region thickness,Td (μm) 11 11 Gate depth,Tg (μm) 1.1 –Shield gate thickness,Tsg (μm) – 0.4 Shield gate oxide thickness,Tsgox (μm) – 0.1 Control gate width,Wf (μm) – 0.2 Control gate thickness,Tf (μm) – 0.6 JFET region width,WJF (μm) – 0.3 Cell width,Wcell (μm) 2.5 2.5 N- drift region concentration,Nd (cm-3) 1×1016 1×1016 N+ region concentration,NN+ (cm-3) 3×1019 3×1019 P+ channel region concentration,NPC (cm-3) 3×1017 3×1017 P+ shielding region concentration,NPS (cm-3) 5×1018 5×1018 JFET region concentration,NJF (cm-3) – 4×1016

    3.Results and discussion

    Figure 2(a) shows conductionI–Vcurves and blockingI–Vcurves for the proposed ODSG-TMOS and Con-ATMOS,respectively.Even with the source-connected SGs, theRon,spis 1.99 m?·cm2for the Con-ATMOS and 1.69 m?·cm2for the ODSG-TMOS.It is improved by 15.1%owing to the introduction of the additional JFET layer.Owing to the fact that the JFET layer has high doping concentration(NJF),at low drain–source voltage(Vds)the lateral expansion of the depletion region formed in the drift region is limited.Therefore,the conducting path for electrons moving from the channel to the drift region is widened and has a low-resistance.Contributed by the thickerTsgox,theBVavof the ODSG-TMOS is 1215 V,which is only 3% lower than that of the Con-ATMOS.The electric field contours at avalanche breakdown are shown in Fig.2(b).The maximum electric field in the gate oxide(Eox,peak)for the Con-ATMOS is 3.29 MV/cm,which is higher than that for the ODSG-TMOS.It exceeds 3 MV/cm,a recognized value commonly used to define the gate oxide breakdown (BVox) from the perspective of long-term reliability.Further investigation results show that theBVoxof the Con-ATMOS is only 960 V,at which theEox,peakreaches 3 MV/cm.The limiting factor to determine the device breakdown is changed and it shifts from the avalanche breakdown for the proposed ODSG-TMOS to the gate oxide breakdown for the Con-ATMOS.Compared with the Con-ATMOS, the proposed structure demonstrates good trade-off among theRon,sp,BV,and gate oxide reliability.

    The transfer characteristics of the two structures are shown in Fig.3.TheVdsremains 0.1 V when the gate voltage (Vgs) increases.It can be seen that the values of drainsource current (Ids) of both structures increase quickly when theVgsis larger than 5 V.The threshold voltage(Vth)extracted atIds=10 mA/cm2is 5.6 V for the ODSG-TMOS and 5.7 V for the Con-ATMOS.The slight difference inVthis due to the decreasedRon,spand alleviative JFET effect caused by the highly doped JFET region at lowVds.

    Figure 4 shows the dependence of the extractedCiss,Crss,and output capacitance (Coss) onVdsfor the two structures.It can be seen that asVdsincreases,Cissremains almost unchanged, whileCossandCrssshow obvious nonlinear characteristics.The two parameters for the proposed device at theVdsof about 5 V change suddenly,which is caused by the depletion of the heavily doped JFET layer.In theVdsrange from 0 V to 1000 V,theCissandCrssof the proposed ODSG-TMOS structure are both smaller than those of the Con-ATMOS structure.The values extracted at theVdsof 600 V are shown in Fig.4.At theVdsof 600 V, theCossof the two structures are almost the same, while theCissandCrssof the ODSGTMOS decrease by 69.3%and by an order of magnitude when compared to those of the Con-ATMOS,respectively.It can be concluded that the reduced gate depth as well as decoupled interaction between the gate and drain/source introduced by the DSG structure results in the improvement of theCissandCrss.TheCissandCrssfor a power switching device are of particular importance since it has a great influence on thePsw.Moreover,the smaller ratio ofCrsstoCissfor the proposed structure is of benefit to suppressing the false turn-on of the device.Considering that the capacitance characteristics at a certain terminal voltage cannot fully reflect the influence of the parasitic capacitance on the switching characteristic of a device,the gate charging characteristic is studied.Figure 5 shows the comparison of gate charging characteristic between the two structures.The test circuit is also shown in the inset.SmallerCissandCrssenable faster charging speed and also improve theQgdandQg.WithVgsin a range from 0 V to 15 V, theQgdandQgare 144 nC/cm2and 1330 nC/cm2for the Con-ATMOS,and 28 nC/cm2and 370 nC/cm2for the ODSG-TMOS, respectively.TheQgdandQgfor the ODSG-TMOS are reduced by 80.6% and 72.2% compared with those for Con-ATMOS,respectively.The high frequency figure of merit (HFFOM,Ron·Qgd) of the Con-ATMOS is 286.56 m?·nC while that of the ODSG-TMOS is only 47.32 m?·nC.In addition, another widely used HFFOM,theRon·Qg,is 2646.70 m?·nC for the Con-ATMOS and 625.30 m?·nC for the ODSG-TMOS.They are improved by 83.5%and 76.4%,respectively.To better demonstrate the advantage of the ODSG-TMOS, the HHFOMs of the reported devices are also compared.TheRon·QgdandRon·Qgfor the device in Ref.[14] are 438 m?·nC and 1722.8 m?·nC while those for the device proposed in Ref.[15]are 449 m?·nC and 2094 m?·nC, respectively.It is obvious that the performance of the ODSG-TMOS is improved significantly.

    The switching waveforms with inductive load for the two devices are plotted in Fig.6(a).TheVgsis turned on att=0μs and turned off att=20 μs.It is obvious in Fig.6(a) that the Miller platform of the proposed ODSG-TMOS is significantly shortened,which is consistent with the result mentioned above.Owing to the reducedCissandCrss, the switching delay time of the ODSG-TMOS decreases significantly and the switching speed increases.The turn-on delay time and the turn-off delay time of the Con-ATMOS are 1.92μs and 3.24μs while those of the ODSG-TMOS are only 540 ns and 920 ns,they decreasing by 71.9% and 71.6%, respectively.In addition,power loss of the proposed ODSG-TMOS also decreases.The total power loss, including the conduction power loss(Pcon)andPswof the two structures at different frequencies are depicted in Fig.6(b).ThePconandPswof the ODSG-TMOS are 15.6%and 77.0%lower than those of the Con-ATMOS,respectively.As frequency increases,thePconremains constant,with the same duty cycle of 50%, but the difference inPswbecomes greater.Benefiting from the higher switching speed and lowerPsw, the ODSG-TMOS is more promising to high frequency applications than the Con-ATMOS.

    Figure 7(a)showsI–Vcharacteristic curves varying with drain voltage till saturation for the two structures under different values ofVgs.It can be seen that when theVgs=8 V and 10 V, the values ofId,satfor the Con-ATMO and the ODSGTMOS are almost the same.However, when theVgs=15 V and 18 V, the values ofId,satof the ODSG-TMOS are much smaller than those of the Con-ATMOS, owing to the lateral depletion effect provided by the lower SG under gate as shown in Fig.7(b).The black lines in the figures are depletion edges of the two structures at theVdsof 600 V withVgs=15 V.It is obvious that the depletion region of the ODSG-TMOS expands widely, thus reducing the width of electron conduction path.SmallerId,satconduces to reducing the power density when the device is under the short-circuit condition.Therefore,a longertscis obtained for the ODSG-TMOS as shown in Fig.8.For the SC simulation,aVgsof 15 V,a gate resistor of 1 ? and a bus voltage of 600 V with electrothermal coupling models are used.The dotted current curves represent the critical time at which the devices can be turned off normally.On the contrary, the solid current curves refer to the case where the devices fail in a longer short-circuit operation time.It can be seen that thetscis 1.6 μs for the Con-ATMOS and 3.0 μs for the ODSG-TMOS.It is improved by 87.5%,with theId,satreduced.Once the two MOSFETs are turned on,their SC currents rapidly increase and reach the corresponding values ofId,sat.After that, the saturation currents of the two structures start to decrease owing to the self-heating effect as well as reduced carrier mobility in the inversion MOS channel and drift region with the increase of junction temperature.Owing to the large power loss under the SC condition,once the junction temperature reaches the intrinsic temperature limit, the current increases rapidly and then thermal runaway occurs.

    To evaluate the reverse-biased SOA(RBSOA)of the proposed device, the large-current turn-off capability with an inductive load is discussed in Fig.9.In the simulation,an initial junction temperature of 448 K, a bus voltage of 1200 V and a large current of 1800 A (6 times the nominal current) are used, with the electro-thermal coupling model adopted.The values ofVgsof the two devices both turn from 15 V to 0 V att=2μs.After a delay of a few microseconds,the ODSGTMOS is normally turned off while the Con-ATMOS cannot.It can be found that for the Con-ATMOS,after theVdsreaches the bus voltage of 1200 V,theIdsstarts to drop normally.However, after a short drop, theIdsrecovers to 1800 A again and theVdsof the Con-ATMOS starts to drop.The Con-ATMOS fails in the large-current turn-off process and losses blocking capability.The junction temperatures of the two devices in the turn-off process are also shown in the figure.It is found that the junction temperature of the Con-ATMOS increases to about 2000 K while the proposed ODSG-TMOS shows much less temperature rise.Like the results shown in Fig.6, the slower turn-off speed and higherPswfor the Con-ATMOS contribute to the rapid rise of the junction temperature.

    The influence of the fin-shaped control gate width (Wf)on the performance of the ODSG-TMOS at 50 kHz is shown in Fig.10.In the simulation,the fin-shaped source-connected SG keeps the width identical with that of the fin-shaped gate.It can be seen in Fig.10(a)that theCgdkeeps almost unchanged owing to good shielding effect provided by the lower SG while theCgssignificantly increases as theWfincreases from 0.1μm to 0.4 μm.Accordingly, theQgdshown in Fig.10(b) keeps almost unchanged while theQgandPswincrease withWfincreasing.The smaller theWf, the better performance can be obtained.Further research results show that the smallerWfnot only reduces the overlapping area between the gate and lower SG, but also increases the thickness of the oxide layer between the fin-shaped gate and the fin-shaped source-connected SG,which both decouple the interaction between the gate and source,and therefore,significantly reducing theCgsof the device.It shows that theCgsaffects not only the switching speed but also the switching power loss, especially when theCgdis small enough.

    Figures 11(a) and 11(b) show the relationship betweenId,satandRon,sp,and the relationship between BFOM andNJFfor different values of JFET layer width(WJF),respectively.It can be seen from Fig.11(a)that with the sameWJF,theRon,spdecreases andId,satincreases with the increase of theNJF.Similarly,theRon,spdecreases andId,satincreases with the increase of theWJFwhen theNJFis kept unchanged.The reason is that increasingNJFand/orWJFof the JFET layer provides a low resistance path for electrons in the conduction state at lowerVdsregime.However,the JFET effect provided by the lower SG at largeVdsis also attenuated since the JFET layer is more difficult to deplete.Figure 11(b)shows the influence of theWJFandNJFon the Baliga’s figure of merit(BFOM,BV2/Ron,sp)for the proposed device.As mentioned above,the blocking capability of the device is determined by the lower one of theBVavandBVox.When theNJFis low, theBVavis a lower one and the BFOM increases as theNJFincreases,owing toRon,spdecreasing.However,theBVoxdecreases rapidly with the increase ofNJF,owing toEox,peakincreasing in the trench corner.TheBVoxbecomes lower thanBVavwhen theNJFis greater than a certain value.And after that, the BFOM decreases rapidly with the increase ofNJF,owing to theBVoxdecreasing.Therefore,considering the influence of theWJFandNJF, there appears a balance after the conduction performance,BFOM and SCSOA for the proposed ODSG-TMOS have been optimized.

    Figure 12 shows the influence of concentration of the Ndrift region (Nd) on theBVandRon,sp, respectively.As expected,the two parameters both decrease with the increase ofNd.WhenNdincreases from 7×1015cm-3to 1.3×1016cm-3,BVdecreases from 1559 V to 938 V andRon,spdeclines from 2.21 m?·cm2to 1.44 m?·cm2.It can be found that to ensure that theBVis larger than 1200 V,theNdmust be kept less than or equal to 1×1016cm-3.Therefore, the optimizedRon,spis obtained when theNdis equal to 1×1016cm-3.In this case,theBVof the ODSG-TMOS is almost the same as that of the Con-ATMOS while theRon,spis 15.1%lower.

    In order to show the feasibility of the proposed ODSGTMOS structure, a possible manufacturing process flowchart is shown in Fig.13.Firstly,an epitaxial lightly doped N-drift layer is grown on an N+substrate.After forming the epitaxial layer, the P+SLD, N+source region and P-base form via multiple ion implantation as shown in Fig.13(b).After the gate trench is etched, an L-shaped JFET area forms through tilted multiple ion implantation as shown in Figs.13(c)–13(d).Using thermal oxidation to form an oxide layer on the surface and the bottom and sidewalls of the trench, the gate trench is filled with polysilicon and then etched to form the lower split gate as shown in Figs.13(e)–13(g).Similarly, the fin-shaped gate and source also form by filling and etching process as shown in Figs.13(h)–13(j).[14,15]The process of forming finshaped gate is a self-aligned process andWfis determined by the deposited thickness of the polysilicon film and subsequent etching process.After that, dielectric is deposited and metal process is utilized to form the source and drain electrode.The final structure fabricated is shown in Fig.13(l).

    4.Conclusions

    A novel SiC ODSG-TMOS structure is proposed and investigated in this work.Comparing with the Con-ATMOS,BVavkeeps almost unchanged while theEox,peakbecomes 3.29 MV/cm for the Con-ATMOS, and 2.94 MV/cm for the proposed ODSG-TMOS, which improves theBVoxand gate oxide reliability.And theRon,spis also improved by 15.1%due to the introduction of the highly doped JFET layer.More importantly,compared with the Con-ATMOS,the ODSG-TMOS shows high dynamic performance and improved SOA capability.TheCissandCrssof the ODSG-TMOS decrease by 69.3%and by an order of magnitude when compared to those of the Con-ATMOS, respectively.The value ofQgdandQgare reduced by 80.6%and 72.2%, respectively.Therefore, the HFFOM ofRon,sp·QgdandRon,sp·Qgfor the proposed ODSGTMOS are improved by 83.5%and 76.4%, respectively.ThePswof the proposed ODSG-TMOS is 77.0% lower than that of the Con-ATMOS.In addition,the SCSOA and RBSOA are also improved.With a significantly reducedId,sat, thetscis 87.5%longer than that of the Con-ATMOS at theVgof 15 V.The ODSG-TMOS can be normally turned off under a bus voltage of 1200 V and a large current of 1800 A while the Con-ATMOS fails in the turn-off process.The key parameters that have a strong influence on performance of the ODSG-TMOS are discussed,which presents a further improvement direction for the proposed structure.Considering the improved switching performance and enhanced SOA, the ODSG-TMOS is a promising candidate for high-frequency and high-power applications.

    Acknowledgement

    Project supported by the China Postdoctoral Science Foundation(Grant No.2020M682607).

    猜你喜歡
    張波陳偉金平
    入木三分
    Rapid identification of volatile organic compounds and their isomers in the atmosphere
    《健聽女孩》:無(wú)聲世界里的有情人生
    意林彩版(2022年1期)2022-05-03 10:25:07
    Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
    Best fight
    陳偉教授簡(jiǎn)介
    南城秋意
    赤水源(2018年6期)2018-12-06 08:38:10
    陳偉博士簡(jiǎn)介
    Recent Progress in Heavy Fuel Aviation Piston Engine
    張波:行走在神經(jīng)外科前沿
    日韩一区二区视频免费看| 在现免费观看毛片| 精品乱码久久久久久99久播| 欧美日韩黄片免| 日日摸夜夜添夜夜添小说| 最近在线观看免费完整版| 精品人妻偷拍中文字幕| 亚洲成av人片在线播放无| 国产亚洲欧美98| 国产精品三级大全| 永久网站在线| av黄色大香蕉| 午夜精品在线福利| 国产一区二区在线av高清观看| 亚洲成人久久性| 波多野结衣巨乳人妻| 亚洲精华国产精华精| 精品一区二区免费观看| 中文亚洲av片在线观看爽| 成人欧美大片| 免费黄网站久久成人精品| 禁无遮挡网站| 我的女老师完整版在线观看| 黄色丝袜av网址大全| 亚洲欧美激情综合另类| 三级男女做爰猛烈吃奶摸视频| 一夜夜www| 日韩欧美一区二区三区在线观看| 大型黄色视频在线免费观看| 亚洲性久久影院| 色视频www国产| 永久网站在线| 亚洲美女搞黄在线观看 | 国产精品野战在线观看| 亚洲一区高清亚洲精品| 无人区码免费观看不卡| 最近中文字幕高清免费大全6 | 不卡视频在线观看欧美| 国产 一区 欧美 日韩| 国产精品,欧美在线| 老熟妇仑乱视频hdxx| 亚洲人成网站高清观看| 真人一进一出gif抽搐免费| 国产伦精品一区二区三区四那| 国产淫片久久久久久久久| 亚洲美女黄色视频免费看| 熟女av电影| 成年免费大片在线观看| 91久久精品国产一区二区成人| 婷婷色综合大香蕉| 少妇的逼水好多| 三级国产精品片| 国模一区二区三区四区视频| 少妇人妻 视频| 伊人久久精品亚洲午夜| 男人狂女人下面高潮的视频| 欧美xxxx黑人xx丫x性爽| 搡女人真爽免费视频火全软件| 免费大片黄手机在线观看| 久久久久久人妻| 天美传媒精品一区二区| 只有这里有精品99| 久久婷婷青草| 一级黄片播放器| 久久人人爽av亚洲精品天堂 | 亚洲精品乱久久久久久| 亚洲国产日韩一区二区| 免费看av在线观看网站| 观看美女的网站| 亚洲av.av天堂| 黄色一级大片看看| 亚洲av综合色区一区| av又黄又爽大尺度在线免费看| 亚洲av日韩在线播放| 国产午夜精品一二区理论片| 免费看av在线观看网站| 免费观看无遮挡的男女| 成人国产麻豆网| 网址你懂的国产日韩在线| 91精品国产国语对白视频| 亚洲av欧美aⅴ国产| 亚洲国产毛片av蜜桃av| 大片免费播放器 马上看| 亚洲欧美一区二区三区黑人 | 男男h啪啪无遮挡| 国产精品.久久久| 性色av一级| 国产精品一区二区在线不卡| 日本wwww免费看| 伊人久久精品亚洲午夜| 国产无遮挡羞羞视频在线观看| 国产高清有码在线观看视频| 91午夜精品亚洲一区二区三区| 免费少妇av软件| 亚洲婷婷狠狠爱综合网| 免费观看a级毛片全部| 精品人妻一区二区三区麻豆| 久久久久久久精品精品| 欧美亚洲 丝袜 人妻 在线| 免费少妇av软件| 多毛熟女@视频| 国产乱人视频| 日韩,欧美,国产一区二区三区| 最近2019中文字幕mv第一页| 亚洲美女视频黄频| 人妻制服诱惑在线中文字幕| 精品亚洲成国产av| 国产人妻一区二区三区在| 国产一区亚洲一区在线观看| 久久久久国产网址| 国产色婷婷99| 久久综合国产亚洲精品| 国产精品久久久久久久电影| 欧美97在线视频| 亚洲国产色片| 国国产精品蜜臀av免费| 成人黄色视频免费在线看| 欧美xxⅹ黑人| 丝袜喷水一区| 欧美精品亚洲一区二区| 午夜激情久久久久久久| 国产女主播在线喷水免费视频网站| 啦啦啦啦在线视频资源| 少妇人妻久久综合中文| 国产精品久久久久久久电影| 99久久人妻综合| 午夜福利影视在线免费观看| 噜噜噜噜噜久久久久久91| 日本午夜av视频| 国产男女超爽视频在线观看| 久久精品国产亚洲av天美| videossex国产| 国产精品三级大全| 午夜福利在线在线| 在线观看一区二区三区激情| 国产精品久久久久久av不卡| 汤姆久久久久久久影院中文字幕| 日韩在线高清观看一区二区三区| 欧美日韩亚洲高清精品| 18禁在线播放成人免费| 我的女老师完整版在线观看| 波野结衣二区三区在线| 美女高潮的动态| 欧美xxxx黑人xx丫x性爽| 亚州av有码| 永久免费av网站大全| 国产精品99久久久久久久久| 午夜精品国产一区二区电影| 亚洲欧美清纯卡通| 日韩大片免费观看网站| 成人毛片60女人毛片免费| 国产精品麻豆人妻色哟哟久久| 一级黄片播放器| 亚洲国产精品一区三区| www.色视频.com| av在线观看视频网站免费| 另类亚洲欧美激情| 韩国高清视频一区二区三区| 观看美女的网站| 麻豆国产97在线/欧美| 六月丁香七月| 久久久久久久久久人人人人人人| 女的被弄到高潮叫床怎么办| 丰满人妻一区二区三区视频av| 国产成人精品久久久久久| 午夜免费男女啪啪视频观看| 亚洲国产精品国产精品| 最近2019中文字幕mv第一页| 亚洲综合精品二区| 日本猛色少妇xxxxx猛交久久| 高清黄色对白视频在线免费看 | 亚洲精品456在线播放app| 多毛熟女@视频| 26uuu在线亚洲综合色| 三级国产精品欧美在线观看| 国产午夜精品一二区理论片| 婷婷色av中文字幕| 91精品伊人久久大香线蕉| 久久精品国产亚洲av涩爱| 国产亚洲91精品色在线| 国产极品天堂在线| 亚洲经典国产精华液单| 久久久久久久亚洲中文字幕| 久久精品国产亚洲网站| 国内精品宾馆在线| 卡戴珊不雅视频在线播放| 黑人猛操日本美女一级片| 哪个播放器可以免费观看大片| 成年美女黄网站色视频大全免费 | 性色avwww在线观看| 各种免费的搞黄视频| 日韩欧美 国产精品| 国产在线免费精品| 欧美变态另类bdsm刘玥| 国产v大片淫在线免费观看| 熟女人妻精品中文字幕| 午夜老司机福利剧场| 国产高清国产精品国产三级 | 国产精品国产三级国产av玫瑰| 91午夜精品亚洲一区二区三区| 国产免费福利视频在线观看| 黑丝袜美女国产一区| 中文资源天堂在线| 午夜免费男女啪啪视频观看| 亚洲av中文字字幕乱码综合| 亚洲第一av免费看| 又爽又黄a免费视频| 妹子高潮喷水视频| 男人和女人高潮做爰伦理| 高清欧美精品videossex| 久久6这里有精品| 久久人人爽av亚洲精品天堂 | 99久国产av精品国产电影| 美女xxoo啪啪120秒动态图| 免费av中文字幕在线| 日韩不卡一区二区三区视频在线| 天天躁夜夜躁狠狠久久av| 精品一区二区三卡| 丝袜脚勾引网站| 91精品国产国语对白视频| 中国三级夫妇交换| 亚洲av成人精品一二三区| 人人妻人人看人人澡| 毛片女人毛片| 少妇裸体淫交视频免费看高清| 亚洲精品国产成人久久av| 激情 狠狠 欧美| 国产精品免费大片| 一区二区三区精品91| 亚洲电影在线观看av| 三级经典国产精品| 又黄又爽又刺激的免费视频.| 在线观看免费高清a一片| 啦啦啦中文免费视频观看日本| 精品久久久久久久久av| 国产亚洲91精品色在线| 九九久久精品国产亚洲av麻豆| 看非洲黑人一级黄片| 日韩一本色道免费dvd| 午夜福利高清视频| 国产黄频视频在线观看| 日日啪夜夜撸| 成人亚洲欧美一区二区av| 亚洲成色77777| 22中文网久久字幕| 夫妻性生交免费视频一级片| 精品亚洲乱码少妇综合久久| av黄色大香蕉| 亚洲人成网站高清观看| 国产乱人偷精品视频| 丝袜喷水一区| 黄色欧美视频在线观看| 国产在线男女| 中文字幕免费在线视频6| 国产欧美日韩一区二区三区在线 | 久久 成人 亚洲| 亚洲精品国产成人久久av| 成人18禁高潮啪啪吃奶动态图 | 国产日韩欧美亚洲二区| xxx大片免费视频| 一边亲一边摸免费视频| 美女高潮的动态| 我的女老师完整版在线观看| 丰满人妻一区二区三区视频av| 一本色道久久久久久精品综合| 99视频精品全部免费 在线| 精品熟女少妇av免费看| 91精品一卡2卡3卡4卡| 亚洲美女搞黄在线观看| 看非洲黑人一级黄片| 在线观看免费高清a一片| 美女cb高潮喷水在线观看| 我的女老师完整版在线观看| 永久网站在线| av在线老鸭窝| tube8黄色片| av视频免费观看在线观看| 联通29元200g的流量卡| 久久人人爽人人片av| 国产老妇伦熟女老妇高清| av女优亚洲男人天堂| 亚洲国产最新在线播放| 成人特级av手机在线观看| 一级片'在线观看视频| 成人影院久久| 日日摸夜夜添夜夜爱| 乱系列少妇在线播放| 青春草国产在线视频| 丝袜脚勾引网站| 五月天丁香电影| 亚洲婷婷狠狠爱综合网| 日韩中文字幕视频在线看片 | 欧美日本视频| 国产av一区二区精品久久 | 美女内射精品一级片tv| 成人18禁高潮啪啪吃奶动态图 | 国产精品一区二区性色av| 色网站视频免费| 亚洲欧美精品自产自拍| 欧美人与善性xxx| 精品一品国产午夜福利视频| 国产免费视频播放在线视频| 少妇猛男粗大的猛烈进出视频| 我要看黄色一级片免费的| 国产 精品1| 国产乱来视频区| a级毛色黄片| 天堂8中文在线网| 日本猛色少妇xxxxx猛交久久| 国产成人一区二区在线| a级一级毛片免费在线观看| 不卡视频在线观看欧美| 国产高清不卡午夜福利| 久久精品国产亚洲av涩爱| 成年美女黄网站色视频大全免费 | 三级经典国产精品| 国产伦理片在线播放av一区| 国产又色又爽无遮挡免| 亚洲国产色片| 久久国内精品自在自线图片| 久久精品久久久久久噜噜老黄| 国产有黄有色有爽视频| 久久国产乱子免费精品| 爱豆传媒免费全集在线观看| 日韩强制内射视频| av在线观看视频网站免费| 精品国产乱码久久久久久小说| 亚洲怡红院男人天堂| 国产精品免费大片| 中国国产av一级| 黑人猛操日本美女一级片| 国产综合精华液| 亚洲,一卡二卡三卡| 最近手机中文字幕大全| 日韩亚洲欧美综合| 美女内射精品一级片tv| 国产老妇伦熟女老妇高清| 欧美极品一区二区三区四区| 最近最新中文字幕大全电影3| 丝袜喷水一区| 中文字幕人妻熟人妻熟丝袜美| 日韩一区二区视频免费看| 伊人久久精品亚洲午夜| 欧美日本视频| 欧美激情极品国产一区二区三区 | 国产精品久久久久久精品电影小说 | 涩涩av久久男人的天堂| 精品一品国产午夜福利视频| 成人二区视频| 插阴视频在线观看视频| 久久久久性生活片| 熟女人妻精品中文字幕| 色视频www国产| 亚洲人成网站高清观看| 伊人久久国产一区二区| 国产久久久一区二区三区| 亚洲美女搞黄在线观看| 极品教师在线视频| 亚洲国产精品成人久久小说| 99热6这里只有精品| 纯流量卡能插随身wifi吗| 成人一区二区视频在线观看| 伊人久久精品亚洲午夜| 女性生殖器流出的白浆| 国产色婷婷99| 大又大粗又爽又黄少妇毛片口| 伊人久久国产一区二区| 99久久人妻综合| 啦啦啦啦在线视频资源| 纯流量卡能插随身wifi吗| 欧美日韩国产mv在线观看视频 | 18禁在线播放成人免费| 国产伦精品一区二区三区视频9| 国产国拍精品亚洲av在线观看| 国产精品精品国产色婷婷| 综合色丁香网| 老司机影院成人| 嘟嘟电影网在线观看| 国产大屁股一区二区在线视频| 久久婷婷青草| 国产v大片淫在线免费观看| 人妻少妇偷人精品九色| 99热全是精品| 国产精品久久久久成人av| 亚洲国产欧美人成| 99热国产这里只有精品6| 一级片'在线观看视频| 久久99热这里只频精品6学生| 插阴视频在线观看视频| 日本欧美国产在线视频| 丝瓜视频免费看黄片| 黄色欧美视频在线观看| 女的被弄到高潮叫床怎么办| 欧美xxxx黑人xx丫x性爽| 97超视频在线观看视频| 一本—道久久a久久精品蜜桃钙片| 日韩中文字幕视频在线看片 | 中文字幕免费在线视频6| 直男gayav资源| 97热精品久久久久久| 亚洲精品国产色婷婷电影| 久久久久人妻精品一区果冻| 免费观看无遮挡的男女| 国产精品熟女久久久久浪| a 毛片基地| 狂野欧美白嫩少妇大欣赏| 美女视频免费永久观看网站| 韩国av在线不卡| 91久久精品国产一区二区三区| 亚洲成人中文字幕在线播放| 搡女人真爽免费视频火全软件| 日韩一本色道免费dvd| 亚洲天堂av无毛| 日韩三级伦理在线观看| 欧美少妇被猛烈插入视频| 日韩成人av中文字幕在线观看| 简卡轻食公司| 国产深夜福利视频在线观看| 嫩草影院新地址| 乱系列少妇在线播放| 国产久久久一区二区三区| 午夜视频国产福利| 日韩成人伦理影院| 国产精品99久久久久久久久| 精品国产露脸久久av麻豆| 亚洲精品乱码久久久久久按摩| 亚洲电影在线观看av| 久久精品国产鲁丝片午夜精品| 免费看日本二区| 欧美一级a爱片免费观看看| 免费看光身美女| 国产精品99久久久久久久久| 国产黄频视频在线观看| 国产成人精品婷婷| 九色成人免费人妻av| 2018国产大陆天天弄谢| 少妇裸体淫交视频免费看高清| 亚洲国产色片| 久久 成人 亚洲| 亚洲欧美中文字幕日韩二区| 熟妇人妻不卡中文字幕| 美女中出高潮动态图| 亚洲中文av在线| 一区二区三区精品91| 国产精品女同一区二区软件| 国产精品一区二区在线不卡| 五月玫瑰六月丁香| 天天躁日日操中文字幕| 建设人人有责人人尽责人人享有的 | 日韩av不卡免费在线播放| 精品国产三级普通话版| 九色成人免费人妻av| 男人爽女人下面视频在线观看| 好男人视频免费观看在线| 男人和女人高潮做爰伦理| 大香蕉97超碰在线| 国产高清有码在线观看视频| 欧美成人精品欧美一级黄| 欧美97在线视频| 网址你懂的国产日韩在线| 日本wwww免费看| 日本一二三区视频观看| 久久久久久久久久久丰满| 人妻夜夜爽99麻豆av| 一级a做视频免费观看| 一边亲一边摸免费视频| 狂野欧美激情性xxxx在线观看| 久久国内精品自在自线图片| 亚洲图色成人| 99精国产麻豆久久婷婷| 国产真实伦视频高清在线观看| 偷拍熟女少妇极品色| 亚洲精品日本国产第一区| 久久精品国产亚洲av天美| 在线免费十八禁| 狂野欧美激情性bbbbbb| 日日啪夜夜爽| 国产在线男女| 美女中出高潮动态图| 亚洲第一区二区三区不卡| 欧美人与善性xxx| 免费高清在线观看视频在线观看| 少妇的逼好多水| 狂野欧美激情性bbbbbb| 国产又色又爽无遮挡免| 看非洲黑人一级黄片| 亚洲一级一片aⅴ在线观看| 下体分泌物呈黄色| 欧美变态另类bdsm刘玥| av.在线天堂| 久久久久久久久大av| 少妇猛男粗大的猛烈进出视频| 中文字幕免费在线视频6| 亚洲,欧美,日韩| 日韩一区二区视频免费看| 人人妻人人看人人澡| 一个人看的www免费观看视频| 久久精品熟女亚洲av麻豆精品| 大香蕉97超碰在线| 精品一区二区三区视频在线| 一个人免费看片子| 99精国产麻豆久久婷婷| 啦啦啦在线观看免费高清www| 国产亚洲欧美精品永久| 精品一区二区三区视频在线| 国产成人a区在线观看| 伦精品一区二区三区| 精品久久久久久久久亚洲| 久久6这里有精品| 亚洲人成网站在线播| 国产一级毛片在线| 亚洲欧美成人精品一区二区| 亚洲精品自拍成人| 免费观看无遮挡的男女| 国产 一区 欧美 日韩| 久久精品国产鲁丝片午夜精品| av福利片在线观看| 久久久久精品久久久久真实原创| 免费av中文字幕在线| 秋霞在线观看毛片| 精品人妻一区二区三区麻豆| 韩国av在线不卡| 91狼人影院| 亚洲一区二区三区欧美精品| 亚洲内射少妇av| 在线免费十八禁| 成人午夜精彩视频在线观看| 身体一侧抽搐| 国产亚洲午夜精品一区二区久久| 亚洲成人手机| 狠狠精品人妻久久久久久综合| 午夜视频国产福利| 色综合色国产| 欧美精品国产亚洲| 热re99久久精品国产66热6| 亚洲,欧美,日韩| 十分钟在线观看高清视频www | 免费观看的影片在线观看| 国产 精品1| 午夜免费观看性视频| 亚洲美女黄色视频免费看| 18禁在线播放成人免费| 国产精品蜜桃在线观看| 欧美人与善性xxx| av免费观看日本| 亚洲精品国产色婷婷电影| 十八禁网站网址无遮挡 | 91久久精品国产一区二区三区| 97在线视频观看| 国产精品欧美亚洲77777| 建设人人有责人人尽责人人享有的 | 九九爱精品视频在线观看| 制服丝袜香蕉在线| 亚洲国产精品一区三区| 国产大屁股一区二区在线视频| 人人妻人人爽人人添夜夜欢视频 | 在线观看三级黄色| 国产精品爽爽va在线观看网站| 18禁动态无遮挡网站| av福利片在线观看| 1000部很黄的大片| 午夜福利网站1000一区二区三区| 日韩av免费高清视频| 国产亚洲最大av| 日韩 亚洲 欧美在线| 人人妻人人看人人澡| 高清视频免费观看一区二区| 日本wwww免费看| 中文精品一卡2卡3卡4更新| 国产成人精品婷婷| 人妻系列 视频| 联通29元200g的流量卡| 1000部很黄的大片| 色哟哟·www| 欧美3d第一页| 亚洲国产日韩一区二区| 草草在线视频免费看| 高清日韩中文字幕在线| 久热这里只有精品99| 国产精品无大码| 国产精品爽爽va在线观看网站| 国产欧美日韩一区二区三区在线 | 男女边摸边吃奶| 国产在线免费精品| 国产在线视频一区二区| 欧美+日韩+精品| 午夜老司机福利剧场| 成人午夜精彩视频在线观看| 欧美97在线视频| 日韩一本色道免费dvd| 久久人人爽av亚洲精品天堂 | 26uuu在线亚洲综合色| 精品一区二区三区视频在线| 蜜桃在线观看..| 观看av在线不卡| 六月丁香七月| 男女无遮挡免费网站观看| 午夜福利在线在线| 王馨瑶露胸无遮挡在线观看| 99久久精品一区二区三区| 国产一区二区三区综合在线观看 | 老熟女久久久| 女性生殖器流出的白浆| 制服丝袜香蕉在线| 男女国产视频网站| 日本av免费视频播放| 久久久精品94久久精品| 亚洲av中文字字幕乱码综合| 国产精品欧美亚洲77777| 久久久欧美国产精品| 久久久久人妻精品一区果冻| 熟女人妻精品中文字幕| 日韩av在线免费看完整版不卡| 亚洲精品第二区| 在线天堂最新版资源|