• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direct Kerr-lens mode-locked Tm:LuYO3 ceramic laser

    2023-12-02 09:29:14WeijunLing令維軍JingwenXue薛婧雯JinfangYang楊金芳ChongWang王翀XiaojuanDu杜曉娟WentingWang王文婷MingxiaZhang張明霞FeipingLu路飛平XiangbingLi李向兵andZhongDong董忠
    Chinese Physics B 2023年11期

    Weijun Ling(令維軍), Jingwen Xue(薛婧雯), Jinfang Yang(楊金芳), Chong Wang(王翀),Xiaojuan Du(杜曉娟), Wenting Wang(王文婷), Mingxia Zhang(張明霞),Feiping Lu(路飛平), Xiangbing Li(李向兵), and Zhong Dong(董忠)

    1Gansu All Solid-State Laser Engineering Research Center,Tianshui 741001,China

    2Engineering Research Center of Integrated Circuit Packaging and Testing,Ministry of Education,Tianshui 741001,China

    3School of Electronic Information and Electrical Engineering,Tianshui Normal University,Tianshui 741001,China

    Keywords: all solid-state laser,ultrashort pulse,Kerr-lens mode-locked,Tm:LuYO3 ceramic

    1.Introduction

    In recent years, ultrafast lasers at 2 μm based on Tm3+-doped crystals have attracted strong interest for materials processing,medical treatment,laser radar,remote sensing detection and weapons equipment applications.[1–4]At present,the main direction of development of lasers at 2 μm is to obtain output pulses with short duration and high power.[5]In particular,the generation of few-cycle mode-locking pulses is a hot research topic with many challenges.Passive mode-locking based on saturable absorbers is the most common method for generating sub-100 fs pulses.In past decades, many materials have been proven to be passive mode-locking elements for solid-state lasers at 2μm,such as graphene,[6,7]single-walled carbon nanotubes(SWCNTs),[8,9]transition metal sulfides,[10]semiconductor saturable absorber mirrors (SESAMs)[11]and so on.However, the mode-locked pulse duration is limited to the nonlinear response time of the absorbers, ranging from tens of femtoseconds to sub-picoseconds.[12,13]Therefore, passive mode-locked technology based on saturable absorbers is able to generate sub-50 fs pulses and is no longer suitable for generating shorter duration pulses.For Kerr-lens mode-locking(KLM),the nonlinear transient response time is sub-femtosecond(<1 fs)and no spectral bandwidth is limited.Thus,Kerr-lens self-mode-locking technology is the most desirable method for generating cycle pulses.

    With rising research interest in 2 μm lasers, various types of Tm3+-doped laser materials have also been developed in the past years, such as lutetium aluminum garnet (LuAG),[14,15]cadmium germanium arsenide,[16]lithium lutetium fluoride,[17]calcium lithium niobium gallium garnet,[18]etc.[19]Among these, Tm3+-doped sesquioxides (Tm3+:Re2O3,Re= Lu, Y or Sc) are the most attractive gain media due to their low phonon energy and broad gain bandwidth.[20]In particular, Tm3+:Re2O3sesquioxides have a higher nonlinear refractive index that can enhance the self-phase modulation effect (SPM) to realize KLM.Thus,the pulse spectrum is broadened by SPM, supporting the generation of shorter-duration pulses.[21]Nowadays, there are many reports about 2 μm lasers based on sesquioxide media.In 2016, Ryabochkinaet al.[22]of the State University of Moldova reported the laser characteristics of Tm:Y2O3ceramic pumped by a 809 nm laser diode; the output pulses were obtained at wavelengths of 1.95 μm and 2.05 μm.Subsequently, Wanget al.[23]realized the passivelyQ-switched operation of a Tm:Y2O3ceramic laser by inserting Ho:LuAG crystal into the laser cavity.In 2017, Xuet al.[24]of Jiangsu Normal University reported for the first time a novel Tm:LuScO3mixed sesquioxide ceramic laser operating in a passivelyQ-switched regime using SWCNTs as a saturable absorber.In 2019, Stevensonet al.[25]realized 240 fs mode-locked operation of a Tm:LuScO3laser with SESAMs.Recently, a Tm:LuYO3ceramic laser operating in continuous-wave(CW)and passivelyQ-switching regimes was reported.[26]A CW laser centered at 2050 nm with a maximum output power of 1.55 W was obtained,corresponding to a slope efficiency of 19.9%.By inserting a Cr:ZnSe saturable absorber into the laser cavity, a maximum output power of 0.54 W was achieved in passiveQ-switching operation.In 2019, a Tm:LuYO3ceramic laser was demonstrated for the first time with a 41 ps pulse duration and 121 mW maximum output power using SESAMs as the saturable absorber.[27]In 2020, pulses as short as 57 fs were reported in Tm:LuYO3ceramic lasers at 2 μm with SWCNTs,which represents the shortest pulse duration generated from a mode-locked Tm:LuYO3solid-state laser.However,its maximum average power was only 63 mW.[28]

    Compared with passively mode-locked technology based on saturable absorbers, KLM has the potential to further shorten the pulse duration and scale the output laser power owing to its unique advantages of broad spectral bandwidth,lower cost and not having to consider damage to the saturable absorber.[29]At present, many reports have demonstrated that various Kerr media, such as ZnSe,[30]Cr2+:ZnSe and Cr2+:ZnS,[31]could be inserted into the resonator to provide enhanced nonlinear phrase modulation during KLM operation in the mid-infrared (IR) wavelength range.However,there are a few reports on pure KLM for Tm3+-doped solidstate lasers.KLM, with its many advantages, is the best method for achieving the shortest pulse duration.However,achieving KLM in the mid-IR wavelength range is challenging due to several factors.Firstly, the magnitude of the Kerrlens effect is proportional toω-4,whereωis the cavity mode radius (which is proportional to the square root of the laser wavelength).[32]Consequently,the longer the wavelength,the weaker the Kerr effect.The Kerr effect at a wavelength of 2μm is much weaker than for 800 nm Ti:sapphire lasers and 1030 nm Yb-doped lasers.[32,33]Additionally,in order to realize KLM operation,the intracavity laser power must be greater than the self-focusing critical power,which is proportional to the square of the laser wavelength.[34,35]Therefore, the selffocusing critical power in a 2 μm laser is nearly twice as high as that of a Ti:sapphire laser and Yb-doped lasers.So far, there have been a few reports on KLM lasers at 2 μm.In 2017, Tokurakawaet al.[32]of the University of Electro-Communications reported the first KLM Tm3+-doped solidstate laser pumped by 1611 nm Er:Yb fiber master oscillator power amplifier (MOPA) laser.The absorption cross section of a Tm:Sc2O3crystal at 1.6μm is two times higher than that at 790 nm.Therefore,a shorter crystal length helps to improve the nonlinear refractive index which is beneficial to KLM.However, the application of a 2 μm ultrafast laser is limited due to the complex structure and high cost of 1.6 μm Er–Yb fiber MOPA lasers.At the same time,Canbazet al.[30]of Koc?University realized a KLM Tm:YLF laser by inserting a ZnSe Kerr medium into the resonator.However,the maximum output power was only 14 mW due to the large absorption loss of ZnSe at 2μm,which limited its applications.Recently,Wanget al.demonstrated a KLM Tm:MgWO4laser using SWCNTs as the saturable absorber;this initiated a new direction for the 790 nm pumped 2μm KLM laser.[36]

    In this paper,we report a direct KLM Tm:LuYO3ceramic laser without the aid of any nonlinear mode-locked elements.To the best of our knowledge, a Tm:LuYO3solid state laser with KLM operation has not been reported so far.The incident pump power threshold is as low as 267 mW and the pulse duration and spectral bandwidth (the full width at half maximum,FWHM)are 259 fs and 19.8 nm,respectively.The maximum output power is 326 mW and the repetition frequency is 97.1 MHz.

    2.Experimental setup

    The experimental setup of the KLM Tm:LuYO3ceramic laser is shown in Fig.1.A 4.8 W wavelength-tunable Ti:sapphire laser is used as the pumping source,and its emission wavelength is tuned to 796 nm to match the absorption peak of the Tm:LuYO3crystal.[27]The uncoated crystal is arranged at Brewster’s angle in order to reduce the reflection loss.The crystal is doped to 4 at.%,and it has dimensions of 3 mm×3 mm×4.4 mm.To mitigate the thermal load,the crystal is wrapped with indium foil and tightly mounted in a copper holder,which is water-cooled to 14?C.The pump laser is focused into the gain medium by a lens L with a focal length off=150 mm,which provides transmission of more than 95%for the pump laser wavelength.Two flat mirrors(M1 and M2)are used as turning mirrors.In this configuration, the laser cavity consists of two dichroic concave mirrors M3 and M4(radii of curvature 100 mm and 75 mm, respectively), a flat mirror M5, a CaF2prism pair P1 and P2 for dispersion compensation and a flat output coupler(OC).The two flat concave mirrors M3 and M4 have a transmission of more than 99%between 770 nm and 1050 nm and broadband high reflectivity (R>99.9%) for the oscillation pulses in the range 1800–2075 nm.M5 is a plane mirror with a high-reflectivity coating(R>99.9%) from 1800 nm to 2075 nm.The prism pair P1 and P2 have a tip-to-tip separation of 25 cm,corresponding to a total group delay dispersion of~-980 fs2per round trip at 2.05μm.A flat mirror with a transmission of 0.5%is used as an OC.The magnitude of the Kerr-lens effect is proportional toω-4,whereωis the cavity mode radius(which is proportional to the square root of the laser wavelength).Therefore,the cavity radius in mid-IR wavelengths is smaller than in near-IR wavelengths to realize KLM operation.Based on the standard ABCD matrix analysis of the cavity,the minimum beam waist spot size inside the Tm:LuYO3gain medium is estimated to be 50.5 μm during mode-locked operation.The pump beam radius at the position of the gain medium is 31μm.Therefore,we optimize the mode matching between the pump laser and the oscillating laser to improve the optical-to-optical conversion efficiency and reduce the pump threshold.[37]

    Fig.1.The experimental setup of the KLM Tm:LuYO3 ceramic laser.

    3.Results and discussion

    With a 0.5% OC, the absorbed pump power threshold was measured to be 267 mW in CW operation, as shown in Fig.2(a).When the absorption pump power reached 3.12 W,the KLM was self-starting and the output power was 289 mW.Further increasing the pump absorption power to 3.3 W, the maximum average output power was 326 mW.The laser output characteristics of the KLM Tm:LuYO3ceramic laser are shown in Fig.2(a), where the black and blue dots represent the experimental data when operating in the CW and KLM regimes, respectively.When the pump power increased to 2.2 W, the average output power no longer increased or even slightly decreased due to the asymmetric resonator structure and the existence of two stable regions.When one stable region transited to the other, the output power dropped.When CW operation was in the second stable region, KLM operation was realized,and the output power increased significantly by about 42 mW, from 247 mW to 289 mW.As shown in Fig.2(b), we measured the long-time stability of the average output power of the Tm:LuYO3laser.The RMS stability of the laser was better than 1.73%over 40 min at the maximum output power of 326 mW.The fluctuations of output power were due to instability of mechanical parts and environmental disturbance,such as air turbulence and temperature drift.The power stability can be further improved by using high-quality mechanical parts with good performance and adding a special shell to the KLM experimental setup.

    The optical spectrum of the mode-locked pulses was measured by an optical spectrum analyzer(AvaSpec-NIR256-2.5tec, Avantes).As shown in Fig.3, the optical spectrum was centered at 2053 nm with a FWHM spectral bandwidth of 19.8 nm.The typical pulse trains of KLM were recorded by a fast photodiode(ET-5000, EOT)with a digital oscilloscope(WaveRunner 8404M, LeCroy), as shown in Fig.4.The RF spectrum was measured by a RF spectrum analyzer(DSA832,RIGOL)with a photodiode detector(ET-5000, EOT).As can be seen from the radio-frequency(RF)spectrum displayed in Fig.5,the fundamental tone at 97.1 MHz was more than 58 dB above the noise floor.The RF spectrum was recorded at a resolution bandwidth of 10 kHz.The total length of the cavity was about 1.5 m,corresponding to a theoretical repetition rate of 97.1 MHz for KLM pulses,in good agreement with experimental measurements.

    Fig.3.Laser spectrum of the KLM pulses from the Tm:LuYO3ceramic laser.

    The pulse duration was measured by an autocorrelator(Pulse Check 150, APE).Assuming a sech2-shape pulse, the shortest pulse duration was 259 fs, as shown in Fig.6.The corresponding time–bandwidth product of 0.365 was close to the Fourier transform limit(0.315).

    4.Conclusions

    In conclusion, we have demonstrated KLM operation of a Tm:LuYO3ceramic laser at 2053 nm for the first time.At 4.8 W incident pump power, we obtained mode-locked femtosecond pulses as short as 259 fs at a repetition rate of 97.1 MHz, with a maximum output power of 326 mW.This result is a combination of the excellent spectral properties of Tm:LuYO3and the use of a high-brightness pumping scheme allowing pure KLM operation.The output power was limited due to the available power of the Ti:sapphire laser,and it could be improved by using a high-power diode laser at 790 nm as the pumping source.A shorter pulse duration may be achieved by further controlling the intracavity dispersion and using different output couplers with different transmittances.We believe that a Tm:LuYO3ceramic laser with KLM operation at 2.05μm is likely to be a promising ultrashort pulse source at mid-IR wavelengths.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.62165012 and 61665010), Key research and development projects in Gansu Province (Grant No.21YFIGE300),Gansu Province College Industry Support Plan Project (Grant Nos.2020C-23 and 2022CYZC-59), Department of Education of Gansu Province: The Education Project of Open Competition for the Best Candidates (Grant No.2021jyjbgs-06), Gansu Provincial University Innovation Fund Project (Grant No.2021B-190), Qinzhou District Science and Technology Plan Project (Grant No.2021-SHFZG-1442),Gansu Province College Young Doctor Support Project(Grant No.2023QB-013), and Gansu Province Excellent Graduate Innovation Star Project (Grant No.2022CXZX-796).

    精品人妻一区二区三区麻豆| 免费黄网站久久成人精品| 久久久久久久久久久丰满| 国产又色又爽无遮挡免| 男的添女的下面高潮视频| 少妇人妻久久综合中文| 多毛熟女@视频| 丰满少妇做爰视频| 国产亚洲一区二区精品| 日日摸夜夜添夜夜添av毛片| 国产黄频视频在线观看| 国产男女内射视频| 久久久久网色| h视频一区二区三区| 肉色欧美久久久久久久蜜桃| 成人国语在线视频| 我要看黄色一级片免费的| 内地一区二区视频在线| 人体艺术视频欧美日本| 亚洲av男天堂| av电影中文网址| 国产精品蜜桃在线观看| 亚洲性久久影院| 亚洲精品日韩在线中文字幕| 国产日韩一区二区三区精品不卡 | 亚洲国产毛片av蜜桃av| 午夜福利在线观看免费完整高清在| 精品一区二区免费观看| 最近手机中文字幕大全| 丁香六月天网| 男女免费视频国产| 亚洲内射少妇av| 99久久精品国产国产毛片| 中文字幕人妻熟人妻熟丝袜美| 午夜福利,免费看| 久久婷婷青草| 亚洲婷婷狠狠爱综合网| 久久99热这里只频精品6学生| 国产亚洲最大av| 天堂8中文在线网| 一边摸一边做爽爽视频免费| 欧美人与善性xxx| 国产精品国产三级专区第一集| 精品久久国产蜜桃| 99热6这里只有精品| 日韩欧美一区视频在线观看| 国产午夜精品一二区理论片| 亚洲精品久久成人aⅴ小说 | 国产精品偷伦视频观看了| 亚洲成人av在线免费| 久久女婷五月综合色啪小说| 免费观看在线日韩| 汤姆久久久久久久影院中文字幕| 一区二区av电影网| 国产精品久久久久久av不卡| 自线自在国产av| 日韩熟女老妇一区二区性免费视频| 久久久久精品久久久久真实原创| 午夜91福利影院| 乱人伦中国视频| 黑丝袜美女国产一区| 九九久久精品国产亚洲av麻豆| 亚洲成人手机| 久久久久久久亚洲中文字幕| 国产精品 国内视频| 有码 亚洲区| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人精品一区二区| 免费观看a级毛片全部| 2021少妇久久久久久久久久久| av在线app专区| 色网站视频免费| 亚洲国产精品专区欧美| 美女cb高潮喷水在线观看| 国产一区有黄有色的免费视频| 精品国产露脸久久av麻豆| 最近最新中文字幕免费大全7| 午夜福利影视在线免费观看| 欧美一级a爱片免费观看看| 寂寞人妻少妇视频99o| 日韩中文字幕视频在线看片| 亚洲欧美中文字幕日韩二区| 国产毛片在线视频| 日韩不卡一区二区三区视频在线| 插阴视频在线观看视频| 午夜免费男女啪啪视频观看| 最黄视频免费看| 一二三四中文在线观看免费高清| 十八禁高潮呻吟视频| 麻豆成人av视频| 国产精品蜜桃在线观看| 成人18禁高潮啪啪吃奶动态图 | 国产精品人妻久久久影院| 亚洲国产av影院在线观看| 一级毛片 在线播放| 搡老乐熟女国产| 王馨瑶露胸无遮挡在线观看| 三级国产精品片| 国产色婷婷99| 国产黄频视频在线观看| 精品久久久精品久久久| 国产一区有黄有色的免费视频| 交换朋友夫妻互换小说| 久久久久久久精品精品| 精品亚洲成国产av| 男女边摸边吃奶| 久久综合国产亚洲精品| av黄色大香蕉| 久久热精品热| 啦啦啦中文免费视频观看日本| 丰满饥渴人妻一区二区三| 成人二区视频| 久久久久久伊人网av| 久久精品国产自在天天线| 欧美精品国产亚洲| 精品少妇久久久久久888优播| 大香蕉97超碰在线| 亚洲av不卡在线观看| 欧美变态另类bdsm刘玥| 中文字幕人妻丝袜制服| 看非洲黑人一级黄片| 久久久久人妻精品一区果冻| 日本欧美国产在线视频| 老熟女久久久| 久久久久久久久久成人| 欧美精品人与动牲交sv欧美| 色吧在线观看| 国产黄片视频在线免费观看| 最近2019中文字幕mv第一页| 国产亚洲av片在线观看秒播厂| 不卡视频在线观看欧美| 日韩人妻高清精品专区| 一区二区av电影网| 伦理电影免费视频| 午夜福利影视在线免费观看| 纯流量卡能插随身wifi吗| 97超碰精品成人国产| 国产免费福利视频在线观看| 人人妻人人澡人人看| 国语对白做爰xxxⅹ性视频网站| 夜夜爽夜夜爽视频| 婷婷色麻豆天堂久久| 久久久久久久精品精品| 美女中出高潮动态图| 男女边摸边吃奶| 久久青草综合色| 99久久人妻综合| 永久网站在线| 亚洲国产精品一区三区| 丝袜喷水一区| 日韩av不卡免费在线播放| 国产综合精华液| 中文字幕制服av| 熟女电影av网| 国产综合精华液| 久久精品国产鲁丝片午夜精品| 午夜福利在线观看免费完整高清在| 亚洲精品国产色婷婷电影| 婷婷成人精品国产| 你懂的网址亚洲精品在线观看| 夫妻午夜视频| 女的被弄到高潮叫床怎么办| 高清黄色对白视频在线免费看| 日韩三级伦理在线观看| 亚洲av男天堂| 亚洲经典国产精华液单| 人人妻人人澡人人爽人人夜夜| 看十八女毛片水多多多| 人体艺术视频欧美日本| 国产在线视频一区二区| 汤姆久久久久久久影院中文字幕| 亚洲内射少妇av| 亚洲四区av| 国产成人午夜福利电影在线观看| 最新中文字幕久久久久| 亚洲av免费高清在线观看| 尾随美女入室| av免费观看日本| 久久影院123| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 99国产精品免费福利视频| 亚洲av国产av综合av卡| av免费观看日本| 一区二区三区四区激情视频| 久久99热6这里只有精品| 中文字幕人妻熟人妻熟丝袜美| 日韩熟女老妇一区二区性免费视频| 亚洲av中文av极速乱| 成人18禁高潮啪啪吃奶动态图 | 国产69精品久久久久777片| 亚洲精品一二三| 色网站视频免费| 国产精品秋霞免费鲁丝片| 毛片一级片免费看久久久久| 91精品国产九色| 成年女人在线观看亚洲视频| 边亲边吃奶的免费视频| 国产亚洲欧美精品永久| 老司机亚洲免费影院| 久久精品国产a三级三级三级| 成人毛片60女人毛片免费| 国产精品女同一区二区软件| 亚洲第一av免费看| 99热国产这里只有精品6| 国产精品熟女久久久久浪| 人人妻人人爽人人添夜夜欢视频| 自拍欧美九色日韩亚洲蝌蚪91| 日本黄色片子视频| 欧美精品一区二区大全| 毛片一级片免费看久久久久| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 亚洲欧美日韩另类电影网站| 日本免费在线观看一区| 丰满迷人的少妇在线观看| 三上悠亚av全集在线观看| 波野结衣二区三区在线| 久久久久精品性色| 春色校园在线视频观看| 亚洲国产色片| 亚洲精品中文字幕在线视频| 国产色婷婷99| 夜夜看夜夜爽夜夜摸| 中文欧美无线码| 久久人人爽av亚洲精品天堂| 啦啦啦啦在线视频资源| 国产精品久久久久久精品电影小说| 天美传媒精品一区二区| 免费观看的影片在线观看| 老熟女久久久| 在线精品无人区一区二区三| 日韩av在线免费看完整版不卡| 午夜久久久在线观看| 中文乱码字字幕精品一区二区三区| 国产日韩欧美在线精品| 中文天堂在线官网| 午夜久久久在线观看| 高清毛片免费看| 亚洲精品视频女| av国产久精品久网站免费入址| 91精品一卡2卡3卡4卡| 女人精品久久久久毛片| 晚上一个人看的免费电影| 人成视频在线观看免费观看| 18禁在线无遮挡免费观看视频| 91精品一卡2卡3卡4卡| 亚洲精品色激情综合| 亚洲精品456在线播放app| 三级国产精品欧美在线观看| 日韩欧美精品免费久久| 一个人看视频在线观看www免费| 日韩av免费高清视频| 亚洲图色成人| 亚洲天堂av无毛| 男人爽女人下面视频在线观看| videosex国产| 综合色丁香网| 蜜桃在线观看..| av又黄又爽大尺度在线免费看| 超碰97精品在线观看| 满18在线观看网站| 国语对白做爰xxxⅹ性视频网站| 91精品三级在线观看| 精品久久久久久久久av| 精品亚洲成国产av| 亚洲国产精品专区欧美| 亚洲精品乱码久久久v下载方式| 大香蕉久久成人网| 丝袜脚勾引网站| 色94色欧美一区二区| 久久久久人妻精品一区果冻| 国产av一区二区精品久久| 一级毛片 在线播放| 亚洲精品中文字幕在线视频| 国产精品偷伦视频观看了| av女优亚洲男人天堂| 亚洲成色77777| 人人妻人人添人人爽欧美一区卜| 18+在线观看网站| 国产精品国产三级国产av玫瑰| 中文字幕制服av| 只有这里有精品99| 少妇 在线观看| 夜夜看夜夜爽夜夜摸| 日日摸夜夜添夜夜爱| 国产成人午夜福利电影在线观看| 2018国产大陆天天弄谢| 亚洲av成人精品一区久久| 国产极品粉嫩免费观看在线 | 高清视频免费观看一区二区| 亚洲欧洲精品一区二区精品久久久 | 亚洲丝袜综合中文字幕| 国产男人的电影天堂91| 天天影视国产精品| 国产欧美另类精品又又久久亚洲欧美| 午夜福利视频在线观看免费| 十分钟在线观看高清视频www| 亚洲人成网站在线播| 黄片无遮挡物在线观看| 99热6这里只有精品| 两个人的视频大全免费| 国产亚洲精品久久久com| 色94色欧美一区二区| 久久久久久久精品精品| 精品亚洲乱码少妇综合久久| 天天操日日干夜夜撸| 亚洲精品aⅴ在线观看| 三级国产精品欧美在线观看| 欧美少妇被猛烈插入视频| 亚洲国产欧美日韩在线播放| 亚洲人成77777在线视频| 色吧在线观看| videos熟女内射| 看非洲黑人一级黄片| 超碰97精品在线观看| 亚洲精品亚洲一区二区| 亚洲欧美日韩另类电影网站| 18在线观看网站| 丝袜美足系列| 中文字幕制服av| 亚洲四区av| 免费少妇av软件| 久久久亚洲精品成人影院| 18禁在线播放成人免费| 亚洲不卡免费看| 国产免费一级a男人的天堂| 人人澡人人妻人| 欧美日韩亚洲高清精品| 色5月婷婷丁香| freevideosex欧美| 亚洲欧美日韩卡通动漫| 亚洲av在线观看美女高潮| 成人免费观看视频高清| 极品少妇高潮喷水抽搐| 性高湖久久久久久久久免费观看| 18禁裸乳无遮挡动漫免费视频| 国产黄色视频一区二区在线观看| 久久亚洲国产成人精品v| 国产黄频视频在线观看| 丝袜美足系列| 亚洲人成网站在线播| 色网站视频免费| 欧美精品国产亚洲| 另类精品久久| 狠狠婷婷综合久久久久久88av| 国产男女内射视频| 高清在线视频一区二区三区| 一区二区av电影网| 精品亚洲乱码少妇综合久久| 99久久中文字幕三级久久日本| 国产乱人偷精品视频| 人人妻人人澡人人看| a级毛色黄片| 精品国产露脸久久av麻豆| 免费av中文字幕在线| 久久精品久久久久久久性| 九草在线视频观看| 人人妻人人澡人人看| 好男人视频免费观看在线| 午夜精品国产一区二区电影| 国产在线视频一区二区| 最黄视频免费看| 精品卡一卡二卡四卡免费| 新久久久久国产一级毛片| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 免费观看av网站的网址| 午夜免费鲁丝| 中文字幕免费在线视频6| 色94色欧美一区二区| 搡女人真爽免费视频火全软件| 插阴视频在线观看视频| 男人添女人高潮全过程视频| 2022亚洲国产成人精品| 搡老乐熟女国产| 亚洲精品乱码久久久v下载方式| 日本av免费视频播放| 久久精品久久久久久久性| 视频在线观看一区二区三区| 午夜老司机福利剧场| 18+在线观看网站| 亚洲欧洲国产日韩| 一级毛片我不卡| 少妇精品久久久久久久| 91久久精品电影网| 亚洲精品国产色婷婷电影| 51国产日韩欧美| 亚洲精品美女久久av网站| 精品一区二区免费观看| 久久精品国产鲁丝片午夜精品| 国产一区二区在线观看日韩| 熟女人妻精品中文字幕| 欧美激情国产日韩精品一区| 久久久久久伊人网av| 国产精品久久久久成人av| 少妇被粗大的猛进出69影院 | 国产精品一区www在线观看| 亚洲精品一二三| 国产成人免费观看mmmm| 国产精品一二三区在线看| 欧美激情极品国产一区二区三区 | 国产成人免费观看mmmm| 人妻少妇偷人精品九色| 人妻 亚洲 视频| 观看av在线不卡| 国产亚洲精品久久久com| 亚洲,欧美,日韩| 爱豆传媒免费全集在线观看| 麻豆乱淫一区二区| 男女免费视频国产| 五月天丁香电影| 岛国毛片在线播放| 黑人欧美特级aaaaaa片| 老女人水多毛片| av播播在线观看一区| 亚洲欧美日韩卡通动漫| av黄色大香蕉| 男女边摸边吃奶| 一区二区三区四区激情视频| av在线老鸭窝| 免费高清在线观看视频在线观看| 成人无遮挡网站| 伦精品一区二区三区| 一级毛片电影观看| 亚洲丝袜综合中文字幕| 国产精品国产三级国产av玫瑰| 妹子高潮喷水视频| 性高湖久久久久久久久免费观看| 少妇人妻久久综合中文| 最近的中文字幕免费完整| 国产精品国产av在线观看| 视频区图区小说| 一本大道久久a久久精品| 欧美激情 高清一区二区三区| 亚洲av成人精品一二三区| 一边摸一边做爽爽视频免费| 亚洲精品久久久久久婷婷小说| 国产精品一区www在线观看| 精品熟女少妇av免费看| 国模一区二区三区四区视频| 亚洲精品一二三| www.色视频.com| 国产片特级美女逼逼视频| 一个人看视频在线观看www免费| 成人国产av品久久久| 超色免费av| 亚洲,一卡二卡三卡| 亚洲三级黄色毛片| 亚洲av成人精品一二三区| 2021少妇久久久久久久久久久| 一区二区日韩欧美中文字幕 | 男人添女人高潮全过程视频| 免费人妻精品一区二区三区视频| 美女cb高潮喷水在线观看| av有码第一页| 天美传媒精品一区二区| 熟女电影av网| 日本黄大片高清| 99九九在线精品视频| 欧美+日韩+精品| 黑人欧美特级aaaaaa片| 日本欧美视频一区| 26uuu在线亚洲综合色| 国产黄色视频一区二区在线观看| 日本黄色日本黄色录像| 国产男人的电影天堂91| 亚洲欧洲精品一区二区精品久久久 | 久久99精品国语久久久| 亚洲精品av麻豆狂野| 五月开心婷婷网| 毛片一级片免费看久久久久| 免费大片黄手机在线观看| 综合色丁香网| 国产又色又爽无遮挡免| 在线观看三级黄色| 亚洲成人一二三区av| 交换朋友夫妻互换小说| 婷婷色综合www| 亚洲精品美女久久av网站| 久久ye,这里只有精品| 国产亚洲精品第一综合不卡 | 99热国产这里只有精品6| videos熟女内射| 一级毛片电影观看| 女人久久www免费人成看片| 美女cb高潮喷水在线观看| 色网站视频免费| 热re99久久国产66热| 国产精品一区二区三区四区免费观看| 久久久国产一区二区| 久久精品国产亚洲av天美| 最新的欧美精品一区二区| a级毛片黄视频| 久久久久久久久久久免费av| 黑人欧美特级aaaaaa片| 又黄又爽又刺激的免费视频.| 菩萨蛮人人尽说江南好唐韦庄| 久热久热在线精品观看| 午夜日本视频在线| 久久精品国产亚洲网站| 亚洲天堂av无毛| 高清毛片免费看| av播播在线观看一区| 亚洲欧美清纯卡通| 国产探花极品一区二区| 亚洲欧洲日产国产| 涩涩av久久男人的天堂| 3wmmmm亚洲av在线观看| 一边摸一边做爽爽视频免费| 亚洲第一区二区三区不卡| 亚洲高清免费不卡视频| a级片在线免费高清观看视频| 一边亲一边摸免费视频| 天天影视国产精品| 国产成人av激情在线播放 | 狂野欧美激情性xxxx在线观看| 人人妻人人澡人人爽人人夜夜| 国产精品一区www在线观看| 制服丝袜香蕉在线| 亚洲精品日本国产第一区| 夜夜看夜夜爽夜夜摸| 一本大道久久a久久精品| 夫妻性生交免费视频一级片| 天堂8中文在线网| 久久久欧美国产精品| 国产精品免费大片| 午夜影院在线不卡| 国产成人91sexporn| 亚洲av在线观看美女高潮| 免费播放大片免费观看视频在线观看| 亚洲成人一二三区av| 99久久中文字幕三级久久日本| 国产精品不卡视频一区二区| 午夜福利影视在线免费观看| 日本与韩国留学比较| 蜜桃久久精品国产亚洲av| 精品一区二区免费观看| 老女人水多毛片| 亚洲国产欧美在线一区| 亚洲av在线观看美女高潮| 26uuu在线亚洲综合色| 亚洲成人一二三区av| 国产一区二区三区av在线| 天堂俺去俺来也www色官网| 亚洲av国产av综合av卡| 午夜激情福利司机影院| 久久免费观看电影| 亚洲精品成人av观看孕妇| 免费人妻精品一区二区三区视频| 婷婷成人精品国产| 自拍欧美九色日韩亚洲蝌蚪91| 日韩,欧美,国产一区二区三区| 中文乱码字字幕精品一区二区三区| 精品久久久久久久久亚洲| 97在线人人人人妻| 亚洲国产欧美在线一区| 成人午夜精彩视频在线观看| 夫妻午夜视频| 国产又色又爽无遮挡免| 一级毛片电影观看| 日韩欧美一区视频在线观看| 精品久久国产蜜桃| 精品一品国产午夜福利视频| 九色成人免费人妻av| 精品人妻在线不人妻| 欧美另类一区| 久久av网站| 国产免费视频播放在线视频| 精品国产一区二区三区久久久樱花| 欧美 亚洲 国产 日韩一| 亚洲美女黄色视频免费看| 国产色婷婷99| 国产免费视频播放在线视频| 亚洲精品视频女| av在线app专区| 观看美女的网站| 欧美日韩一区二区视频在线观看视频在线| 美女国产高潮福利片在线看| 亚洲精品久久久久久婷婷小说| 亚洲精品456在线播放app| 哪个播放器可以免费观看大片| 18禁动态无遮挡网站| 少妇人妻 视频| 午夜精品国产一区二区电影| 亚洲美女视频黄频| 十八禁高潮呻吟视频| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美色中文字幕在线| 亚洲av福利一区| 两个人免费观看高清视频| 中文字幕最新亚洲高清| 九草在线视频观看| 久久精品夜色国产| www.色视频.com| 一个人看视频在线观看www免费| 简卡轻食公司| 亚洲av.av天堂| 欧美日本中文国产一区发布| 午夜激情av网站| 女人精品久久久久毛片| 日韩,欧美,国产一区二区三区| 午夜91福利影院| 国产精品 国内视频| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 天天影视国产精品| 国国产精品蜜臀av免费| 亚洲精品一二三| 人人妻人人添人人爽欧美一区卜| 国产在线免费精品| 一区二区三区免费毛片| 亚洲第一区二区三区不卡| 丝袜脚勾引网站| av播播在线观看一区|