• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser

    2023-12-02 09:23:06LieLiu劉列YingHan韓穎JiayuHuo霍佳雨HonglinWen文紅琳GeWu吳戈andBoGao高博
    Chinese Physics B 2023年11期
    關(guān)鍵詞:高博

    Lie Liu(劉列), Ying Han(韓穎), Jiayu Huo(霍佳雨),?,Honglin Wen(文紅琳), Ge Wu(吳戈), and Bo Gao(高博)

    1College of Communication Engineering,Jilin University,Changchun 130012,China 2College of Electronic Science and Engineering,Jilin University,Changchun 130012,China

    Keywords: pure-quartic soliton,pulsating soliton,erupting soliton,passively mode-locked fiber lasers

    1.Introduction

    High-energy soliton fiber lasers have been a research hotspot due to their wide range of applications.[1–7]For solitons which are produced by the balance between second-order dispersion (β2) and the self-phase modulation (SPM) effect,energy is proportional to the first power of the inverse pulse duration (τ):E=2|β2|/(γτ),[8]which limits the increase in energy.Third-order dispersion (β3) will cause solitons to be unstable; however, the existence of negative fourth-order dispersion (β4) will make solitons stable.In 1994, researchers found quartic soliton solutions with oscillating tails and a flatspectrum center of nonlinear Schr¨odinger equations(NLSEs),which consider both negativeβ2andβ4,[9–12]Quartic solitons originate from the balance between the negativeβ2and the SPM effect but are modified byβ4.After more than 20 years of stagnation in the research of quartic solitons, in 2016, Blanco Redondoet al.found pure-quartic solitons(PQSs) that originate from the balance between the negativeβ4and SPM effect in photonic crystal waveguides.[13,14]The energy of PQSs is proportional to the third power of inverseτ:EPQS= 2.87|β4|/(γτ3),[15]which means the narrowerτleads to higher energy.The conditions required to obtain PQSs require platforms to have a large negativeβ4, wide bandwidth, and sufficient nonlinearity.In addition,β3at the central wavelength must be close to zero.[16]Photonic crystal waveguides,[13,14,16]silicon-based waveguides,[17]and optical Kerr microcavities[18–20]can meet the above conditions to achieve PQS output.

    The research on PQSs in fiber and fiber lasers began in 2018; Blanco Redondoet al.designed the microstructured fiber supporting the generation of PQSs, laying a foundation for PQS fiber lasers.[21]Subsequently,they proved that the coexistence ofβ2andβ4can improve the performance of NLSEbased fiber lasers.[22,23]The above numerical results provide theoretical support to the building of PQS fiber lasers.[24–26]Later, they achieved PQS output from dispersion-managed fiber lasers[27,28]and numerically analyzed their oscillation characteristics.[29]Luoet al.employed the same theoretical model to investigate pulsating PQSs.[30]Other researchers have used NLSE-based fiber lasers dominated byβ4to theoretically study vector quartic-solitons.[31]Research on the performance and dynamic characteristics of PQS fiber lasers needs to be carried out.

    In this work,we numerically investigate the pulsating and erupting dynamics in PQS fiber lasers.We study the effects of the saturation power,small-signal gain,and output coupler on PQS dynamics under different gain bandwidths(?g).The results show that PQSs experience several stages,including stationary PQSs, pulsating PQSs, and creeping PQS molecules with modulated parameters under?g= 50 nm conditions.Meanwhile,when we consider the influence of high-order dispersion and the spectral filtering effect on eruption characteristics,PQSs experience stationary PQSs,pulsating PQSs,erupting PQSs, periodically erupting PQSs, and PQS molecules with modulated parameters when?gis 10 nm.PQSs exhibit similar dynamic characteristics under three modulated parameters,in which the small-signal gain corresponds to the pump power in experiments and is a more extensive research object.This paper therefore uses the influence of small-signal gain as an example to analyze PQS dynamic characteristics.These results will provide a physical mechanism for PQS dynamics.

    2.Numerical method

    Figure 1(a) presents the scheme of a PQS fiber laser,which contains a pump source, a wavelength division multiplexer, Er-doped fiber, a fiber polarizer, a polarization controller, an isolator, a saturable absorber (SA), a pulse shaper,single-mode fiber,and an output coupler(OC).Pulse transmission in the fiber is simulated by NLSE

    whereAis the pulse slowly varying complex envelope.Here,γ,β2,β3, andβ4represent the nonlinear coefficient, and the second-order, third-order, and fourth-order dispersion coefficient of the fiber, respectively, andTis the time coordinate.Meanwhile,gis the gain of the Er-doped fiber,written as

    whereg0,?g, andEsatrepresent the small-signal gain, gain bandwidth,and saturation energy,respectively.Here,

    is the pulse energy,whereTRis the roundtrip(RT)time.The SA is modeled by

    whereq0,Psat,and|A(z,T)|2are the modulation depth,saturation power,and instantaneous pulse power,respectively.

    The fixed parameter values in this simulation are given in Table 1, and the other parameters are variables.The pulse shaper,which can compensate for intra-cavityβ2andβ3while providing a large negativeβ4, is modeled by multiplying the electric field by the phase in the frequency domain in simulation.[15]This meansβ2,β3,andβ4of the pulse shaper in Table 1 can fully compensate for intra-cavityβ2,β3to nearly zero and provide sufficientβ4to obtain PQSs.The time resolution is 50 fs and the center wavelength is set near 1550 nm.

    Table 1.Parameter values used in the simulation.

    Fig.1.(a)A scheme of the PQS fiber laser.(b)Logarithmic scale time profiles(inset: time profiles)and(c)the spectrum of stationary PQSs obtained with different β4.Evolution of(d)the time profiles and(e)spectrums when β4 of the pulse shaper is set to-80.0022 ps4/km(inset in(e): energy).

    TheEsat,Psat,g0, and output ratio of the OC (Rout) are set as 300 pJ,200 W,3.45 m-1,and 50%,respectively,to obtain stationary PQSs.The PQS logarithmic scale time profiles shown in Fig.1(b) present oscillating tails.Figure 1(c)exhibits that the change in the spectrum intensity is less pronounced but becomes flatter.Figures 1(d) and 1(e) present the time profile evolution and spectrum evolution of PQSs to demonstrate their stability.Typically, traditional solitons exhibit pulsating dynamics or erupting dynamics with modulated system parameters;[32–36]it is therefore interesting to examine whether PQSs have similar dynamics with altered system parameters.Therefore, we comprehensively study the effects ofPsat,g0, andRouton PQS dynamics.It was found that there are pulsating single PQSs to creeping PQS molecules with the changes inPsat,g, orRoutunder different gain bandwidths (50 nm, 40 nm, 30 nm, 20 nm).However, pulsating PQSs, erupting PQSs, periodically erupting PQSs, and PQS molecules appear when?g=10 nm.The above results are analyzed in detail below.It should be noted that the PQS dynamics with modulatedPsat,g0,andRoutare qualitatively consistent when?g=50 nm,40 nm,30 nm,and 20 nm;we have therefore taken?g=50 nm and 10 nm as the examples in this paper.Meanwhile,due to the importance of small-signal gain,it is taken as an example for analysis in this paper.

    3.Influence of system parameters on purequartic soliton dynamics

    3.1.Influence of small-signal gain under 50 nm

    Modulated pump power in experiments corresponds to a changegin simulation, which will cause different soliton dynamics.In the simulation of this section,?g,Esat,Psat, andRoutare 50 nm, 300 pJ, 200 W, and 50%, respectively.The influence ofgon soliton characteristics is investigated by linearly increasinggfrom 0.1 m-1with a step of 0.1 m-1.The fiber laser outputs stationary PQSs whengis less than 28.1 m-1, but splitting occurs whengis increased to~1 m-1without the intra-cavity pulse shaper.[25]PQSs can endure large nonlinear phase shifts without splitting and have large pulse energy.[29]Pulsating PQSs appear whengis in the range of 84.2 m-1–136.9 m-1.Figure 2 reveals the time profile evolution, spectrum evolution, energy variation, and single-shot spectrum of pulsating PQSs whengis 90 m-1.Figures 2(a)and 2(b)show that the time profile evolution of PQSs exhibits oscillation,while the spectrum evolution exhibits breathing, and its energy also changes periodically.Intensity exchange between sidebands and the center of the soliton spectrums makes breathing appear during PQS spectrum evolution,which is also the cause of pulsating traditional solitons:[25]specifically, pulsating PQSs occur.Figure 2(c)reveals the spectrum evolution of 10 RTs,and Figs.2(d)–2(g)show single-shot spectrums during one pulsating period to further analyze the causes of the pulsation.The pulsating period is about 5 RTs in Fig.2(c),which means that the intensity exchange of the spectrum center with sidebands is within 5 RTs and is restored to the original state after 5 RTs.Single-shot spectrums of PQSs have high-intensity Kelly sidebands, similar to traditional solitons, while PQS spectrums have multilow-intensity sidebands under the influence ofβ4.[13,15]This makes it easier to produce energy exchange between sidebands and the spectrum center, which makes it easier to obtain pulsating PQSs.Specifically,the intra-cavity largeβ4is the cause of pulsating PQSs.

    Fig.2.Evolution of(a)the time profiles and(b)spectrums when g0=90 m-1 (inset in(b): energy).(c)The extracted spectrum evolution of(b).(d)–(g)Single-shot spectrums at different RTs in one pulsating period.

    The PQSs split into PQS molecules wheng0is further increased to 137 m-1, creeping PQS molecules occur wheng0= 370.5 m-1, and the output of the fiber laser becomes chaotic wheng0reaches 475.7 m-1.When we compare Fig.3 with the results in Refs.[37–39], it can be proved that the double solitons we observed also exhibit similar snaking behavior in the time domain,which is generally called creeping solitons and belongs to a type of pulsating solitons.Specifically,PQS molecules creeping in the time domain(Figs.3(a)–3(f))and breathing during spectrum evolution(Figs.3(g)–3(l))are induced by periodic attraction and repulsion between two PQSs, which also induces the periodic variation of the pulse energy.The creeping distance(period)of the PQS molecules first decreases then increases, and the interval between them also shows the same trend with the continuous increase ing0.The interval between two creeping PQSs attains the maximum wheng0reaches a certain level, but its creeping distance is minimum (Fig.3(f)), which may be due to the fact that the large pulse energy of the PQSs makes the energy exchange and interaction between two PQSs easier at this time.It is also easier to reach different equilibrium states(creeping).The larger creeping distance makes spectrum breathing more obvious, i.e., it exhibits more obvious pulsation behavior.Theβ4leads to PQS spectrums with multi-sidebands,[13,15]making it easier to produce energy exchange between the sidebands and the spectrum center.Specifically, the appearance of creeping PQS molecules is related to the intra-cavity largeβ4.

    Fig.3.Evolution of (a)–(f) time profiles and (g)–(l) spectrums when g0 =370.5 m-1, 380.8 m-1, 394.6 m-1, 431.1 m-1, 444.7 m-1, and 475.7 m-1 (inset in(g)–(l): energy).

    3.2.Influence of small-signal gain under 10 nm

    Limited by the size of the fiber core, soliton transmission is affected by many factors in passively mode-locked fiber lasers; these are not only the pumping capacity but also the nonlinear effect, group velocity dispersion effect, and?gcaused by doped ions.The gain spectrum is related to the doping concentration,fiber length,and pump power in actual production.It is necessary to explore the effect of?gon soliton dynamics.The influence ofPsat,g,andRouton PQS dynamics(?g= 10 nm) is investigated.It is found that the parameter value required for splitting is low, which may be related to the narrow?g.Fiber lasers have a significant impact on amplification when the spectrum width of the soliton is close to?g.Solitons with a narrower pulse width(wider spectrum width)have higher energy according to the energy-width scaling law of PQSs:namely,?g=10 nm limits the amplification ability of fiber lasers in this simulation.At the same time,the change in spectrums upon amplification makes it act as a spectral filter, resulting in erupting PQSs, similar to the results in Ref.[40].PQSs, pulsating PQSs, erupting PQSs, and PQS molecules appear successively as altered system parameters.

    The?g,Esat,Psat, andRoutare 10 nm, 120 pJ, 50 W,and 50%, respectively, in this section.Thegis linearly increased from 0.1 m-1in a step of 0.1 m-1to study the effect of pump power on PQS dynamics.The fiber laser outputs stationary PQSs whengis less than 3.5 m-1;pulsating PQSs and the phenomenon similar to that presented in Subsection 3.1 appear with the continuous increase ing.Figures 4(a)–4(d)display the time profile evolution,spectrum evolution,and energy change of the process from pulsating PQSs to erupting PQSs and then to PQS molecules.It can also be seen as the build-up of PQS molecules,which is different from the experimental results observed in mode-locked lasers with onlyβ2.The build-up of dissipative soliton molecules always involves complex interactions among solitons,[29,41]while the build-up of traditional solitons has a big corner.[42]The field autocorrelation trace of PQS molecules in Figs.4(i)and 4(j)shows that there is no complex interaction before the formation of stable PQS molecules, but eruption exists, which may be related to the intra-cavity large negativeβ4.

    Figures 4(e)–4(h) present the single-shot spectrums, and the single-shot time profiles of pulsating PQSs are presented in Figs.4(a)–4(d).The time-domain oscillating tail and breathing spectrum at?g=10 nm are more obvious compared with pulsation at?g=50 nm.Due to the fact that they are characterized by successive or periodic time shifts,spectrum fragmentation, and energy improvement, some researchers classify erupting traditional solitons as pulsating,[34–36,41,43–46]but more researchers classify this as explosion.[47–51]Also, the time profile evolution of erupting PQSs in Figs.5(a)and 5(b)reveals the quartic time shifts of PQSs, i.e., one typical eruption characteristic.It can be seen that although the pulsating characteristics of the PQSs are similar under two values,their eruption processes are significantly different.Also, the second PQSs appear at different time delay positions, i.e., the erupting direction of the PQSs is not fixed, but it will cause an increase in pulse intensity and energy, laying a foundation for subsequent splitting.The nonlinear phase shift that is accumulated(related to intensity)after the solitons run one RT will affect the shape of the soliton spectrums or time profiles,and even cause solitons to split.[52]The single-shot time profiles of the erupting PQSs in Figs.5(a) and 5(b) indicate that during successive eruption,the intensity may be continuously increased(Fig.5(a)),or there may be a tiny weakening(Fig.5(b)), resulting in the accumulation of different nonlinear phase shifts,so that the second PQS after splitting appears at different time delay positions.The fragmented single-shot spectrum in Figs.5(c)and 5(d)further proves the existence of erupting PQSs after pulsating and different erupting intensities caused different degrees of fragmentation.High-order dispersion and high-order nonlinearity have important influences on erupting traditional solitons,[48]and proper pairwise conjugation of these high-order effects can eliminate eruption.[47,49]Therefore,erupting PQSs can be attributed to the intra-cavity large negativeβ4in this simulation.

    Fig.4.Evolution of(a),(b)the time profiles,(c),(d)spectrums,and(i),(j)field autocorrelations when g=9.1 m-1,9.2 m-1 (inset in(c),(d):energy).Single-shot(e),(f)spectrums and(g),(h)time profiles at different RTs in one pulsating period.

    For erupting traditional solitons,periodic eruption will appear when one adds high-order nonlinearity and high-order dispersion to equations to model soliton transmission.[47–49]The time profile evolution will show periodic time shifts.An intra-cavity large negativeβ4makes the PQSs exhibit similar periodic eruption in this simulation.An example is shown in Figs.6(a)–6(c),where PQSs first pulsate and then erupt periodically.The 3D time profile evolution of erupting PQSs shown in Fig.6(d)shows that PQSs erupt periodically with two peaks as one period,making the spectrum evolution exhibit periodic changes(Fig.6(e)).Single-shot spectrums of the erupting PQSs will also be“broken”(Figs.6(f)–6(i)),but they will return to the original spectrum shape at the beginning of a new eruption period(Fig.6(j)).The center of the time profiles moves slightly and the intensity of the oscillating tails changes slightly during eruption(Fig.6(k)),which is also important for periodically erupting PQSs.

    4.Conclusion

    In conclusion, we numerically found that the gain bandwidth, saturation power, small-signal gain, and splitting ratio of the output coupler in passively mode-locked fiber lasers will all affect PQS dynamics.Stationary PQSs, pulsating PQSs,and creeping PQS molecules appear one after another with modulated parameters when?g= 50 nm.The analysis of single-shot spectrums and single-shot time profiles in one pulsating period proved that pulsating PQSs can be attributed not only to its oscillating tail but also to an intra-cavity large negativeβ4.The?gis also a limiting factor for soliton transmission in passively mode-locked fiber lasers.PQSs appear as pulsating,erupting,periodically erupting,and splitting in turn with modulated parameters when?g=10 nm,which is quite different from the pulsating dynamics at 50 nm.This may be due to the change in the soliton spectrum caused by the narrow gain bandwidth during amplification, which makes it act as a spectral filter.At the same time, the influence of highorder dispersion and high-order nonlinearity on erupting traditional solitons,erupting PQSs,and periodically erupting PQSs in this simulation can also be attributed to the intra-cavity largeβ4.These results deepen our understanding of PQS dynamics,such as high-energy erupting PQSs.

    Acknowledgement

    We acknowledge the financial support from Science and Technology Project of the Jilin Provincial Department of Education(Grant No.JJKH20231171KJ).

    猜你喜歡
    高博
    Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
    塔式太陽(yáng)能電站定日鏡場(chǎng)布局研究
    分?jǐn)?shù)階傅里葉變換改進(jìn)算法在時(shí)頻分析中的應(yīng)用
    匿于藝術(shù)
    家居廊(2020年4期)2020-05-25 02:50:11
    Thinking Through Visual Communication
    山東青年(2018年6期)2018-11-06 05:50:56
    優(yōu)雅(2018年5期)2018-05-09 02:36:00
    高職高專自考本科“專、本銜接”研究
    ——以高博學(xué)院自考為例
    高博:黯然赴歐
    汽車觀察(2015年11期)2015-12-23 08:41:46
    高博 可愛(ài)的英國(guó)“老頭”
    英才(2014年10期)2014-10-11 13:22:14
    數(shù)字營(yíng)銷在未來(lái)占有更重要位置 專訪捷豹路虎大中華區(qū)總裁高博
    成人高潮视频无遮挡免费网站| 国产亚洲精品av在线| 国产免费av片在线观看野外av| 波多野结衣巨乳人妻| 日韩欧美免费精品| 国内少妇人妻偷人精品xxx网站| 日韩欧美国产在线观看| 欧美成人性av电影在线观看| 国产av在哪里看| 国产毛片a区久久久久| 国产单亲对白刺激| 岛国在线免费视频观看| 一级a爱片免费观看的视频| 99久久九九国产精品国产免费| 97超级碰碰碰精品色视频在线观看| 岛国在线免费视频观看| 亚洲,欧美精品.| 99久久久亚洲精品蜜臀av| 精品人妻一区二区三区麻豆 | 精品久久久久久成人av| 国产成人福利小说| 无遮挡黄片免费观看| 搡老熟女国产l中国老女人| 久久九九热精品免费| 波野结衣二区三区在线 | 久久精品国产亚洲av香蕉五月| 精品无人区乱码1区二区| 欧美区成人在线视频| 国产高清有码在线观看视频| 免费av不卡在线播放| 久久亚洲真实| 激情在线观看视频在线高清| 精品久久久久久久末码| 悠悠久久av| 少妇的丰满在线观看| 男插女下体视频免费在线播放| 日本免费一区二区三区高清不卡| 岛国在线观看网站| 一本精品99久久精品77| 桃色一区二区三区在线观看| 啪啪无遮挡十八禁网站| 悠悠久久av| 国产精品一区二区免费欧美| 亚洲男人的天堂狠狠| 毛片女人毛片| 性色avwww在线观看| 中文字幕人妻丝袜一区二区| 国产精品久久久久久亚洲av鲁大| 9191精品国产免费久久| 欧美国产日韩亚洲一区| 国产亚洲欧美98| 黄片小视频在线播放| 成人av一区二区三区在线看| 免费av不卡在线播放| 黑人欧美特级aaaaaa片| 日本一二三区视频观看| 国产精品久久久人人做人人爽| 中文资源天堂在线| 亚洲在线观看片| 欧美中文综合在线视频| 狂野欧美激情性xxxx| 熟女电影av网| 很黄的视频免费| 国产伦人伦偷精品视频| 欧美日本亚洲视频在线播放| 一个人看的www免费观看视频| 美女被艹到高潮喷水动态| 给我免费播放毛片高清在线观看| 美女大奶头视频| 变态另类成人亚洲欧美熟女| 国产高清三级在线| 一夜夜www| av国产免费在线观看| 亚洲乱码一区二区免费版| 国产精品av视频在线免费观看| 变态另类丝袜制服| 成人特级av手机在线观看| 国产免费av片在线观看野外av| 亚洲自拍偷在线| 国产精品亚洲一级av第二区| 欧美性猛交╳xxx乱大交人| 欧美在线一区亚洲| 久久九九热精品免费| 亚洲成a人片在线一区二区| 国产av一区在线观看免费| 99热这里只有是精品50| 制服人妻中文乱码| 亚洲va日本ⅴa欧美va伊人久久| 丁香六月欧美| 中文字幕高清在线视频| 成年女人毛片免费观看观看9| 午夜精品一区二区三区免费看| 黄色丝袜av网址大全| 少妇的丰满在线观看| 欧美中文综合在线视频| 可以在线观看毛片的网站| 国产高清三级在线| 老司机在亚洲福利影院| 国产午夜精品久久久久久一区二区三区 | 日韩欧美在线乱码| 国内精品一区二区在线观看| 免费在线观看影片大全网站| 男女午夜视频在线观看| 草草在线视频免费看| 日本与韩国留学比较| 午夜a级毛片| 久久香蕉国产精品| 欧美乱妇无乱码| 国产精品美女特级片免费视频播放器| 国内揄拍国产精品人妻在线| 国产精华一区二区三区| 日韩欧美精品免费久久 | 国产高潮美女av| 日本五十路高清| 黄色女人牲交| 欧美性感艳星| 香蕉丝袜av| 免费人成视频x8x8入口观看| 久久久久久久午夜电影| 免费大片18禁| 久久九九热精品免费| 欧美日韩一级在线毛片| 一级黄片播放器| 亚洲欧美激情综合另类| 真人一进一出gif抽搐免费| 99热6这里只有精品| www国产在线视频色| 中出人妻视频一区二区| 国产精品久久电影中文字幕| 一区二区三区高清视频在线| 亚洲va日本ⅴa欧美va伊人久久| 久久伊人香网站| xxx96com| 法律面前人人平等表现在哪些方面| 亚洲成a人片在线一区二区| 1024手机看黄色片| 天美传媒精品一区二区| 嫩草影视91久久| 午夜精品一区二区三区免费看| 午夜精品在线福利| 国产一区二区激情短视频| 97人妻精品一区二区三区麻豆| 久久精品亚洲精品国产色婷小说| 97超级碰碰碰精品色视频在线观看| 久久久久久大精品| 日韩免费av在线播放| 日本在线视频免费播放| 可以在线观看的亚洲视频| 色播亚洲综合网| 精品人妻1区二区| 黄色丝袜av网址大全| 超碰av人人做人人爽久久 | 久久久久久九九精品二区国产| 国产高潮美女av| ponron亚洲| 日韩精品青青久久久久久| av天堂在线播放| 搡老岳熟女国产| 国产乱人伦免费视频| 欧美日韩瑟瑟在线播放| 国产熟女xx| 搡老熟女国产l中国老女人| 18+在线观看网站| 国产激情偷乱视频一区二区| 免费在线观看日本一区| 日本一本二区三区精品| 久久国产精品人妻蜜桃| 啦啦啦观看免费观看视频高清| 一级黄片播放器| 十八禁人妻一区二区| 美女cb高潮喷水在线观看| 日韩欧美精品免费久久 | 少妇人妻一区二区三区视频| 日本免费一区二区三区高清不卡| 色哟哟哟哟哟哟| 亚洲成人久久性| 国产毛片a区久久久久| 国产黄片美女视频| 日本免费一区二区三区高清不卡| 欧美一级a爱片免费观看看| 亚洲天堂国产精品一区在线| 看片在线看免费视频| av专区在线播放| 国产伦一二天堂av在线观看| 99久久99久久久精品蜜桃| 两性午夜刺激爽爽歪歪视频在线观看| 激情在线观看视频在线高清| 亚洲专区国产一区二区| 精品国产亚洲在线| 亚洲精品一卡2卡三卡4卡5卡| 国产探花极品一区二区| 久久久久国产精品人妻aⅴ院| 变态另类成人亚洲欧美熟女| 1000部很黄的大片| 欧美bdsm另类| 长腿黑丝高跟| av在线天堂中文字幕| 欧美性猛交╳xxx乱大交人| 99国产精品一区二区蜜桃av| xxxwww97欧美| 国产精品永久免费网站| 久久久久久久亚洲中文字幕 | 亚洲欧美日韩卡通动漫| 午夜福利视频1000在线观看| 亚洲久久久久久中文字幕| 免费观看人在逋| 色精品久久人妻99蜜桃| 成熟少妇高潮喷水视频| 亚洲男人的天堂狠狠| 99热这里只有是精品50| 国产伦一二天堂av在线观看| 日韩精品青青久久久久久| 高清日韩中文字幕在线| 久久精品综合一区二区三区| 男人和女人高潮做爰伦理| 99热这里只有是精品50| 一个人看的www免费观看视频| 在线视频色国产色| 久久香蕉国产精品| 色播亚洲综合网| 高清在线国产一区| 国产综合懂色| 午夜精品一区二区三区免费看| 久久精品国产综合久久久| 欧美区成人在线视频| 91字幕亚洲| 国产主播在线观看一区二区| 国产精品一区二区三区四区久久| av视频在线观看入口| 久久久国产成人免费| 亚洲国产中文字幕在线视频| 美女被艹到高潮喷水动态| 激情在线观看视频在线高清| 亚洲av成人不卡在线观看播放网| 欧美+亚洲+日韩+国产| 神马国产精品三级电影在线观看| av天堂在线播放| 国产蜜桃级精品一区二区三区| 国产成人福利小说| 99久久精品热视频| 超碰av人人做人人爽久久 | 精品乱码久久久久久99久播| 亚洲av一区综合| 日本一二三区视频观看| 精品无人区乱码1区二区| 成人亚洲精品av一区二区| 黑人欧美特级aaaaaa片| 真人做人爱边吃奶动态| 国产探花极品一区二区| 国产午夜福利久久久久久| 国产精品久久久久久亚洲av鲁大| 亚洲专区中文字幕在线| 亚洲精品成人久久久久久| 欧美日韩黄片免| 1000部很黄的大片| 性欧美人与动物交配| 久久久久精品国产欧美久久久| 嫁个100分男人电影在线观看| 偷拍熟女少妇极品色| 日本免费a在线| 国产精品久久视频播放| 亚洲精品在线观看二区| 欧美日韩国产亚洲二区| 国产色婷婷99| 怎么达到女性高潮| 成人一区二区视频在线观看| 蜜桃久久精品国产亚洲av| 日韩欧美国产在线观看| av黄色大香蕉| 欧美极品一区二区三区四区| 夜夜爽天天搞| 舔av片在线| 亚洲成人免费电影在线观看| 午夜视频国产福利| 熟女少妇亚洲综合色aaa.| av女优亚洲男人天堂| 国产精品嫩草影院av在线观看 | 91在线观看av| 桃色一区二区三区在线观看| 国产精品永久免费网站| 久久人妻av系列| 欧美日韩亚洲国产一区二区在线观看| 麻豆成人午夜福利视频| 国产成人aa在线观看| av片东京热男人的天堂| 性欧美人与动物交配| 国产v大片淫在线免费观看| 免费看日本二区| 亚洲成av人片免费观看| 久久亚洲真实| 麻豆国产av国片精品| 国产精品亚洲av一区麻豆| 亚洲成a人片在线一区二区| 国产日本99.免费观看| 国产97色在线日韩免费| 国产成人影院久久av| 欧美激情在线99| 露出奶头的视频| 国产精品一区二区三区四区久久| 国产伦人伦偷精品视频| 十八禁人妻一区二区| 日韩av在线大香蕉| 亚洲av免费高清在线观看| 老司机午夜十八禁免费视频| av女优亚洲男人天堂| 最近在线观看免费完整版| 特大巨黑吊av在线直播| 国产真实乱freesex| 亚洲精品久久国产高清桃花| 搡老妇女老女人老熟妇| 观看美女的网站| 亚洲精华国产精华精| 女警被强在线播放| 三级毛片av免费| 老司机午夜十八禁免费视频| 两人在一起打扑克的视频| 男人和女人高潮做爰伦理| 天堂√8在线中文| 欧美性猛交黑人性爽| 国内毛片毛片毛片毛片毛片| 淫秽高清视频在线观看| 51午夜福利影视在线观看| 最新中文字幕久久久久| 无遮挡黄片免费观看| 久久精品综合一区二区三区| 成人午夜高清在线视频| 少妇的丰满在线观看| 亚洲男人的天堂狠狠| 亚洲最大成人中文| 精品电影一区二区在线| 人人妻人人看人人澡| 久9热在线精品视频| 在线观看日韩欧美| 人妻久久中文字幕网| 国产激情欧美一区二区| 成人一区二区视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 岛国在线观看网站| av福利片在线观看| 国产精品影院久久| 久久精品国产亚洲av香蕉五月| 深夜精品福利| 国产亚洲欧美在线一区二区| 久久久国产精品麻豆| 搡老妇女老女人老熟妇| 最近最新免费中文字幕在线| 午夜福利在线观看吧| 亚洲精华国产精华精| 精品熟女少妇八av免费久了| 桃色一区二区三区在线观看| 亚洲av中文字字幕乱码综合| 女警被强在线播放| 黄色女人牲交| 18禁裸乳无遮挡免费网站照片| 国产精品 欧美亚洲| 日本成人三级电影网站| 18禁黄网站禁片免费观看直播| 偷拍熟女少妇极品色| 日日干狠狠操夜夜爽| 国产精品1区2区在线观看.| 国产成+人综合+亚洲专区| 国产亚洲精品综合一区在线观看| 小蜜桃在线观看免费完整版高清| 日韩国内少妇激情av| 九九在线视频观看精品| 亚洲美女黄片视频| 国产91精品成人一区二区三区| 长腿黑丝高跟| 午夜亚洲福利在线播放| 俺也久久电影网| 国产中年淑女户外野战色| 无人区码免费观看不卡| 欧美成人免费av一区二区三区| 精品99又大又爽又粗少妇毛片 | 国产一区二区在线av高清观看| 高清日韩中文字幕在线| 97人妻精品一区二区三区麻豆| eeuss影院久久| 亚洲精品色激情综合| 18禁裸乳无遮挡免费网站照片| 国产在视频线在精品| 网址你懂的国产日韩在线| 日本五十路高清| 亚洲片人在线观看| 亚洲av日韩精品久久久久久密| 桃红色精品国产亚洲av| 一级作爱视频免费观看| 女警被强在线播放| 禁无遮挡网站| 亚洲av免费高清在线观看| 精品无人区乱码1区二区| 午夜福利在线观看吧| 久久精品国产99精品国产亚洲性色| 久久精品亚洲精品国产色婷小说| 亚洲av二区三区四区| 成年女人看的毛片在线观看| 色哟哟哟哟哟哟| 婷婷六月久久综合丁香| 51午夜福利影视在线观看| 蜜桃久久精品国产亚洲av| 麻豆成人av在线观看| 精品国产三级普通话版| 国产精品 国内视频| 免费人成在线观看视频色| 一进一出抽搐gif免费好疼| 免费看美女性在线毛片视频| 桃红色精品国产亚洲av| 老司机午夜十八禁免费视频| 欧美三级亚洲精品| 国产一区二区激情短视频| 成人性生交大片免费视频hd| 欧美激情久久久久久爽电影| 午夜福利欧美成人| 久久久精品欧美日韩精品| 美女 人体艺术 gogo| 在线天堂最新版资源| 男女做爰动态图高潮gif福利片| 午夜免费激情av| 国产亚洲精品综合一区在线观看| 国产精品久久久人人做人人爽| 亚洲精品美女久久久久99蜜臀| tocl精华| 黑人欧美特级aaaaaa片| 网址你懂的国产日韩在线| 乱人视频在线观看| 高清在线国产一区| 久久精品综合一区二区三区| 天天躁日日操中文字幕| 免费人成在线观看视频色| 午夜免费成人在线视频| 九色成人免费人妻av| 成年女人毛片免费观看观看9| 白带黄色成豆腐渣| 精品国产美女av久久久久小说| 桃红色精品国产亚洲av| 99热这里只有是精品50| 最好的美女福利视频网| 亚洲七黄色美女视频| 国产成人啪精品午夜网站| 国内精品美女久久久久久| 久久久色成人| 亚洲国产日韩欧美精品在线观看 | av欧美777| 精品一区二区三区人妻视频| 久久久成人免费电影| av在线天堂中文字幕| 成熟少妇高潮喷水视频| 不卡一级毛片| 亚洲国产欧洲综合997久久,| 特大巨黑吊av在线直播| 日本黄大片高清| 亚洲av熟女| a级一级毛片免费在线观看| 亚洲无线在线观看| av专区在线播放| 乱人视频在线观看| 国产精品电影一区二区三区| 88av欧美| 国产综合懂色| 天堂√8在线中文| 亚洲天堂国产精品一区在线| 在线观看一区二区三区| 最近最新中文字幕大全电影3| 国产精品香港三级国产av潘金莲| 成年女人毛片免费观看观看9| 国产伦精品一区二区三区视频9 | 9191精品国产免费久久| 欧美性猛交黑人性爽| 内射极品少妇av片p| 黄色视频,在线免费观看| 怎么达到女性高潮| 中文字幕熟女人妻在线| 波多野结衣巨乳人妻| 97超视频在线观看视频| 小蜜桃在线观看免费完整版高清| 在线视频色国产色| 日韩有码中文字幕| 精品人妻偷拍中文字幕| 熟女人妻精品中文字幕| 在线观看av片永久免费下载| 国产亚洲精品久久久com| 国产99白浆流出| 九色成人免费人妻av| 久久久精品大字幕| 男女午夜视频在线观看| 亚洲人与动物交配视频| 美女免费视频网站| 久久久久性生活片| 每晚都被弄得嗷嗷叫到高潮| 成年免费大片在线观看| 国产精品久久久久久亚洲av鲁大| 别揉我奶头~嗯~啊~动态视频| 亚洲专区中文字幕在线| 一进一出抽搐动态| 欧美又色又爽又黄视频| 成人亚洲精品av一区二区| 女人高潮潮喷娇喘18禁视频| 亚洲第一电影网av| 国内揄拍国产精品人妻在线| 99热精品在线国产| 精品免费久久久久久久清纯| 9191精品国产免费久久| 久久久久久久精品吃奶| 身体一侧抽搐| 真人一进一出gif抽搐免费| 日本与韩国留学比较| 午夜激情福利司机影院| 欧美在线黄色| 国产精品乱码一区二三区的特点| 欧美zozozo另类| 好看av亚洲va欧美ⅴa在| 精品国产美女av久久久久小说| 校园春色视频在线观看| 国产真实伦视频高清在线观看 | 波野结衣二区三区在线 | 色av中文字幕| 午夜影院日韩av| 国产亚洲欧美98| 亚洲精品一区av在线观看| 亚洲精品色激情综合| 男插女下体视频免费在线播放| 亚洲色图av天堂| 国模一区二区三区四区视频| 欧美日韩综合久久久久久 | 免费看十八禁软件| 欧美不卡视频在线免费观看| 老鸭窝网址在线观看| 午夜两性在线视频| www.www免费av| 亚洲成人免费电影在线观看| 国产亚洲av嫩草精品影院| 一区二区三区国产精品乱码| 亚洲精品一区av在线观看| 丰满人妻一区二区三区视频av | 国内少妇人妻偷人精品xxx网站| 亚洲精品粉嫩美女一区| 免费在线观看日本一区| 中文字幕人成人乱码亚洲影| 91在线精品国自产拍蜜月 | 午夜福利高清视频| 婷婷六月久久综合丁香| 精品一区二区三区视频在线 | 成人特级黄色片久久久久久久| 一级a爱片免费观看的视频| 色尼玛亚洲综合影院| 亚洲性夜色夜夜综合| 偷拍熟女少妇极品色| 国产成人系列免费观看| 一个人免费在线观看电影| 别揉我奶头~嗯~啊~动态视频| 中文字幕高清在线视频| 91九色精品人成在线观看| 在线播放国产精品三级| 无限看片的www在线观看| 悠悠久久av| 国产精品影院久久| 丰满乱子伦码专区| 久久精品91无色码中文字幕| 成年免费大片在线观看| 精品久久久久久久人妻蜜臀av| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品亚洲一级av第二区| 亚洲精品成人久久久久久| 欧美一区二区亚洲| 一边摸一边抽搐一进一小说| 中文字幕高清在线视频| 亚洲av电影在线进入| 国产激情偷乱视频一区二区| 午夜两性在线视频| or卡值多少钱| 久久久久九九精品影院| 黄色女人牲交| 国产精品日韩av在线免费观看| 日本 欧美在线| 在线看三级毛片| 男女之事视频高清在线观看| 色综合欧美亚洲国产小说| 欧美激情久久久久久爽电影| 两个人的视频大全免费| 一个人免费在线观看的高清视频| 嫩草影院入口| 中文在线观看免费www的网站| 免费无遮挡裸体视频| eeuss影院久久| 免费观看人在逋| 女警被强在线播放| 久久精品国产综合久久久| 五月伊人婷婷丁香| 亚洲精品影视一区二区三区av| 国产在视频线在精品| 国产乱人视频| 午夜免费观看网址| 91久久精品国产一区二区成人 | 中文字幕精品亚洲无线码一区| 国产成人av激情在线播放| 欧美不卡视频在线免费观看| 久久久久免费精品人妻一区二区| 国产av在哪里看| 日韩av在线大香蕉| 成人国产一区最新在线观看| 国产一区二区在线观看日韩 | 免费观看的影片在线观看| 精品99又大又爽又粗少妇毛片 | 午夜精品久久久久久毛片777| 在线观看免费视频日本深夜| 中文字幕人妻丝袜一区二区| 精品欧美国产一区二区三| 级片在线观看| 国产高清视频在线播放一区| 一个人免费在线观看的高清视频| 欧美乱妇无乱码| 十八禁人妻一区二区| 夜夜躁狠狠躁天天躁| 韩国av一区二区三区四区| 免费看光身美女|