• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive feedback control for nonlinear triangular systems subject to uncertain asymmetric dead-zone input

    2023-12-01 09:51:24MinghuiFengYanjieChangZhiyuDuanXianfuZhang
    Control Theory and Technology 2023年4期

    Minghui Feng·Yanjie Chang·Zhiyu Duan·Xianfu Zhang

    Abstract In this paper, an adaptive control strategy is proposed to investigate the issue of uncertain dead-zone input for nonlinear triangular systems with unknown nonlinearities.The considered system has no precise priori knowledge about the dead-zone feature and growth rate of nonlinearity.Firstly,a dynamic gain is introduced to deal with the unknown growth rate,and the dead-zone characteristic is processed by the adaptive estimation approach without constructing the dead-zone inverse.Then,by virtue of hyperbolic functions and sign functions,a new adaptive state feedback controller is proposed to guarantee the global boundedness of all signals in the closed-loop system.Moreover,the uncertain dead-zone input problem for nonlinear upper-triangular systems is solved by the similar control strategy.Finally, two simulation examples are given to verify the effectiveness of the control scheme.

    Keywords Dead-zone input·Dynamic gain·Adaptive estimation·Global boundedness

    1 Introduction

    Theresearchfieldofnonlineartriangularsystemhasobtained accumulating attention in the past several years.Quite a few mathematicalmodelsandengineeringproblemsinrealitycan be converted to the issues of global stabilization or boundedness of nonlinear triangular systems,see[1–7].Recursive design comprising forwarding and backstepping design technique is a powerful technique for studying the nonlinear triangular systems[1,2].Based on backstepping design and Razumikhin lemma, [1] studied the robust control problem for a class of nonlinear time-delay systems with triangular structure where the state feedback controllers were designed such that the global regulation was achieved.Besides, two novel control schemes were developed to solve the timedelay problem for upper-triangular nonlinear system through recursive design approach in [2].In recent years, dynamic gain becomes a creative control approach for the research of nonlinear triangular systems and plays an important role in coping with nonlinearities,which facilitates the design of the control strategy.Using dynamic gain technique,the constructivecontrolstrategieswereproposedfortime-delaynonlinear triangular systems in [3–5], and globally asymptotical stability was achieved with the help of Lyapunov–Krasovskii functionals.

    When system parameters or the bounds of system parameters are unknown, the adaptive control has been widely studied.Recently, a growing number of adaptive control problems appear in practical industrial systems, see [8, 9].On the basis of this framework of backstepping design,fuzzy logic systems and neural network technique were applied to approximate the uncertain nonlinear terms, which made it convenient to compensate the complex nonlinear terms,see[10,11].Using the adaptive backstepping technique,a novel adaptive control algorithm for uncertain nonlinear systems was developed in[12]to offset the effect of uncertain input parametersbyintroducingahyperbolictangentfunction.Different with the above literature, under the circumstance of unknown growth rate,two dynamic gains were introduced to deal with the uncertain system parameter,see[13].In[14],the problem of time-delay nonlinear systems with unknown parameters was investigated using dynamic gain approach,and an adaptive state feedback control scheme was proposed.It can be seen from the above results that the backstepping design and neural network technique are commonly applied to cope with the uncertain system parameters.

    In addition, uncertain dead zone input is an universal issue and occurs in many practical applications.The existence of uncertain dead-zone affects the system performance seriously.Therefore,for the sake of compensating for negative effects brought by dead-zone input,a series of relevant studies have been executed by constructing the inverse of dead-zone, see [15, 16].With further study on dead-zone input, [17] decomposed the dead nonlinearity into a linear part and a disturbance-like term.Based on this idea, some excellent results were obtained,see[18,19].Ibrir et al.[18]solved the adaptive tracking problem for nonlinear linearizable uncertain systems without constructing the dead-zone inverse.By constructing a smooth adaptive controller, the tracking control problem for a class of nonlinear system subject to time delay and dead-zone input was investigated in [19].For a class of nonlinear systems subject to fuzzy dead zone, the adaptive fuzzy controller was constructed,which guaranteed that all the signals of closed-loop system were semi-globally uniformly bounded,see[20,21].Without preciseinformationaboutthedeadzoneinput,anoutputfeedback controller was developed in [22] to ensure the global boundedness of all states, so that the problem of tracking was solved for systems in lower-triangular form.However,cognate researches on state feedback control problem for nonlinear triangular systems with uncertain dead-zone input based on dynamic gain approach have received little attention.

    This paper explores the state feedback stabilisation problem for nonlinear triangular systems subject to dead-zone input.Influenced by[4,23],the dynamic gain is developed to cope with the nonlinear terms for lower-triangular system.Then, it is extended to nonlinear upper-triangular system,where a new form of dynamic gain is presented.The adaptive feedback controllers for both nonlinear lower-triangular systems and nonlinear upper-triangular systems are proposed to guarantee the boundedness of all signals in the closedloop system.The main contributions of this paper is listed as below.

    (i) Unlike existing works using adaptive fuzzy backstepping design control approach, the dynamic gain technique is applied to settle the state feedback problem of nonlinear triangular systems with dead-zone input,which simplifies the form of controller as well as avoids complex iterative steps.In particular, a new dynamic gain is proposed for nonlinear upper-triangular systems.

    (ii) Different from [20, 21], the global boundedness of all states of the closed-loop system is obtained.Furthermore, the convergence region around zero of all states in the closed-loop system can be small enough by adjusting relative design parameters.

    (iii) Most of the existing literature about dead-zone input are aimed at nonlinear lower-triangular systems, and it has shown the feasibility of handling the effects of dead-zone and inherent nonlinearities through adaptive control strategy,see[24].Specially,it is a remarkable fact that the adaptive controller in this paper is also effective for nonlinear upper-triangular systems.

    The rest of this paper is indicated as below.Section1 devotes to the problem formulation and preliminary work.Next,the main results of this work are presented in Sect.3,which includes the design of adaptive control schemes and the boundedness analysis of dynamic gain and all states for lower-triangular system as well as upper-triangular system.Then,Sect.4 provides two simulation examples to manifest the effectiveness of the adaptive control strategy.Finally,Sect.5 presents the conclusions.

    Notations R, R+and Rnrepresent the set of real numbers,the set of nonnegative real numbers andn-dimensional Euclidean space,respectively.Irepresents an identity matrix with suitable dimension.The sign function sign(a)denotes that whena> 0,sign(a)= 1;whena< 0,sign(a)= -1;whena= 0, sign(a)= 0.‖·‖denotes the Euclidean norm of a vector or matrix.λmax(·) andλmin(·) stand for the maximum eigenvalue and minimum eigenvalue of a matrix,respectively.

    2 Preliminaries and problem formulation

    Consider the following uncertain nonlinear system

    wherex(t) = [x1(t),...,xn(t)]T∈Rnandu(t) ∈R are the system state and input,respectively.The nonlinearityfi(·):R+×Rn→R is a continuous function.Assume that all states in system(1)are measurable and can be utilized in the design of control strategy.The form of uncertain actuator dead zoneN(u(t))is as follows:

    where the unknown parametersmr> 0 andml> 0 represent the right and left slope of the dead-zone characteristic,respectively,br> 0 andbl> 0 denote the break points of dead-zone input.

    To simplify the controller design,one can redescribe the dead-zone model(2)as follows:

    where

    The control objective of this paper is to develop an adaptive controller to ensure all signals of close-loop systems are globally bounded.To achieve the control objective, several necessary assumptions and lemmas are required.

    Assumption 1 [19]The parametersmr>0,ml>0,br>0 andbl>0 are unknown but bounded.

    Remark 1Assumption1isanecessaryconditionusedtoindicate the parameters of dead input,see[18,19,22].Obviously,one can get thatη(u)andψ(u)are bounded form(4),(5)and Assumption 1.Therefore,there exist two unknown constantsθ1andθ2satisfying thatand

    Assumption 2 For eachi= 1,...,n, there exists an unknown positive constantγsuch that

    Assumption 3 For eachi=1,...,n,the system nonlinearitiesfi(·)satisfy the following conditions:

    whereγis an unknown constant,andfn-1=fn=0.

    Remark 2In general,system(1)is known as lower-triangular system when Assumption 2 holds.On the contrary, system(1) is called upper-triangular system when Assumption 3 holds.Under Assumptions 2 or 3,system(1)includes a great quantity of nonlinear physical systems,such as mechanical interaction system of robots and nonlinear liquid level control resonant circuit system,see[6,7].Besides,many renowned studies have investigated the stability problem for a class of nonlinear systems without dead-zone input under conditions of Assumptions 2 and 3,see[4,13].

    Lemma 1 [25]Let A∈Rn×n,C∈Rn×1,F∈R1×n,D1∈Rn×n and D2∈Rn×n be matrices defined as

    D1= diag{1,...,n}and D2= diag{n,...,1}.Then there exist two positive constants d1,d2,one positive definite matrice P>0,and a vector Ka=[a1,a2,...,an]with ai,i=1,2,...,n being Hurwitz polynomial coefficients,such that

    where B=A-CKa,P∈Rn×n,and pi,n denotes the elements in row i and column n of the matrix P,i=1,...,n.

    Lemma 2 [26]For any λ∈Rand ε∈R+,the following inequality holds:

    3 Main results

    3.1 Adaptive controller design for lower-triangular systems

    In this section, a new state feedback controller for system(1) under Assumption 2 will be developed by introducing hyperbolic functions and sign functions.One can see that system (1) satisfying Assumption 2 is indeed a nonlinear lower-triangular system,see[3,7].

    Theorem 1Under Assumptions1,2,the global boundedness of all states in system(1)can be guaranteed by the state feedback controller of the following form:

    with dynamic gain L being updated as

    where parameters?γ1, ?θ1, ?θ2are the estimated values of γ1,θ1,θ2correspondingly,and adaptive updating laws are as below:

    To facilitate understanding,one divides the proof into two parts.

    PartI:IntroductionofcoordinatetransformationsandLyapunov functions.

    The following coordinate transformations are introduced

    Therefore,system(1)can be transformed into

    Next,choose the Lyapunov function candidate

    where

    Part II:Stability analysis.

    By(14)and(16),the time derivative ofV1is given by

    From Assumption 2 and(13),one gets

    which implies

    Significantly,

    then,calculate the last term of(17)by the aid of(3)and(20)

    Combining(9)and(17)–(21),one can derive that

    It is not difficult to derive by Lemma 2 that

    Withthehelpof(9),(11),(16),(22)and(23),thederivative ofVis calculated as

    From(12),one has

    After simple calculation, the following inequalities also hold

    Substituting(25)–(27)into(24),one can arrive at

    Note that

    It follows from(29)that similar inequality can be obtained

    Further,one has

    Using the definition ofVin(15)and(16),there holds

    Remark 3Notably,according to the form of(33),increasing?i,i=1,2,3 and decreasingσi,i=1,2,3,one will obtain smaller convergence domain.Since the design parameters can be chosen at random, the convergence domain can be rendered small enough.Besides,increasingσ1,σ2,ρwhile decreasing?1,?2can make dynamic gain as well as input smaller.Therefore, to balance the size of input and convergence domain and meet the practice demand,the design parameters should be chosen appropriately.

    Remark 4In this section, the adaptive controller design for lower-triangular systems is designed.The main difficulty is to deal with the uncertain dead-zone input and unknown growth rate since the lack of prior information about their bounds.Different with the[19],dynamic gain and coordinate transformation approach is introduced to deal with nonlinear terms.Besides, our systems include more nonlinear terms.Compared with [22], the proposed control scheme in this paper can make the convergence region around zero of all states (x1,...,xn) in the closed-loop system can be small enough.And using the scaling change technique,the method of stability analysis in this paper is more direct.Moreover,the design approach of controller for lower triangular systems is also applicable to upper triangular systems.

    3.2 Adaptive controller design for upper-triangular systems

    In this section, by introducing hyperbolic functions and sign functions, a new control strategy for system (1) under Assumption 3 is proposed to ensure that all signals are bounded.It is clear that system (1) under Assumption 3 is indeed a nonlinear upper-triangular system,see[4,7].

    Theorem 2Under Assumptions1and3,the global boundedness of all states in the closed-loop system(1)can be guaranteed by the state feedback controller of the following form:

    with the gain L updated by

    where parameters?γ1, ?θ1, ?θ2are the estimated values of γ1,θ1,θ2correspondingly,and the adaptive updating laws are as below:

    Next,one divides the proof into two parts.

    PartI:IntroductionofcoordinatetransformationsandLyapunov functions.

    Let

    Thus,system(1)can be converted into

    where

    wherePis given in Lemma 1.

    Part II:Stability analysis.

    Using Lemma 1,a simple derivation is given

    Then, by Assumption 3 and coordination transformation(38),one gives the estimation of the nonlinearity terms 2zTP Fin(42)

    whereγ1is an unknown constant.

    From (34), (43), and Lemma 2, the following inequality holds:

    Recalling(29)and(30),it is derived that

    Remark 5Aimedatuncertainnonlinearupper-triangularsystems with unknown actuator input, the developed control scheme is also valid.The desired control performance can be obtained by adjusting relative design parameters similar with Remark 3.It is worth noting that the accurate information of growth rate and the characteristic about the actuator nonlinearities of nonlinear system are unnecessary,and their bounds are not required to be known.The adaptive controller in this paper can compensate for the effects of uncertain actuator nonlinearities.

    Remark 6On the one hand,for ?t∈[0,+∞),the dynamic gainL(t)is designed to satisfyL(t)≥1.It should be pointed out that the introduction of dynamic gainLis effective to estimate the unknown nonlinear terms.Note that the real but unknown parameterγ1cannot be used in the design of dynamic gain,which means the effects of the unknown nonlinear terms cannot be eliminated directly.Therefore, ?γ1is introduced into dynamic gainL.It can be seen from the above calculation process, by designing ?γ1delicately and incorporating the properties of such a special structure ofL,one can cope with the unknown nonlinearities efficiently.On the other hand,instead of the renowned backstepping design approach,the dynamic gain design approach is used in this paper,which avoids the problem of explosion of complexity.

    4 Two simulation examples

    In this section, two examples are given to verify the effectiveness of the control strategies proposed in this paper.

    Example 1Consider the following system

    Fig.1 Trajectories of x1 and x2 in systems(47)–(51)

    whereN(u)denotes the dead-zone input

    It is easy to see the nonlinearities satisfy Assumption 2 withγbeing an unknown constant.To dispose of the difficulty brought by the uncertain dead-zone input and uncertain nonlinearities in system (47), one can construct the following state feedback control scheme according to Theorem 1:

    whereLis the state of system

    Fig.2 Trajectory of L in systems(47)–(51)

    Fig.3 Trajectories of u and N(u)in systems(47)–(51)

    Fig.4 Trajectories of ?γ1, ?θ1, ?θ2 in systems(47)–(51)

    One can obtain that the control scheme can guarantee the boundedness of all states of the closed-loop system.Particularly,one can make the region of convergence of states small enough by adjusting the values of parametersρ,?1,σ1,?2,σ2,?3,σ3andε.Besides, it is clear that dynamic gain and controller are bounded by Figs.2 and 3.Example 2Consider the following system

    whereN(u)has the following form

    It is easy to see the nonlinearities satisfy Assumption 3 withγbeing an unknown constant.One can employ the following state feedback controller from Theorem 2 to deal with the uncertain dead-zone characteristics as well as nonlinearities

    Fig.5 Trajectories of x1 and x2 in systems(52)–(56)

    Fig.6 Trajectory of L in systems(52)–(56)

    of system(52)and achieve the control goal.

    withLbeing the state of system

    and updated laws of ?γ1, ?θ1and ?θ2are as follows:

    Similarly with Example 1, selectingKa= [1,3, 2],one gets.Then, choose the parametersρ= 0.9,?1= 11,σ1= 0.02,?2= 1,σ2= 0.001,?3= 150,σ3= 0.001,ε= 2.5 and set the initial valuesx1(0),x2(0),x2(0),L(0), ?γ1(0), ?θ1(0), ?θ2(0)T=[-1,1,2,1,0,0,5]T.Figures5,6,7 and 8 show the results and illustrate the validity of control strategies(54)–(56).

    Fig.7 Trajectories of u and N(u)in systems(52)–(56)

    Fig.8 Trajectories of ?γ1, ?θ1, ?θ2 in systems(52)–(56)

    It can be observed from Fig.5 that the control scheme proposed for nonlinear upper-triangular system can also accomplish the control goal.Besides,from Figs.6 and 7,one can see that dynamic gain and the controller are bounded.

    Remark 7In fact,different parameters have variable effects on the convergence region,one can make the region of convergence of all states small enough by adjusting the values of parametersρ,?1,σ1,?2,σ2,?3,σ3andε.Besides,recalling control strategies we proposed,it is clear that dynamic gain and adaptive laws are also dependent on the design parameters,one can obtain appropriate dynamic gain and adaptive estimator by adjusting design parameters properly.

    5 Conclusion

    Inthispaper,wehaveinvestigatedtheissueofuncertaindeadzone input for nonlinear triangular system with unknown nonlinearities.Due to the lack of precise priori knowledge about the dead-zone feature and growth rate of nonlinearity for the considered system,a dynamic gain has been adopted to deal with the unknown growth rate,and the adaptive estimation approach has been employed to tackle the dead-zone characteristic without constructing the dead-zone inverse.Combined with hyperbolic functions and sign functions,two new adaptive state feedback control schemes have been proposed to ensure the global boundedness of all signals in the closed-loop system.The performance of the control scheme has been illustrated through two given simulation examples.

    久久99蜜桃精品久久| 欧美97在线视频| 亚洲美女视频黄频| 一区在线观看完整版| h视频一区二区三区| 黄片播放在线免费| 国产一区二区在线观看av| 亚洲国产av新网站| 亚洲av成人精品一二三区| 亚洲精品亚洲一区二区| 91成人精品电影| 韩国高清视频一区二区三区| 一本大道久久a久久精品| 欧美日韩成人在线一区二区| 日韩一本色道免费dvd| 高清视频免费观看一区二区| 欧美激情极品国产一区二区三区 | 校园人妻丝袜中文字幕| 精品久久久久久久久av| 国产熟女午夜一区二区三区 | 久久鲁丝午夜福利片| av线在线观看网站| 最近的中文字幕免费完整| 久久久精品94久久精品| 国产免费福利视频在线观看| 欧美精品亚洲一区二区| 亚洲精品色激情综合| 精品国产露脸久久av麻豆| 狂野欧美白嫩少妇大欣赏| 热99国产精品久久久久久7| 久久综合国产亚洲精品| 一级毛片 在线播放| 夫妻性生交免费视频一级片| 久久久a久久爽久久v久久| 免费观看性生交大片5| 亚洲精品aⅴ在线观看| 伦精品一区二区三区| 国产爽快片一区二区三区| 大片免费播放器 马上看| 啦啦啦视频在线资源免费观看| 久久久久人妻精品一区果冻| 亚洲内射少妇av| 久久99精品国语久久久| 日日摸夜夜添夜夜添av毛片| a 毛片基地| 在线天堂最新版资源| 久久国产精品男人的天堂亚洲 | 99久久人妻综合| 亚洲美女搞黄在线观看| 精品人妻熟女av久视频| 日韩成人av中文字幕在线观看| 国产成人免费观看mmmm| 亚洲国产精品999| av女优亚洲男人天堂| 日产精品乱码卡一卡2卡三| 午夜福利影视在线免费观看| 这个男人来自地球电影免费观看 | 18+在线观看网站| 欧美 亚洲 国产 日韩一| 亚洲国产av新网站| 99视频精品全部免费 在线| 久热久热在线精品观看| 18禁在线播放成人免费| 一区二区av电影网| 中文天堂在线官网| 色网站视频免费| 黄色配什么色好看| 性高湖久久久久久久久免费观看| 国产伦理片在线播放av一区| 伊人久久精品亚洲午夜| 99热这里只有精品一区| 性色av一级| 黑人欧美特级aaaaaa片| 日韩人妻高清精品专区| 丝袜喷水一区| 少妇人妻精品综合一区二区| 国产国拍精品亚洲av在线观看| 26uuu在线亚洲综合色| 日韩不卡一区二区三区视频在线| 男女啪啪激烈高潮av片| 99re6热这里在线精品视频| 中国美白少妇内射xxxbb| 韩国av在线不卡| 久久久精品94久久精品| 人人妻人人澡人人爽人人夜夜| 蜜桃久久精品国产亚洲av| 国产亚洲一区二区精品| 晚上一个人看的免费电影| 欧美一级a爱片免费观看看| 精品人妻一区二区三区麻豆| 中文字幕亚洲精品专区| 能在线免费看毛片的网站| 国产黄色免费在线视频| 亚洲欧美成人精品一区二区| 精品一区二区三卡| 伦理电影免费视频| 交换朋友夫妻互换小说| 永久网站在线| 天天躁夜夜躁狠狠久久av| 只有这里有精品99| 在线观看免费高清a一片| 婷婷成人精品国产| 欧美 日韩 精品 国产| 欧美成人精品欧美一级黄| 王馨瑶露胸无遮挡在线观看| 97超视频在线观看视频| 91精品三级在线观看| 欧美一级a爱片免费观看看| 久久久精品区二区三区| 超碰97精品在线观看| 婷婷色av中文字幕| 午夜精品国产一区二区电影| 日韩成人伦理影院| 女性生殖器流出的白浆| 丁香六月天网| 自线自在国产av| 久久人人爽av亚洲精品天堂| 久久久亚洲精品成人影院| 女人久久www免费人成看片| 久久久精品免费免费高清| 丁香六月天网| 在线观看免费视频网站a站| 九九在线视频观看精品| 日韩强制内射视频| 韩国av在线不卡| 亚洲国产精品999| 国产极品天堂在线| av天堂久久9| 亚洲精品成人av观看孕妇| 亚洲五月色婷婷综合| 国产黄色视频一区二区在线观看| 国模一区二区三区四区视频| 看非洲黑人一级黄片| 国产熟女欧美一区二区| 久久av网站| 国产成人精品一,二区| 久久av网站| 看免费成人av毛片| 一个人看视频在线观看www免费| 在线播放无遮挡| kizo精华| 丝袜喷水一区| av在线老鸭窝| 制服诱惑二区| 美女中出高潮动态图| 免费看av在线观看网站| 99九九线精品视频在线观看视频| 成人国语在线视频| xxx大片免费视频| 久久久久久久精品精品| 亚洲,一卡二卡三卡| 国产精品女同一区二区软件| 成人国产麻豆网| 久久久久久久久久人人人人人人| 十八禁网站网址无遮挡| 成人午夜精彩视频在线观看| 乱码一卡2卡4卡精品| 一级黄片播放器| 免费黄色在线免费观看| 亚洲图色成人| 肉色欧美久久久久久久蜜桃| 午夜福利网站1000一区二区三区| 视频区图区小说| 一本色道久久久久久精品综合| 精品久久久精品久久久| 国产老妇伦熟女老妇高清| av不卡在线播放| 日日撸夜夜添| 午夜福利在线观看免费完整高清在| 国产欧美亚洲国产| 男女无遮挡免费网站观看| 日本91视频免费播放| 黄色欧美视频在线观看| 秋霞伦理黄片| av在线老鸭窝| 欧美+日韩+精品| 亚洲国产日韩一区二区| 亚洲精品视频女| 国产男女内射视频| 精品人妻熟女av久视频| 老女人水多毛片| 精品酒店卫生间| 亚洲av中文av极速乱| 欧美人与性动交α欧美精品济南到 | 九九久久精品国产亚洲av麻豆| 亚洲成色77777| 高清欧美精品videossex| 亚洲欧美日韩卡通动漫| 国产高清有码在线观看视频| 夫妻午夜视频| 婷婷色麻豆天堂久久| 天天躁夜夜躁狠狠久久av| 91午夜精品亚洲一区二区三区| 国产成人精品在线电影| 黄色配什么色好看| 搡女人真爽免费视频火全软件| 亚洲色图综合在线观看| 国产精品久久久久久久久免| 十八禁网站网址无遮挡| 黄片无遮挡物在线观看| 啦啦啦中文免费视频观看日本| 精品一区二区三区视频在线| 国产精品久久久久久精品古装| 国产乱来视频区| 91久久精品国产一区二区成人| 欧美bdsm另类| 亚洲精品视频女| 中文天堂在线官网| 如日韩欧美国产精品一区二区三区 | 亚洲成人av在线免费| 亚洲国产av影院在线观看| av国产精品久久久久影院| 婷婷色综合www| 51国产日韩欧美| 久久久精品区二区三区| 亚洲欧美日韩另类电影网站| 免费黄色在线免费观看| av电影中文网址| 最近手机中文字幕大全| 国产精品一区www在线观看| 欧美日韩亚洲高清精品| 国产熟女欧美一区二区| xxx大片免费视频| 热re99久久国产66热| 丝袜脚勾引网站| 一本色道久久久久久精品综合| 看十八女毛片水多多多| 久久久久国产网址| 黄色一级大片看看| 免费av不卡在线播放| 天天操日日干夜夜撸| 日本-黄色视频高清免费观看| 狠狠婷婷综合久久久久久88av| 美女大奶头黄色视频| 最近的中文字幕免费完整| 看免费成人av毛片| 免费不卡的大黄色大毛片视频在线观看| 色婷婷av一区二区三区视频| 寂寞人妻少妇视频99o| 久久韩国三级中文字幕| 99九九线精品视频在线观看视频| 国产精品免费大片| h视频一区二区三区| 亚洲av成人精品一区久久| 亚洲成人手机| 18禁在线无遮挡免费观看视频| 精品卡一卡二卡四卡免费| 99热这里只有是精品在线观看| 国产成人免费无遮挡视频| 夜夜骑夜夜射夜夜干| 亚洲欧洲日产国产| 最新的欧美精品一区二区| 久久精品人人爽人人爽视色| 日本黄大片高清| 成人毛片a级毛片在线播放| 亚洲天堂av无毛| 久久人人爽人人爽人人片va| 水蜜桃什么品种好| 久久久久久久亚洲中文字幕| 91精品一卡2卡3卡4卡| 97超碰精品成人国产| 久久狼人影院| 亚洲国产成人一精品久久久| 丝袜美足系列| 日本av手机在线免费观看| 免费观看性生交大片5| 久久久久视频综合| 亚洲综合色网址| 男男h啪啪无遮挡| 51国产日韩欧美| 亚洲第一av免费看| 欧美日韩综合久久久久久| av网站免费在线观看视频| 99精国产麻豆久久婷婷| 亚洲图色成人| tube8黄色片| 国产一区有黄有色的免费视频| 久久鲁丝午夜福利片| 欧美日韩一区二区视频在线观看视频在线| 日本-黄色视频高清免费观看| 成年女人在线观看亚洲视频| 狂野欧美白嫩少妇大欣赏| 999精品在线视频| 91成人精品电影| 国产又色又爽无遮挡免| 欧美人与善性xxx| 欧美日韩综合久久久久久| 视频在线观看一区二区三区| 五月开心婷婷网| 少妇熟女欧美另类| 丝袜喷水一区| av有码第一页| 欧美精品一区二区免费开放| 男男h啪啪无遮挡| 免费少妇av软件| 一级毛片aaaaaa免费看小| 精品一区二区三卡| 一个人免费看片子| 少妇人妻精品综合一区二区| av在线播放精品| 久久人人爽av亚洲精品天堂| 国产精品人妻久久久影院| 精品少妇久久久久久888优播| 一区二区三区四区激情视频| 中文乱码字字幕精品一区二区三区| 精品亚洲成国产av| 满18在线观看网站| 国产精品女同一区二区软件| 国产伦理片在线播放av一区| 国产亚洲最大av| 久久精品熟女亚洲av麻豆精品| 18禁裸乳无遮挡动漫免费视频| 黑人巨大精品欧美一区二区蜜桃 | 久久99蜜桃精品久久| 大香蕉97超碰在线| 少妇精品久久久久久久| 另类亚洲欧美激情| 日韩熟女老妇一区二区性免费视频| 久久鲁丝午夜福利片| 伦理电影大哥的女人| .国产精品久久| 亚洲精品亚洲一区二区| 国产成人免费观看mmmm| av在线播放精品| 亚洲av不卡在线观看| 国产成人freesex在线| 日本wwww免费看| 中文乱码字字幕精品一区二区三区| 欧美精品亚洲一区二区| 欧美成人午夜免费资源| 青春草视频在线免费观看| 人妻制服诱惑在线中文字幕| 国产白丝娇喘喷水9色精品| 不卡视频在线观看欧美| 久久久久久久久久人人人人人人| videosex国产| 久久鲁丝午夜福利片| 国产成人精品婷婷| 如日韩欧美国产精品一区二区三区 | 成年人免费黄色播放视频| a级片在线免费高清观看视频| 亚洲久久久国产精品| 国产免费一级a男人的天堂| 日韩中字成人| 免费大片18禁| 午夜激情av网站| 80岁老熟妇乱子伦牲交| 99热国产这里只有精品6| 2021少妇久久久久久久久久久| 免费黄网站久久成人精品| 成人毛片60女人毛片免费| 在线观看美女被高潮喷水网站| 91成人精品电影| 国产午夜精品久久久久久一区二区三区| 国模一区二区三区四区视频| 在线播放无遮挡| 国产熟女午夜一区二区三区 | 成人影院久久| 美女福利国产在线| 人妻少妇偷人精品九色| 老熟女久久久| 国产成人精品一,二区| 新久久久久国产一级毛片| 午夜福利,免费看| 日韩av不卡免费在线播放| 国产精品人妻久久久影院| 麻豆精品久久久久久蜜桃| 99视频精品全部免费 在线| 亚洲av男天堂| 日日摸夜夜添夜夜爱| 好男人视频免费观看在线| 国产老妇伦熟女老妇高清| 一级毛片我不卡| 中文字幕精品免费在线观看视频 | 精品亚洲成a人片在线观看| 日韩欧美一区视频在线观看| 日本av免费视频播放| 能在线免费看毛片的网站| 九九爱精品视频在线观看| av.在线天堂| 国产淫语在线视频| 国产午夜精品一二区理论片| 精品国产露脸久久av麻豆| 国产一区二区在线观看日韩| 一区二区三区四区激情视频| kizo精华| 我的女老师完整版在线观看| 性色av一级| 99视频精品全部免费 在线| 夫妻午夜视频| av在线app专区| 街头女战士在线观看网站| 2021少妇久久久久久久久久久| 国产在线视频一区二区| 五月玫瑰六月丁香| 亚洲精品国产av蜜桃| 亚洲精品乱码久久久久久按摩| 国产成人a∨麻豆精品| 内地一区二区视频在线| 最近中文字幕2019免费版| 国国产精品蜜臀av免费| 国产乱人偷精品视频| 街头女战士在线观看网站| 女性被躁到高潮视频| 伦理电影大哥的女人| 亚洲欧洲精品一区二区精品久久久 | 少妇熟女欧美另类| 在线看a的网站| 少妇猛男粗大的猛烈进出视频| 看十八女毛片水多多多| 91在线精品国自产拍蜜月| 免费日韩欧美在线观看| 五月开心婷婷网| 亚洲精品国产色婷婷电影| 国产日韩欧美亚洲二区| 国产一区二区在线观看日韩| 亚洲精品第二区| 久久久久久久久久久免费av| 91久久精品国产一区二区三区| 晚上一个人看的免费电影| 亚洲欧美一区二区三区黑人 | 人妻一区二区av| 日本vs欧美在线观看视频| 乱人伦中国视频| 少妇被粗大猛烈的视频| 欧美3d第一页| 国产亚洲一区二区精品| 成年人免费黄色播放视频| 97超视频在线观看视频| 人妻系列 视频| 亚洲人成77777在线视频| 丰满迷人的少妇在线观看| 欧美97在线视频| 菩萨蛮人人尽说江南好唐韦庄| 97精品久久久久久久久久精品| 亚洲人成77777在线视频| 制服人妻中文乱码| 黄色欧美视频在线观看| 免费人妻精品一区二区三区视频| 亚洲欧美清纯卡通| 伦精品一区二区三区| 欧美精品国产亚洲| 狠狠精品人妻久久久久久综合| 高清视频免费观看一区二区| 少妇的逼好多水| 丝袜喷水一区| 日本午夜av视频| 九色亚洲精品在线播放| 中文字幕人妻丝袜制服| 一二三四中文在线观看免费高清| kizo精华| 亚洲一级一片aⅴ在线观看| 高清毛片免费看| 国产精品无大码| 狂野欧美白嫩少妇大欣赏| 亚洲成人av在线免费| 日韩强制内射视频| av视频免费观看在线观看| 18禁裸乳无遮挡动漫免费视频| 欧美日韩成人在线一区二区| 欧美丝袜亚洲另类| 一区二区av电影网| 国产色婷婷99| 在线观看国产h片| 91精品三级在线观看| 美女福利国产在线| 欧美日韩一区二区视频在线观看视频在线| av不卡在线播放| a级毛片在线看网站| 麻豆乱淫一区二区| 精品国产乱码久久久久久小说| 一个人免费看片子| 制服人妻中文乱码| 久久女婷五月综合色啪小说| 99久国产av精品国产电影| 满18在线观看网站| 韩国高清视频一区二区三区| 国产伦精品一区二区三区视频9| 夜夜爽夜夜爽视频| 视频中文字幕在线观看| 你懂的网址亚洲精品在线观看| 狂野欧美白嫩少妇大欣赏| 欧美日韩精品成人综合77777| 丝袜喷水一区| 亚洲国产精品一区三区| 国产免费现黄频在线看| 亚洲精品日本国产第一区| 汤姆久久久久久久影院中文字幕| 国产爽快片一区二区三区| 国产精品国产三级国产av玫瑰| 日韩电影二区| av在线播放精品| 成年美女黄网站色视频大全免费 | 你懂的网址亚洲精品在线观看| 国产 精品1| 美女主播在线视频| 亚洲精品国产av蜜桃| 免费不卡的大黄色大毛片视频在线观看| 久热这里只有精品99| 国国产精品蜜臀av免费| 性高湖久久久久久久久免费观看| av女优亚洲男人天堂| 亚洲精品日韩av片在线观看| 国产日韩欧美在线精品| 天美传媒精品一区二区| 日本黄大片高清| 久久久久国产精品人妻一区二区| 日韩一本色道免费dvd| 国产精品一区www在线观看| 三级国产精品欧美在线观看| 亚洲四区av| 亚洲欧美精品自产自拍| 精品卡一卡二卡四卡免费| 国产高清不卡午夜福利| 亚洲欧美清纯卡通| 欧美精品一区二区大全| 国产亚洲精品久久久com| 女人久久www免费人成看片| av在线播放精品| 国产成人精品福利久久| 久久 成人 亚洲| 久久鲁丝午夜福利片| 国产高清有码在线观看视频| 国产一区二区三区综合在线观看 | 久久影院123| 秋霞伦理黄片| 亚洲欧洲日产国产| 成人午夜精彩视频在线观看| 欧美少妇被猛烈插入视频| 女人久久www免费人成看片| 欧美日韩av久久| 国产极品粉嫩免费观看在线 | 亚洲一级一片aⅴ在线观看| 久久亚洲国产成人精品v| 最后的刺客免费高清国语| 只有这里有精品99| 少妇精品久久久久久久| 天美传媒精品一区二区| 人妻夜夜爽99麻豆av| 国产精品久久久久久久久免| 又粗又硬又长又爽又黄的视频| 亚洲精品美女久久av网站| 成年人午夜在线观看视频| 国产一区二区在线观看日韩| 99久久精品一区二区三区| 国产成人a∨麻豆精品| 91午夜精品亚洲一区二区三区| 99久久人妻综合| 搡老乐熟女国产| 国产av码专区亚洲av| 啦啦啦啦在线视频资源| 亚洲怡红院男人天堂| 国产精品人妻久久久久久| 人妻人人澡人人爽人人| 国产一区二区三区av在线| 成人综合一区亚洲| 91精品国产国语对白视频| 日韩人妻高清精品专区| 伊人久久国产一区二区| 久久综合国产亚洲精品| 三级国产精品欧美在线观看| 精品99又大又爽又粗少妇毛片| 国国产精品蜜臀av免费| 精品国产一区二区三区久久久樱花| 少妇人妻精品综合一区二区| 亚洲国产av新网站| 国产精品人妻久久久久久| 日韩免费高清中文字幕av| 亚洲色图 男人天堂 中文字幕 | 十八禁网站网址无遮挡| 久久久久精品性色| 免费播放大片免费观看视频在线观看| 80岁老熟妇乱子伦牲交| 好男人视频免费观看在线| 只有这里有精品99| 成人综合一区亚洲| 热re99久久国产66热| 免费人妻精品一区二区三区视频| 国产日韩欧美在线精品| 啦啦啦视频在线资源免费观看| av网站免费在线观看视频| 亚洲国产精品国产精品| 欧美性感艳星| 成人毛片60女人毛片免费| 久久精品国产亚洲av天美| 亚洲欧洲精品一区二区精品久久久 | 日韩精品有码人妻一区| 久久久欧美国产精品| 一本大道久久a久久精品| 精品久久久久久久久亚洲| 少妇被粗大的猛进出69影院 | 国产精品99久久99久久久不卡 | 大又大粗又爽又黄少妇毛片口| 91精品伊人久久大香线蕉| 只有这里有精品99| 美女中出高潮动态图| 亚洲婷婷狠狠爱综合网| 国产一区二区三区av在线| 欧美97在线视频| 美女内射精品一级片tv| 91国产中文字幕| 久久婷婷青草| 精品卡一卡二卡四卡免费| 亚洲av国产av综合av卡| 免费少妇av软件| 大片免费播放器 马上看| 国产黄色免费在线视频| 丝袜喷水一区| 午夜福利视频精品| 街头女战士在线观看网站| 黄色欧美视频在线观看| 91精品伊人久久大香线蕉| 黄片无遮挡物在线观看| 日韩欧美一区视频在线观看| 日韩免费高清中文字幕av|