鄒鑫平,王曉麗,端正花,張紫燕,孫永彥,3*
工頻電磁環(huán)境對(duì)果蠅發(fā)育和節(jié)律行為的影響研究
鄒鑫平1,王曉麗1,端正花1,張紫燕2,3,孫永彥1,3*
(1.天津理工大學(xué)環(huán)境科學(xué)與安全工程學(xué)院,天津 300384;2.中國(guó)科學(xué)院城市環(huán)境研究所,福建 廈門 361021;3.中國(guó)科學(xué)院上海營(yíng)養(yǎng)與健康研究所,上海 200031)
比較了PF-EMF暴露下W1118野生型和突變型果蠅發(fā)育、睡眠和運(yùn)動(dòng)節(jié)律行為的差異.連續(xù)暴露處理3d后去除親本果蠅,記錄子代發(fā)育過(guò)程并監(jiān)測(cè)運(yùn)動(dòng)和睡眠節(jié)律行為.結(jié)果表明,PF-EMF暴露后W1118型成蛹量、成蠅量分別顯著提高56.2%和57.5%,型果蠅成蛹量無(wú)顯著差異,成蠅量顯著增加85.2%,子代雌雄比例未顯著變化.從行為數(shù)據(jù)看,兩株系果蠅暴露后運(yùn)動(dòng)和睡眠節(jié)律相位未見顯著差異,W1118型表現(xiàn)為24h平均運(yùn)動(dòng)次數(shù)增加37.3%,24h睡眠片段次數(shù)減少10.6%,型24h平均運(yùn)動(dòng)次數(shù)顯著增加50.0%,24h睡眠片段次數(shù)減少51.5%,總睡眠時(shí)長(zhǎng)顯著降低45.7%.和W1118型相比,型果蠅發(fā)育、運(yùn)動(dòng)、睡眠情況改變更顯著,提示型果蠅電磁暴露更為敏感.總之PF-EMF環(huán)境對(duì)昆蟲發(fā)育和節(jié)律行為均可帶來(lái)影響,造成后代數(shù)量上升、顯著活躍果蠅運(yùn)動(dòng)行為并引起睡眠障礙.本研究為進(jìn)一步了解電磁暴露對(duì)昆蟲類生物的影響,合理評(píng)估PF-EMF的生態(tài)效應(yīng)提供依據(jù).
工頻電磁場(chǎng);黑腹果蠅;節(jié)律行為;發(fā)育
工頻電磁場(chǎng)(Power frequency electromagnetic field,PF-EMF)指電力傳輸線路、設(shè)施產(chǎn)生的頻率在50Hz的電磁場(chǎng).隨著我國(guó)用電量激增,大規(guī)模戶外輸變電工程產(chǎn)生的人造電磁場(chǎng)改變了電磁環(huán)境背景[1],對(duì)動(dòng)植物乃至生態(tài)系統(tǒng)產(chǎn)生影響.例如一些農(nóng)業(yè)活動(dòng)中關(guān)注的昆蟲類動(dòng)物如蜜蜂、蚜蟲等,已有報(bào)道顯示其對(duì)電磁環(huán)境敏感,一些電磁技術(shù)在害蟲防治方面得到了應(yīng)用[2].英國(guó)研究人員的一項(xiàng)Meta分析顯示,WiFi、移動(dòng)通信網(wǎng)絡(luò)和電線構(gòu)成的全球通訊系統(tǒng)所產(chǎn)生的電磁輻射可能會(huì)擾亂鳥類和昆蟲的方向感和運(yùn)動(dòng),并影響其代謝活動(dòng)[3].同時(shí)也有部分研究者認(rèn)為PF-EMF暴露不會(huì)對(duì)昆蟲的生活史產(chǎn)生顯著影響[4].鑒于電氣化時(shí)代背景下PF-EMF環(huán)境農(nóng)業(yè)生態(tài)效應(yīng)評(píng)估仍不充分[5],為應(yīng)對(duì)該形勢(shì),本研究擬利用模式生物黑腹果蠅(,以下簡(jiǎn)稱“果蠅”)來(lái)分析PF-EMF對(duì)昆蟲類生物發(fā)育和節(jié)律行為的影響.已有報(bào)道顯示昆蟲作為數(shù)量龐大的生物類群對(duì)各種電磁環(huán)境變化和脅迫敏感.例如將粘蟲放置于亥姆赫茲線圈產(chǎn)生的強(qiáng)磁場(chǎng)中時(shí),粘蟲群體共同定向行為消失[6].關(guān)于電磁場(chǎng)對(duì)果蠅的影響迄今研究并不廣泛深入.我們前期探索發(fā)現(xiàn)PF-EMF聯(lián)合高溫脅迫環(huán)境下果蠅體內(nèi)熱激蛋白表達(dá)水平發(fā)生響應(yīng),PF-EMF暴露可提高果蠅對(duì)溫度的耐受能力,緩解高溫環(huán)境對(duì)果蠅的損傷效應(yīng)[7].對(duì)于電氣化背景下輸變電工程帶來(lái)的PF-EMF電磁場(chǎng)的昆蟲生物學(xué)效應(yīng)目前來(lái)講還未有明確定論.本文以果蠅為研究對(duì)象來(lái)探究PF-EMF的生物效應(yīng)具有創(chuàng)新性.一是果蠅具備昆蟲類生物的明顯特征,具有繁殖快、后代數(shù)目多、發(fā)育過(guò)程性狀明顯等優(yōu)點(diǎn);二是果蠅的節(jié)律行為具有代表性,其運(yùn)動(dòng)和睡眠節(jié)律等行為指標(biāo)可在實(shí)驗(yàn)室條件下進(jìn)行檢測(cè),并且參與果蠅睡眠調(diào)控的生物鐘基因十分保守,與哺乳動(dòng)物有同源相似性,可作為開展節(jié)律行為研究的常用模型[8].本實(shí)驗(yàn)利用野生型W1118和突變體模型果蠅來(lái)研究PF-EMF暴露對(duì)昆蟲發(fā)育、睡眠和運(yùn)動(dòng)節(jié)律行為的影響,基因又名red eye 基因,編碼煙堿乙酰膽堿受體α4(nAChRα4)復(fù)合物的四通道跨膜通道蛋白.已知當(dāng)突變后,四通道跨膜通道蛋白功能異常造成果蠅睡眠減少、睡眠碎片化[9].本實(shí)驗(yàn)可為明確PF-EMF的昆蟲生物學(xué)效應(yīng),明確和制定合理的PF-EMF暴露生態(tài)健康風(fēng)險(xiǎn)防控規(guī)范提供理論支持.
野生型黑腹果蠅() W1118品系和突變型黑腹果蠅12414R3品系,購(gòu)自中國(guó)科學(xué)院上海生命科學(xué)研究院生化細(xì)胞所果蠅資源與技術(shù)平臺(tái).以玉米粉-蔗糖-酵母為基本培養(yǎng)基,培養(yǎng)于光照周期12L:12D(06:00開燈,18:00關(guān)燈),溫度(25±1)℃,相對(duì)濕度(60±1)%的人工氣候箱中.
PF-EMF實(shí)驗(yàn)暴露艙如圖1所示,主要利用交流變頻電源、低溫恒溫循環(huán)器和亥姆霍茲線圈來(lái)營(yíng)造一個(gè)穩(wěn)定可調(diào)控的極低頻電磁場(chǎng).亥姆霍茲線圈平放在支架上,通過(guò)電線與能夠穩(wěn)定調(diào)控輸出電壓和頻率的交流變頻電源相連,接通電源后,可在兩線圈中間形成一個(gè)穩(wěn)定的磁場(chǎng).為了實(shí)現(xiàn)對(duì)實(shí)驗(yàn)的溫濕度、光照等環(huán)境的控制,兩個(gè)亥姆霍茲線圈放于生化培養(yǎng)箱中.其能夠?qū)崿F(xiàn)頻率40~499.9Hz;磁場(chǎng)強(qiáng)度:0.01~10mT范圍內(nèi)的模擬.此次實(shí)驗(yàn)的暴露條件為:頻率50Hz、磁場(chǎng)強(qiáng)度6mT.
A:示意圖:1.生化培養(yǎng)箱2.亥姆霍茲線圈 3. 冷凝循環(huán)器 4. 溫度記錄儀5. 變頻電源;B:實(shí)物圖
實(shí)驗(yàn)在黑暗條件下進(jìn)行,共設(shè)置4組,分別為對(duì)照-W1118組、PF-EMF-W1118組、對(duì)照-組和PF-EMF-組.收集48h內(nèi)羽化的果蠅,接種10對(duì)果蠅于新鮮培養(yǎng)基中,每組10管,暴露組培養(yǎng)于發(fā)射磁場(chǎng)的線圈中,對(duì)照組培養(yǎng)于磁場(chǎng)強(qiáng)度為0的人工培養(yǎng)箱中,連續(xù)暴露三日后去除親本,然后將帶有卵的果蠅管繼續(xù)暴露,直至最后一只子代果蠅羽化出來(lái)停止實(shí)驗(yàn),實(shí)驗(yàn)重復(fù)三次.期間統(tǒng)計(jì)各果蠅管中的成蛹數(shù)、成蠅數(shù)前三天成蛹率以及雌雄比,繪制成蛹進(jìn)程曲線,具體統(tǒng)計(jì)方法如下:
成蛹(蠅)數(shù):統(tǒng)計(jì)每管中一個(gè)生活史周期內(nèi)所出現(xiàn)的蛹或(羽化的果蠅)的數(shù)量.
前三天成蛹率:從第一個(gè)蛹出現(xiàn)開始計(jì)為第一天,統(tǒng)計(jì)前三天成蛹數(shù)量占總成蛹量比值.
雌雄比:每管中雌果蠅與雄果蠅的數(shù)量比.
本實(shí)驗(yàn)選用DAM2行為監(jiān)測(cè)器(Drosophila Activity Monitor,美國(guó)TriKinetics公司)用于記錄果蠅運(yùn)動(dòng)和睡眠節(jié)律,DAM2能夠一次性測(cè)量32只果蠅樣本的運(yùn)動(dòng)行為,每只果蠅單獨(dú)放在該系統(tǒng)配套玻璃管中,當(dāng)果蠅穿過(guò)試管中點(diǎn)時(shí)就切割一次紅外光束,信號(hào)自動(dòng)傳感計(jì)數(shù)一次,被視為果蠅運(yùn)動(dòng)一次.按照1.3所述實(shí)驗(yàn)條件和分組,收集48h內(nèi)羽化的雄蠅將其裝進(jìn)監(jiān)測(cè)管中并每五分鐘記錄一次數(shù)據(jù).果蠅裝進(jìn)玻璃檢測(cè)管中適應(yīng)至少24h后再開展實(shí)驗(yàn),實(shí)驗(yàn)持續(xù)處理3d,重復(fù)3次.統(tǒng)計(jì)分析各組果蠅的運(yùn)動(dòng)和睡眠情況,計(jì)算指標(biāo)如下:
(1)平均運(yùn)動(dòng)次數(shù):統(tǒng)計(jì)每只果蠅的總運(yùn)動(dòng)次數(shù)后計(jì)算所有果蠅的總運(yùn)動(dòng)次數(shù)的平均值,分析白天、夜晚和24h(整天)三個(gè)指標(biāo).白天總運(yùn)動(dòng)次數(shù)為從上午06:00~18:00時(shí)間段內(nèi)總運(yùn)動(dòng)次數(shù)的平均值;夜晚平均運(yùn)動(dòng)次數(shù)表示從上午18:00至第二天06:00 時(shí)段;24h總運(yùn)動(dòng)次數(shù)為從下午18:00至第二天18:00全天所有果蠅總運(yùn)動(dòng)次數(shù)的平均值.
(2)單位時(shí)間運(yùn)動(dòng)量:果蠅清醒狀態(tài)每分鐘的平均運(yùn)動(dòng)次數(shù)即為單位時(shí)間運(yùn)動(dòng)量.由白天、夜晚或24h每一時(shí)間段范圍內(nèi)的總運(yùn)動(dòng)次數(shù)除以對(duì)應(yīng)時(shí)間段的總運(yùn)動(dòng)時(shí)間.計(jì)算公式為:單位時(shí)間運(yùn)動(dòng)量=每個(gè)時(shí)間段的總運(yùn)動(dòng)次數(shù)/(每個(gè)時(shí)間段總時(shí)長(zhǎng)-每個(gè)時(shí)間段的總睡眠時(shí)間).
(3)睡眠總時(shí)間:在監(jiān)測(cè)過(guò)程中,果蠅連續(xù)5min沒(méi)有穿越監(jiān)測(cè)玻璃管中間位置,運(yùn)動(dòng)次數(shù)計(jì)為0,視為果蠅處于睡眠狀態(tài)狀態(tài)[10],統(tǒng)計(jì)果蠅白天、夜晚和24h的總睡眠時(shí)長(zhǎng).
(4)睡眠片段:果蠅在各時(shí)間段睡眠片段次數(shù).分別出統(tǒng)計(jì)果蠅在白天、夜晚和24h內(nèi)的睡眠次數(shù).
由實(shí)驗(yàn)結(jié)果圖2A可知,PF-EMF暴露后W1118型成蛹量、成蠅量分別顯著提高56.2%和57.5%(< 0.05),型果蠅成蛹量雖無(wú)顯著差異但呈現(xiàn)增加趨勢(shì),成蠅量顯著增加85.2%(<0.01),表明PF-EMF暴露可引起果蠅后代數(shù)量增加,無(wú)論是野生型還是突變型果蠅,均對(duì)其生殖有促進(jìn)作用.細(xì)胞水平研究顯示工頻電磁場(chǎng)可促進(jìn)細(xì)胞增殖和分裂,比如多次照射PF-EMF后可對(duì)正常淋巴細(xì)胞和肝細(xì)胞的增殖產(chǎn)生刺激作用[11].除交變PF-EMF外,一些學(xué)者認(rèn)為中等強(qiáng)度的靜態(tài)磁場(chǎng)(1mT~1T)能加快昆蟲胚后發(fā)育,增加昆蟲體重[12],這些證據(jù)提示PF- EMF電磁場(chǎng)可能對(duì)昆蟲繁殖具有相同的效應(yīng).從機(jī)理層面分析,一些研究提示PF-EMF促進(jìn)繁殖可能與細(xì)胞間隙連接有關(guān).間隙連接是細(xì)胞通訊的一種方式,在代謝偶聯(lián)、神經(jīng)沖動(dòng)信息傳遞、早期胚胎發(fā)育和細(xì)胞分化過(guò)程中具有重要作用.姜槐等[13]發(fā)現(xiàn)工頻磁場(chǎng)對(duì)間隙連接具有抑制或協(xié)同抑制作用,而間隙連接異常往往引起細(xì)胞間物質(zhì)交換障礙,進(jìn)而引發(fā)細(xì)胞分裂增殖異常.PF-EMF可能通過(guò)改變果蠅細(xì)胞間隙連接通訊促進(jìn)了細(xì)胞分裂,最終導(dǎo)致子代數(shù)量的增加.由實(shí)驗(yàn)結(jié)果圖2B可知,野生型和突變型兩種果蠅在PF-EMF暴露處理后子代性別比均未發(fā)生顯著差改變(圖2B,>0.05),表明PF-EMF暴露處理不會(huì)造成果蠅后代性別偏離,只引起數(shù)量增加,提示PF-EMF可能不是影響果蠅繁殖過(guò)程中性別比例的關(guān)鍵因子.一些流行病資料也證實(shí)極低頻電磁場(chǎng)波段范圍輻射因其強(qiáng)度偏低,可能對(duì)子代出生性別比例影響很小.如Saadat等[14]發(fā)現(xiàn)51名高壓架線工經(jīng)PF-EMF暴露后也未造成其后代發(fā)生顯著性別偏離,但值得注意的是這些試驗(yàn)雖無(wú)統(tǒng)計(jì)學(xué)差異,但子代中雄性比例有下降的趨勢(shì),本研究中野生型果蠅也出現(xiàn)類似趨勢(shì).結(jié)合下文中PF-EMF暴露引發(fā)了果蠅運(yùn)動(dòng)水平提高(圖4A),分析果蠅后代數(shù)量增加的原因可能還與PF-EMF提高了運(yùn)動(dòng)次數(shù)進(jìn)而增大了果蠅交配行為發(fā)生可能性相關(guān),從而提高了繁殖成功率,但未顯著影響后代性別比例.例如已有研究發(fā)現(xiàn)PF-EMF可引發(fā)蝗蟲變得活躍,飛行增加,進(jìn)而增大其成功產(chǎn)卵概率,從而提高繁殖數(shù)量[15],本實(shí)驗(yàn)研究也得出了類似的結(jié)論,這些結(jié)果啟示我們應(yīng)當(dāng)關(guān)注PF-EMF對(duì)昆蟲生殖過(guò)程的影響,對(duì)PF-EMF環(huán)境暴露的生態(tài)閾值進(jìn)一步加以管理,比如要進(jìn)一步通過(guò)實(shí)驗(yàn)研究明確PF-EMF是否會(huì)造成昆蟲的性別比例發(fā)生變化,且這種變化是否可能通過(guò)世代累積效應(yīng)顯現(xiàn),后續(xù)應(yīng)當(dāng)討論和關(guān)注.
A:成蛹量、成蠅量;B:雌雄比
*<0.05 **<0.01,下同
由圖3A來(lái)看,PF-EMF暴露處理后,W1118果蠅前3d成蛹率顯著降低(<0.01),進(jìn)一步結(jié)合成蛹時(shí)間曲線分析可以發(fā)現(xiàn)(圖3B),前3d的成蛹量未受PF-EMF處理影響,從第11d開始,暴露組成蛹量顯著高于對(duì)照組,PF-EMF處理導(dǎo)致后代蛹量顯著增加,因此計(jì)算出的前三天成蛹率數(shù)值暴露組顯著低于對(duì)照組.分析原因可能是PF-EMF的時(shí)間累積效應(yīng).隨著暴露時(shí)間的延長(zhǎng),W1118果蠅表現(xiàn)出的響應(yīng)更明顯.PF-EMF的時(shí)間累積效應(yīng)這一結(jié)論也有其他生物證據(jù)支持.例如范純武等[16]采用50Hz, 1.5mT工頻磁場(chǎng)環(huán)境暴露健康人外周血細(xì)胞,培養(yǎng)24~96h后發(fā)現(xiàn)試驗(yàn)組淋巴細(xì)胞轉(zhuǎn)化率隨磁場(chǎng)作用時(shí)間的延長(zhǎng)而遞增,反映50Hz工頻磁場(chǎng)能對(duì)淋巴細(xì)胞產(chǎn)生損傷性生物效應(yīng), 且這種效應(yīng)隨輻射時(shí)間的延長(zhǎng)而加劇.已知PF-EMF暴露處理后昆蟲胚后發(fā)育加快,細(xì)胞增殖和分裂能力異?;钴S,在本實(shí)驗(yàn)中,果蠅成蛹進(jìn)程的加速效應(yīng)可能隨著暴露時(shí)間推移而加劇,因而導(dǎo)致了W1118前期成蛹量不變,后期急劇增加的情況.
A:前三天成蛹率;B:成蛹進(jìn)程曲線
繼續(xù)分析果蠅成蛹過(guò)程發(fā)現(xiàn),前3d的成蛹率和對(duì)照組相比降低,但未達(dá)到顯著水平(圖3A),由圖3B可知,PF-EMF暴露組的成蛹數(shù)量整體顯著多于對(duì)照組,提示PF-EMF暴露引發(fā)了整個(gè)階段內(nèi)的蛹數(shù)量增加.PF-EMF暴露主要影響W1118果蠅成蛹中后期階段,對(duì)成蛹前期無(wú)顯著作用,而PF-EMF可導(dǎo)致果蠅整個(gè)發(fā)育進(jìn)程子代數(shù)量顯著上升,表明對(duì)于PF-EMF暴露脅迫,果蠅比W1118果蠅更敏感.已知突變型生物個(gè)體存在睡眠節(jié)律障礙,睡眠比野生型水平更低,因而體質(zhì)更加羸弱[17],這可能是突變型果蠅對(duì)外界一些環(huán)境刺激比野生型更易感的原因之一,果蠅可能比野生型更難以抵御PF-EMF脅迫.從運(yùn)動(dòng)水平分析,由于果蠅睡眠減少,比野生型更活躍,結(jié)合下文中運(yùn)動(dòng)行為監(jiān)測(cè)結(jié)果,發(fā)現(xiàn)PF-EMF能促進(jìn)果蠅運(yùn)動(dòng)更加活躍(圖4A),因而果蠅其交配概率比野生型高,產(chǎn)生的蛹數(shù)量也明顯多于野生型,這也可能是在成蛹階段早期果蠅就表現(xiàn)出高成蛹水平的原因.
2.3.1 PF-EMF對(duì)果蠅運(yùn)動(dòng)行為的影響 實(shí)驗(yàn)中對(duì)果蠅運(yùn)動(dòng)行為的監(jiān)測(cè)結(jié)果顯示,PF-EMF暴露處理后無(wú)論是W1118還是果蠅其運(yùn)動(dòng)水平明顯提高(圖4A,*<0.05,**<0.01),野生型果蠅夜間運(yùn)動(dòng)次數(shù)顯著增多,24h全天運(yùn)動(dòng)次數(shù)顯著提升37.3%,白天運(yùn)動(dòng)次數(shù)雖升高但未出現(xiàn)明顯差異,表明PF-EMF可導(dǎo)致野生型果蠅夜間異常活躍,提示PF-EMF對(duì)昆蟲的運(yùn)動(dòng)節(jié)律存在潛在危害.已有報(bào)道表示,PF-EMF可以顯著增加蝗蟲翼拍頻率,蝗蟲種群表現(xiàn)更加活躍,飛行擴(kuò)散范圍顯著增加[18].蜜蜂暴露于電磁場(chǎng)后展現(xiàn)出更加積極的攻擊行為[19],這些結(jié)果與本實(shí)驗(yàn)中果蠅PF-EMF暴露后造成運(yùn)動(dòng)頻繁十分相似.認(rèn)為PF-EMF作為一種環(huán)境脅迫刺激,可能使昆蟲產(chǎn)生壓力應(yīng)激反應(yīng).本實(shí)驗(yàn)中,果蠅為應(yīng)對(duì)PF-EMF暴露環(huán)境壓力進(jìn)而表現(xiàn)活躍,具體分析分子機(jī)制可能與PF-EMF誘導(dǎo)熱激蛋白(Heat Shock Proteins,HSPs)表達(dá)相關(guān).熱激蛋白又稱作熱休克蛋白,多以“分子伴侶” (molecullar chaperones) 的形式與代謝活動(dòng)中蛋白酶相結(jié)合, 糾正蛋白錯(cuò)誤卷曲, 從而保護(hù)酶活性, 提高機(jī)體耐受能力.當(dāng)機(jī)體遭受紫外線、低氧等不良脅迫環(huán)境時(shí),機(jī)體處于應(yīng)激狀態(tài),表現(xiàn)為HSP表達(dá)升高.已有報(bào)道顯示運(yùn)動(dòng)應(yīng)激能誘導(dǎo)骨骼肌細(xì)胞中HSP合成表達(dá)上升,如發(fā)現(xiàn)低頻電短期刺激可延長(zhǎng)大鼠游泳時(shí)間,增加其運(yùn)動(dòng)能力,蛋白水平檢測(cè)發(fā)現(xiàn)大鼠此過(guò)程中增強(qiáng)了HSP70表達(dá)[20].本課題組前期的研究已經(jīng)發(fā)現(xiàn)PF-EMF暴露可誘導(dǎo)果蠅、及的等熱激蛋白基因表達(dá)水平上升[21],由此可以推出PF-EMF暴露可能引發(fā)了果蠅運(yùn)動(dòng)行為增加.
與野生型相比,突變體果蠅白天和夜晚運(yùn)動(dòng)次數(shù)均升高,說(shuō)明PF-EMF對(duì)突變體果蠅影響更顯著,這可能也是由于突變體果蠅對(duì)PF-EMF更易感.由圖4B進(jìn)一步分析果蠅活躍的具體表現(xiàn),我們發(fā)現(xiàn)暴露組野生型果蠅單位時(shí)間運(yùn)動(dòng)次數(shù)顯著提升(**<0.01),而突變型果蠅變化不顯著,提示兩株系果蠅運(yùn)動(dòng)活躍機(jī)制有差異.對(duì)于野生型果蠅而言,PF-EMF暴露后表現(xiàn)為較明顯的應(yīng)激反應(yīng),單位時(shí)間內(nèi)活動(dòng)頻繁;而對(duì)突變體果蠅來(lái)講,PF- EMF的影響則更體現(xiàn)為減少果蠅的睡眠時(shí)長(zhǎng),運(yùn)動(dòng)時(shí)長(zhǎng)隨之增加,因而表現(xiàn)為運(yùn)動(dòng)總量增加而單位運(yùn)動(dòng)量未變.分析分子機(jī)制,推測(cè)在野生型果蠅體內(nèi),PF- EMF暴露效應(yīng)主要體現(xiàn)為一種類似于熱應(yīng)激反應(yīng),由于HSP表達(dá)增多伴隨果蠅行為活躍,與上文探討一致;而在果蠅體內(nèi),已知蛋白是編碼煙堿乙酰膽堿受體α4(nAChRα4)復(fù)合物的四通道跨膜通道蛋白,當(dāng)發(fā)生突變后,乙酰膽堿跨膜轉(zhuǎn)運(yùn)受阻干擾了信號(hào)傳導(dǎo)過(guò)程,進(jìn)而發(fā)生睡眠質(zhì)量碎片化的現(xiàn)象.實(shí)驗(yàn)表明nAChRα4 突變會(huì)導(dǎo)致有機(jī)體對(duì)睡眠環(huán)境更為敏感,比如nAChRα4 突變致癲癇的患者睡眠時(shí)對(duì)溫度、光環(huán)境質(zhì)量要求提高[22].已有證據(jù)提示極低頻電磁場(chǎng)作為干擾因子,在長(zhǎng)期職業(yè)接觸后可能會(huì)導(dǎo)致工人抑郁、焦慮和睡眠質(zhì)量變差[23],本研究中也發(fā)現(xiàn)了PF-EMF暴露減少果蠅睡眠時(shí)長(zhǎng)的結(jié)果.當(dāng)果蠅經(jīng)PF-EMF處理后,此時(shí)類熱應(yīng)激反應(yīng)的表現(xiàn)不明顯,而對(duì)于突變導(dǎo)致的睡眠剝奪效應(yīng)的影響更為凸顯.
2.3.2 PF-EMF對(duì)果蠅睡眠行為的影響 由圖5A可知,W1118野生型果蠅的總睡眠時(shí)長(zhǎng)在PF-EMF暴露后未發(fā)生顯著變化,基因突變型果蠅白天、夜間和24h全天的睡眠時(shí)長(zhǎng)均顯著下降(<0.01).該結(jié)果進(jìn)一步印證了基因突變型果蠅比野生型果蠅對(duì)PF-EMF環(huán)境脅迫更加敏感.同時(shí)W1118型果蠅的睡眠時(shí)長(zhǎng)在暴露后未顯著改變,這也驗(yàn)證了上文對(duì)W1118型果蠅活躍表現(xiàn)的原因分析,主要是由于果蠅活動(dòng)頻率增加,單位時(shí)間內(nèi)運(yùn)動(dòng)次數(shù)上升,并非是擠占了睡眠時(shí)間.圖5B可以看出對(duì)照組果蠅睡眠片段化次數(shù)明顯多于對(duì)照組W1118野生型果蠅,這是由于蛋白突變?cè)斐?PF-EMF暴露后W1118的24h睡眠片段次數(shù)顯著減少10.6%,白天和夜間統(tǒng)計(jì)結(jié)果與對(duì)照組未出現(xiàn)顯著差異,而果蠅的夜間睡眠片段次數(shù)減少,24h睡眠片段次數(shù)下降51.5%(*<0.05,**<0.01),總睡眠時(shí)間也顯著減少45.7%,表明突變型果蠅暴露后形成失眠的情況比野生型更顯著,結(jié)合上文運(yùn)動(dòng)節(jié)律分析,果蠅因失眠造成運(yùn)動(dòng)時(shí)間延長(zhǎng),進(jìn)而總運(yùn)動(dòng)量增大.
2.3.3 PF-EMF對(duì)果蠅節(jié)律相位的影響 由圖6分析可知無(wú)論是W1118野生型果蠅還是基因突變型果蠅,PF-EMF并未改變其運(yùn)動(dòng)和睡眠整體節(jié)律相位.兩株系果蠅都呈現(xiàn)出明顯運(yùn)動(dòng)節(jié)律峰(圖6A)和睡眠節(jié)律峰(圖6B),與W1118相對(duì)比,果蠅受PF-EMF影響更大,運(yùn)動(dòng)量增加和睡眠減少更顯著.圖6B顯示,W1118果蠅與果蠅均在中午12:00出現(xiàn)睡眠高峰,但果蠅對(duì)照組與暴露組的高峰峰值的差距比野生型明顯,果蠅在暴露后明顯減少了高峰期睡眠時(shí)間,且隨著暴露時(shí)間延長(zhǎng),W1118果蠅與果蠅的睡眠高峰峰值在PF-EMF暴露后差異均越來(lái)越明顯,這可能是由于暴露的累積效應(yīng)所致.
A:平均運(yùn)動(dòng)次數(shù);B:單位時(shí)間運(yùn)動(dòng)量
A:睡眠總時(shí)長(zhǎng);B:睡眠片段
A:運(yùn)動(dòng)規(guī)律;B:睡眠規(guī)律
3.1 人造輸變電工程的產(chǎn)生的工頻電磁環(huán)境對(duì)昆蟲發(fā)育和節(jié)律行為有影響.PF-EMF暴露對(duì)果蠅成蛹量和成蛹速率都有促進(jìn)作用,但不改變出生子代的性別比例,未發(fā)生性別偏移.
3.2 PF-EMF暴露對(duì)果蠅運(yùn)動(dòng)和睡眠的節(jié)律相位未造成顯著影響,但PF-EMF暴露后果蠅運(yùn)動(dòng)量明顯增大,睡眠時(shí)間顯著減少,睡眠片段增多,PF-EMF暴露引起野生型果蠅運(yùn)動(dòng)行為增加,活動(dòng)頻繁,表現(xiàn)為一種類熱應(yīng)激反應(yīng)效應(yīng).
3.3突變型果蠅作為短睡眠個(gè)體與野生型相比,體質(zhì)相對(duì)羸弱,因而對(duì)PF-EMF環(huán)境壓力的感知更敏感,效應(yīng)表現(xiàn)比野生型更顯著,突變型表現(xiàn)為睡眠片段次數(shù)減少,運(yùn)動(dòng)量增大主要由于失眠所致,PF-EMF顯著降低了突變體果蠅的睡眠水平,加劇其睡眠障礙情況.
[1] 張邦俊,仇 豐,張莉,等.居住區(qū)內(nèi)高壓輸電線路工頻電磁污染分布研究[J]. 中國(guó)環(huán)境科學(xué), 2002,(3):81-85. Zhang B J, Qiu F, Zhang L, et al. Studies on distribution of power frequency electromagnetic fields pollution generated by high-voltage transmission lines in uptown. China Environmental Science, 2002,(3): 81-85.
[2] 赫 娟.電場(chǎng)和磁場(chǎng)脅迫下昆蟲生物學(xué)效應(yīng)及其機(jī)理初步研究[D]. 楊凌:西北農(nóng)林科技大學(xué), 2015. He J. The biological effects and initial mechanism of electrical field and magnetic field expressure on the insects [D]. Yangling: Northwest A & F University, 2015.
[3] Zadeh H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism [J]. Journal of the Royal Society Interface, 19(193):20220325.
[4] Pereira M C, Guimar?es I C, Acosta-Avalos D, et al. Can altered magnetic field affect the foraging behaviour of ants? [J]. PLoS One, 25; 14(11):e0225507.
[5] Toribio D, Joseph W, Thielens A. Near field radio frequency electromagnetic field exposure of a western honey bee [J]. IEEE Transactions on Antennas and Propagation, 2022,70(2):1320-1327.
[6] 高月波,胡 高,翟保平.磁場(chǎng)變化對(duì)粘蟲飛行定向行為的影響 [J]. 應(yīng)用昆蟲學(xué)報(bào), 2014,51(4):899-905. Gao Y B, Hu G, Zhai B P. The effect of converted magnetic fields on orientation behavior of armyworm moths(Walker) [J]. Chinese Journal of Applied Entomology, 2014,51(4):899-905.
[7] 張 晶,張紫燕,楊傳俊,等.高溫下極低頻電磁場(chǎng)暴露對(duì)果蠅hsp22和hsp26基因影響的研究 [J]. 軍事醫(yī)學(xué), 2014,38(5):321-326. Zhang J, Zhang Z Y, Yang C J, et al. Co-effects of extremely low frequency electromagnetic field (ELF-EMF) and temperature on hsp22 and hsp26expression in[J]. Military Medical Sciences, 2014,38(5):321-326.
[8] Allada R, Chung B Y. Circadian organization of behavior and physiology in Drosophila [J]. Annu Rev. Physiol., 2010,72:605-624.
[9] Shi M, Yue Z, Kuryatov A, et al. Identification of redeye, a new sleep-regulating protein whose expression is modulated by sleep amount [J]. Elife, 2014,3:e01473.
[10] Cirelli C, Bushey D. Sleep and wakefulness in[J]. Annals of the New York Academy of Sciences, 2008,1129:323-329.
[11] 郭鴻涌.工頻勻強(qiáng)磁場(chǎng)對(duì)正常細(xì)胞和腫瘤細(xì)胞凋亡與增殖影響的研究[D]. 天津:河北工業(yè)大學(xué), 2004. Guo H Y. The effects of power frequency homogeneous magnetic field on apoptosis and proliferation of normal and tumor cells [D]. TianJin: Hebei University of Technology, 2004.
[12] 馬幼飛,陳寧生.電磁場(chǎng)對(duì)昆蟲的生物學(xué)效應(yīng)[J]. 昆蟲知識(shí), 1992,(1):49-52. Ma Y F, Chen N S. Biological effects of electromagnetic fields on insects [J]. Chinese Journal of Applied Entomology, 1992,(1):49-52.
[13] 姜 槐,胡根林.工頻磁場(chǎng)影響細(xì)胞間隙連接通訊功能及其機(jī)制的研究[J]. 自然科學(xué)進(jìn)展, 2002,(4):22-25. Jiang H, Hu G L. Study on the effect of industrial frequency magnetic field on the communication function of cell gap junctions and its mechanism [J]. Progress in Natural Science, 2002,(4):22-25.
[14] Saadat M. Electromagnetic fields, hormonal changes, and offspring sex ratio [J]. Saudi Medical Journal, 2005,26(9):1487.
[15] Pellacani C, Costa L G. Role of autophagy in environmental neurotoxicity [J]. Environment Pollution, 2018,235:791-805.
[16] 范純武,袁 鐵,趙 銳,等.工頻電磁場(chǎng)對(duì)不同增殖期淋巴細(xì)胞的生物效應(yīng)[J]. 中華現(xiàn)代內(nèi)科學(xué)雜志, 2004,1(4):341-343. Fan C W, Yuan T, Zhao R, et al. Biological effects of industrial frequency electromagnetic fields on lymphocytes at different proliferative stages [J]. Chinese Journal of Internal Medicine, 2004, 1(4):341-343.
[17] Dai X, Zhou E, Yang W, et al. Molecular resolution of a behavioral paradox: sleep and arousal are regulated by distinct acetylcholine receptors in different neuronal types in Drosophila [J]. Sleep, 2021,44(7):zsab017.
[18] Shepherd S, Jackson C W, Sharkh S M, et al. Extremely low- frequency electromagnetic fields entrain locust wingbeats [J]. Bioelectromagnetics, 2021,42(4):296-308.
[19] Shepherd S, Hollands G, Godley V C, et al. Increased aggression and reduced aversive learning in honey bees exposed to extremely low frequency electromagnetic fields [J]. PLoS One, 2019,14(10): e0223614.
[20] 姜洪福.低頻電刺激對(duì)大鼠腓腸肌熱休克蛋白70的誘導(dǎo)及對(duì)運(yùn)動(dòng)能力的影響 [J]. 中華物理醫(yī)學(xué)與康復(fù)雜志, 2000,22(2):53-54. Jiang H F. Induction of heat shock protein 70 in rat gastrocnemius muscle by low frequency electrical stimulation and its effect on locomotor performance [J]. Chinese Journal of Physical Medicine and Rehabilitation, 2000,(2):53-54.
[21] Zhang Z, Zhang J, Yang C, et al. Coupling mechanism of electromagnetic field and thermal stress on[J]. Plos One, 2016,11(9):e0162675.
[22] Laikowski M, Reisdorfer F, Moura S. NAChR α4β2subtype and their relation with nicotine addiction, cognition, depression and hyperactivity disorder [J]. Current Medicinal Chemistry, 2018,25(20): 3792-3811.
[23] Hosseinabadi M, Khanjani N, Ebrahimi M, et al. The effect of chronic exposure to extremely low-frequency electromagnetic fields on sleep quality, stress, depression and anxiety [J]. Electromagnetic Biology and Medicine, 2019,38(1):96-101.
Effects of power frequency electromagnetic environment on development and rhythmic behavior of.
ZOU Xin-ping1, WANG Xiao-li1, DUAN Zheng-hua1, ZHANG Zi-yan2,3, SUN Yong-yan1,3*
(1.School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;2.Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;3.Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China)., 2023,43(11):6149~6155
Differences in development, sleep and movement rhythmic behaviors between W1118 wild-type flies andmutants were investigated under PF-EMF exposure. After continuous exposure for 3 days, the parental flies were removed. Developmental process, movement and sleep rhythmic behaviors of offspring were monitored. The results showed that , the pupal and fly population of W1118 significantly increased respectively by 56.2% and 57.5% under PF-EMF exposure. No significant changes were observed in pupal numbers oftype flies, but the fly population significantly increased by 85.2%. No significant change of sex ratio was found under PF-EMF exposure. For W1118 flies, the average number of 24-hour movements was increased by 37.3% after PF-EMF exposure, and 10.6% decrease in the number of 24-hour sleep segments was calculated. Fortype flies, the average counts of 24-hour movement significantly increased by 50.0 % after exposure, and 51.5% decrease of 24-hour sleep segment counts was investigated. In the meanwhile, 45.7% decrease of the total sleep duration were also found. Compared with the W1118 type, themutants showed more significant changes, which suggested thatmutants were more sensitive to PF-EMF exposure. In brief, the PF-EMF environment can impact development and rhythmic behaviors of insects. Increased fly offspring numbers movement counts, and disturbed sleep were found after PF-EMF exposure. Further understandings on the entomological effects of PF-EMF exposure, and reasonable evaluations on the ecological effects of PF-EMF can be provided in this study.
PF-EMF;;behavioral rhythms;development
X171.5
A
1000-6923(2023)11-6149-07
鄒鑫平(1997-),男,江西撫州人,天津理工大學(xué)碩士,主要從事物理環(huán)境與睡眠健康相關(guān)研究.發(fā)表論文1篇.zouxinping918@163.com.
鄒鑫平,王曉麗,端正花,等.工頻電磁環(huán)境對(duì)果蠅發(fā)育和節(jié)律行為的影響研究 [J]. 中國(guó)環(huán)境科學(xué), 2023,43(11):6149-6155.
Zou X P, Wang X L, Duan Z H, et al. Effects of power frequency electromagnetic environment on development and rhythmic behavior of[J]. China Environmental Science, 2023,43(11):6149-6155.
2023-03-09
自然資源部海洋生物遺傳資源重點(diǎn)實(shí)驗(yàn)室開放課題項(xiàng)目(HY202106);國(guó)家自然科學(xué)基金資助項(xiàng)目(32201017)
* 責(zé)任作者, 講師, yongyansun@email.tjut.edu.cn