李吉鴻,鐘茂生,姜 林*,張文毓,馬 琳,郝辰宇
非均質(zhì)場地土壤VOCs通量衰減預測與風險評估
李吉鴻1,2,3,鐘茂生1,2,3,姜 林1,2,3*,張文毓1,2,3,馬 琳1,2,3,郝辰宇1,2,3
(1.北京市生態(tài)環(huán)境保護科學研究院,北京 100037;2.國家城市環(huán)境污染控制工程技術(shù)研究中心,北京 100037;3.污染場地風險模擬與修復北京市重點實驗室,北京 100037)
為反映實際場地源強或揮發(fā)通量的衰減對室內(nèi)風險的影響,以某揮發(fā)性有機污染場地為例, 在原有Jury模型基礎上增加了建筑物底板及場地地層垂向異質(zhì)性對傳輸通量的影響作用,比較了J&E模型與Jury模型在預測揮發(fā)通量,室內(nèi)空氣濃度、健康風險評估結(jié)果的差異及影響因素.結(jié)果表明:J&E模型預測進入室內(nèi)的苯通量恒定,與實際場地存在源衰減不符.Jury模型可反映源通量衰減、包氣帶土壤和建筑底板的阻滯對室內(nèi)濃度及風險的影響;Jury模型中的暴露區(qū)間設定是影響風險水平的關鍵因素.源形成初期,即1情景下,暴露期只有兩個點位超出可接受風險水平;中期2情景下,4個點位超出風險可接受水平,后期3情景下,7個點位超出風險可接受水平,而J&E模型為恒定源,不同時期均為7個點位超標.總體而言,Jury模型考慮了污染源衰減及上方覆蓋土壤的阻滯作用,相對J&E模型更為合理.
土地;J&E模型;Jury模型;揮發(fā)通量;風險評估;揮發(fā)性有機物
揮發(fā)性有機物(VOCs)因其種類的復雜性、生物蓄積性和環(huán)境危害性而受到廣泛關注[1].隨著我國城市化進程的加快及產(chǎn)業(yè)結(jié)構(gòu)的調(diào)整,城市內(nèi)置換出大量工業(yè)污染場地,預計數(shù)量超過20萬塊[2],根據(jù)國內(nèi)2005~2019年公開的136處有機污染地塊統(tǒng)計結(jié)果,土壤中VOCs檢出比例達65%[3].美國環(huán)保署(US EPA)對1981~2017年超級基金場地的統(tǒng)計結(jié)果表明,約78%的地塊存在VOCs污染[4].賦存于污染土壤氣相中的VOCs可經(jīng)土壤包氣帶向上傳輸由建筑物底板裂隙等進入上方建筑物內(nèi),人體暴露于此類環(huán)境中存在健康風險[5-6].
我國場地調(diào)查與評估系列導則[7-9]推薦在測定土壤中VOCs含量的基礎上,通過土壤固-液-氣相線性分配模型將土壤VOCs濃度轉(zhuǎn)換成土壤氣濃度,結(jié)合Johnson-Ettinger (J&E)模型計算場地土壤VOCs的室內(nèi)環(huán)境影響[10-11].J&E模型為穩(wěn)態(tài)模型,即源恒定且傳輸過程瞬時達到穩(wěn)態(tài),但實際場地由于揮發(fā)損失,源隨時間衰減,傳輸過程往往為非穩(wěn)態(tài)傳輸過程[12-15].Jury等[16-17]提出的Jury非恒定源傳輸模型,可以反映污染物濃度及揮發(fā)通量隨時間變化的特點,可用于評估土壤中化學物質(zhì)在大氣與土壤兩種環(huán)境介質(zhì)中的運移與揮發(fā)損失[18-20].US EPA的模型驗證結(jié)果表明,對于實驗數(shù)據(jù)中包含的化合物,模型預測通量顯示出與實驗測量值的高度一致性[21].EPA推薦采用Jury模型計算VOCs由土壤到室外空氣暴露途徑的土壤篩選值[22].但由于Jury模型未考慮室內(nèi)濃度對下層土壤傳輸通量的影響(Jury模型在計算VOCs在土壤中向上傳輸通量時,假設地面VOCs濃度為零,與實際底板或室內(nèi)空氣不為零不相符),較少應用于室內(nèi)風險評估[23-24]. Sanders等[25]嘗試采用Jury模型計算人體室內(nèi)暴露的健康風險,但缺乏論證通量計算時未考慮建筑物對土壤中VOCs濃度梯度的影響及建筑物底板對污染物的阻隔作用.
本研究在傳統(tǒng)Jury模型中耦合污染物經(jīng)由建筑底板進入室內(nèi)空氣的傳輸過程,形成了非均質(zhì)場地基于土壤VOCs傳輸通量衰減的室內(nèi)風險預測模型.以北京某揮發(fā)性有機物污染場地為例,比較了改進后的Jury模型與傳統(tǒng)恒定源穩(wěn)態(tài)J&E模型在預測揮發(fā)通量,室內(nèi)空氣濃度及健康風險的差異及優(yōu)缺點;對模型參數(shù)進行敏感性分析,探究參數(shù)變化對預測結(jié)果的影響,分析了Jury模型不考慮室內(nèi)濃度變化對土壤VOCs濃度梯度的作用及對風險評估結(jié)果的影響;總結(jié)了Jury模型在實際場地土壤風險評估中的優(yōu)勢與不足,研究結(jié)果有助于更合理地預測實際場地風險,提高場地環(huán)境管理決策水平.
案例地塊位于北京市豐臺區(qū),占地面積約0.09km2,在產(chǎn)時間1979年至2014年,主要產(chǎn)品為各型號瀝青混合料,原輔材料包括瀝青、重油、柴油、砂石料、改性劑和乳化劑等,調(diào)查表明場地土壤特征污染物為苯,該場地未來規(guī)劃為居住用地,屬于第一類用地,規(guī)劃建設含地下室的住宅小區(qū), 未來將有6棟建筑規(guī)劃于場地內(nèi)土壤污染區(qū)域,暴露人群包括成人和兒童.考慮到場地土壤在垂直方向上的異質(zhì)性.依據(jù)場地實際水文地質(zhì)條件在深度范圍內(nèi)可劃分為不同土層,0~3.5m為粉土層,3.5~6m為細砂層,6~9m為粗砂層,9~11m為細砂層,11~15.5m為粉土層,15.5~18.5m為細砂層,18.5~22m為粗砂層.在重點污染區(qū)布設10個采樣點, 每個采樣點根據(jù)地層分布,在垂向采集5~7個土壤樣品,土壤采樣借助鉆探技術(shù)獲取不同深度的巖芯,結(jié)合不同深度土壤樣品現(xiàn)場PID測試結(jié)果,采用非擾動采樣器將指定深度樣品轉(zhuǎn)移至樣品瓶內(nèi)[26-27].點位分布及各點濃度范圍見圖1(a).
1.2.1 室內(nèi)濃度預測-J&E模型 我國《建設用地土壤污染風險評估技術(shù)導則》(HJ 25.3-2019)[9]推薦采用Johnson and Ettinger 等提出的一維穩(wěn)態(tài)傳輸模型. J&E模型包含了VOCs在土壤中分配,通過包氣帶向上傳輸和通過底板侵入室內(nèi)及室內(nèi)混合4個連續(xù)過程.模型的基本假設為[10]:①VOCs在土壤固-液-氣各相保持線性平衡;②土壤質(zhì)地均勻;③VOCs遷移過程遵循質(zhì)量守恒.基于上述假設,根據(jù)Fick第一定律,可推導室內(nèi)濃度in,mg/m3,為:
VFs為土壤室內(nèi)呼吸暴露揮發(fā)因子,kg/m3,計算式如下:
DFia為室內(nèi)空氣中氣態(tài)污染物擴散因子, [g·(cm2·s)]/(g/cm3) ,計算公式如下:
根據(jù)質(zhì)量守恒原理,J&E模型的揮發(fā)通量s,mg/m2/s,按下式計算:
模型中涉及的參數(shù)定義及取值參見表1.
表1 模型參數(shù)定義及取值
注:b,ER為J&E模型特有參數(shù);,為Jury模型特有參數(shù);其他為兩模型公用參數(shù);t=air+w.
1.2.2 室內(nèi)濃度預測-Jury模型 Jury模型設定VOCs自土壤進入大氣需要經(jīng)歷土壤包氣帶內(nèi)的擴散,通過土壤-大氣界面停滯邊界層以及在大氣中的遷移與混合三個過程[16].模型的基本假設與J&E模型相同,但不同的是該模型為非穩(wěn)態(tài)平衡模型,遵循Fick第二定律[17].此外,該模型最初設計并未考慮侵入室內(nèi)濃度對傳輸過程的影響,而是計算假定大氣邊界層上方VOCs濃度為0時的擴散通量[16,32-33].假設模型的邊界條件如下:
式中:為垂向土壤深度,cm;0為實測污染物濃度,mg/kg.依據(jù)Fick第二定律,可推導VOCs向上擴散通量(t),mg/m2/s:
基于Jury模型計算的傳輸通量,采用公式(16)[34]計算室內(nèi)濃度:
模型中的參數(shù)定義及取值見表1.
吸入室內(nèi)空氣中來自下層土壤的氣態(tài)污染物途徑的致癌風險CR,由HJ25.3[9](A15)和(C6)聯(lián)立,可得吸入室內(nèi)空氣中來自下層土壤的氣態(tài)污染物途徑的致癌風險計算公式:
圖1 場地苯的空間分布示意
(a) 場地平面布置及采樣點布設(b)苯土壤含量的深度剖面
為便于對比討論,本研究將兩個模型中的參數(shù)分為三類,分別是場地特征參數(shù)(air、water、oc、b、)、建筑物參數(shù)(s、crack、b、ac、wc、、ER)、模型暴露參數(shù)(、)[35].敏感性分析所得敏感度若為正值,表示該值與預測結(jié)果呈正相關;若為負值,則表示與預測結(jié)果負相關,且所得結(jié)果的絕對值越大,反映該參數(shù)對預測的風險計算結(jié)果影響越大[36].公式如下:
式中:SR為模型參數(shù)敏感性比例,無量綱;1,2分別為模型參數(shù)變化前后的數(shù)值;1,2分別為依據(jù)1,2計算所得的風險水平,無量綱; SR的絕對值越大,參數(shù)對風險評估結(jié)果越敏感.
調(diào)查結(jié)果表明,場地受苯污染嚴重,土壤樣品中苯檢出濃度范圍為0.05~30.7mg/kg,平均值為0.68mg/kg,略高于場地土壤環(huán)境風險評價篩選值(DB11/T 811-2011)[37]0.64mg/kg.土壤垂向檢測結(jié)果顯示:土壤樣品中苯在0~12.5m內(nèi)均未檢出,12.5~ 18.5m為超標點位集中分布區(qū)域,18.5~22.5m個別點位有檢出且未超標;因此12.5~18.5m深度范圍為苯的主要賦存區(qū)域.水平方向上,場地土壤苯污染為局部污染,分布在加油站及配油車間所在區(qū)域.結(jié)合超標點位集中檢出的土質(zhì)主要為粉土,推測是由于該區(qū)域油氣泄露,下滲至滲透系數(shù)較小的粉土層,苯在此區(qū)域內(nèi)產(chǎn)生富集.綜合污染物空間分布情況,場地地質(zhì)條件及未來土地利用方式構(gòu)建污染概念模型.如圖1(b)所示,將12.5~18.5m深度范圍視作污染源,由此區(qū)域揮發(fā)的苯蒸汽經(jīng)土壤包氣帶向上擴散經(jīng)過建筑物底板裂縫進入室內(nèi),人體通過呼吸吸入含苯的室內(nèi)空氣,導致健康風險.
J&E模型與Jury模型揮發(fā)通量預測結(jié)果如圖2(a)所示,由于源濃度大小并不影響揮發(fā)通量變化趨勢,因此設定污染源濃度為單位濃度.結(jié)果表明,J&E模型預測揮發(fā)通量為1.77′10-7mg/(m2·s),且不隨時間變化;Jury模型預測污染源表面初始通量為3.24′10-3mg/(m2·s),但隨時間呈指數(shù)衰減[21].這是由于J&E模型基于通量守恒的穩(wěn)態(tài)方程,源強不變,傳質(zhì)恒定[9-10];Jury模型基于通量守恒的非穩(wěn)態(tài)方程,源強衰減致使傳質(zhì)隨時間變化[16].這與Yates等[38]采用被動通量測試儀對1m厚VOC污染土塊的表面揮發(fā)通量衰減規(guī)律一致,通量從第5min時的270.83mg/(m2·h)下降到第60min時79.17mg/(m2·h).由于該案例污染源至室內(nèi)存在厚度為9.95m的清潔土與0.35m的建筑物底板,預測進入室內(nèi)的揮發(fā)通量初始為0~3.41′10-7mg/(m2·s),然后通量逐漸升高,130年出現(xiàn)下降.這是因為源衰減的同時,污染物向上揮發(fā)通過覆蓋土層,需要一定的穿透時間,到達峰值后源濃度衰減,揮發(fā)通量逐步降低.Manco等[39]對意大利某垃圾填埋場地苯的實時揮發(fā)通量測試結(jié)果表明,測試期間,苯揮發(fā)通量的平均值為1.35μg/(m2·h),標準差為1.27μg/(m2·h).因此,實際條件下?lián)]發(fā)通量并不恒定;J&E模型簡單的采用固定值,并不能體現(xiàn)場地揮發(fā)通量隨時間變化的特點, Jury模型預測的揮發(fā)通量則能夠體現(xiàn)這一特點.
(a)單位濃度瞬時揮發(fā)通量比較 (b)不同泄露時期的暴露區(qū)間
根據(jù)Jury模型瞬時通量變化曲線可知,不同時刻的通量差異明顯,因此暴露起始時刻的選擇,將極大影響暴露周期內(nèi)的通量取值,而污染泄露越晚,暴露起始時刻在曲線上的位置越靠前.因此有必要事先了解場地的生產(chǎn)歷史,確定污染源的形成時間.場地調(diào)查報告表明,該廠于1979年建廠投產(chǎn),2014年停產(chǎn),預計2024年改建為住宅小區(qū)并投入使用,共計45a.人體室內(nèi)暴露周期為30a.為了便于說明污染源形成時間對暴露量的影響,本文假定三種情景,即工廠停產(chǎn)時,生產(chǎn)過程的時間中點以及建廠時為污染源的形成時刻,人體室內(nèi)暴露周期為30a.則暴露區(qū)間分別污染源為形成后的第11~41a、第28~58a、第46~76a.分別記為1,2,3.從圖2(b)可以看出不同的源泄露形成時間對暴露量的影響巨大.
(a)室內(nèi)預測濃度對比 (b)致癌風險對比
1,2,3暴露區(qū)間內(nèi)Jury模型計算的室內(nèi)預測濃度結(jié)果如圖3(a)所示, J&E模型的室內(nèi)預測濃度為定值5.81′10-4mg/m3;而Jury模型室內(nèi)濃度隨暴露區(qū)間的延后而升高,相差約1個數(shù)量級,同一暴露區(qū)間內(nèi),室內(nèi)濃度隨時間逐漸增大.是因為J&E模型為穩(wěn)態(tài)平衡的恒定源模型,不考慮揮發(fā)過程的源衰減作用,預測室內(nèi)濃度為定值.而Jury模型為非穩(wěn)態(tài)平衡下的衰減源模型,導致預測濃度隨時間變化.從室內(nèi)預測濃度來看,J&E模型計算出的室內(nèi)濃度高于1、2周期內(nèi)Jury模型,Jury-T3的室內(nèi)濃度開始低于J&E模型,后期高于J&E模型,但平均濃度略高于或與J&E模型預測結(jié)果基本一致.
由于苯主要為致癌風險[40],本文采用各采樣點苯的最高濃度,分別計算各采樣點的致癌風險水平,結(jié)果如圖3(b)所示.研究區(qū)域10個點位中,基于土壤濃度的J&E模型中7個點位致癌風險超出可接受水平10-6;Jury模型中1情景下,只有S9和S10點位在暴露周期內(nèi)超出可接受風險,2情景下,有4個點位,即S7、S8、S9和S10 超出風險可接受水平,3情景下7個點位超出風險可接受水平,該情景下風險略高于J&E模型預測結(jié)果.因此J&E模型高估了源形成初期的健康風險.
由于參數(shù)敏感程度與污染物的初始濃度無關,因此采用單位濃度分析參數(shù)敏感性.在其他條件一定時,揮發(fā)通量越大,對應風險水平越高,同時考慮到Jury模型的核心為基于通量的控制方程,為更好的比較兩個模型的差異,采用揮發(fā)通量進行敏感性分析.將J&E模型與Jury模型中所涉及的三類參數(shù)分別進行10%的上調(diào),其余參數(shù)仍以表1中的取值為準,代入1.2中的公式計算揮發(fā)通量,確定兩個模型中目標參數(shù)的敏感性比例,結(jié)果見圖4.
整體來看,Jury模型與J&E模型中各參數(shù)的相關性一致,但各參數(shù)敏感程度高于J&E模型;Jury模型中的參數(shù)除污染層厚度W外,其余參數(shù)對暴露期內(nèi)的平均揮發(fā)通量均有較大影響,造成上述現(xiàn)象的原因是J&E模型為穩(wěn)態(tài)非指數(shù)型模型,而Jury模型為非穩(wěn)態(tài)擴散模型,其衰減方程為指數(shù)形式,導致參數(shù)的變化對擴散影響大.由于J&E模型經(jīng)歷了較多的審查,已有多篇論文針對模型的使用方法和局限性進行了深入探討[41-44].因此本文著重討論Jury模型的參數(shù)敏感性.
參數(shù)
源埋深s的敏感性為-288%,s對揮發(fā)通量的影響如圖5(a)所示.隨時間增加,不同埋下深揮發(fā)通量的整體趨勢均表現(xiàn)為先升高,后降低.隨埋深的增加,通量到達峰值所需時間增大,峰值揮發(fā)通量降低;當埋深s由1m增加至10m時,峰值通量變化為初始的8.69%,通量到達峰值所需時間增長了30.39倍,因此對于污染源埋深較淺的場地,前期風險水平較高,而污染源埋深較深的場地,后期風險水平較高.此外,Sanders等[25]研究表明源埋深s較淺時,污染土壤厚度對揮發(fā)通量有較大影響.而本研究由于源埋深過大,污染層厚度對結(jié)果不敏感.
Jury模型中場地特征參數(shù)air、water對揮發(fā)通量敏感,敏感性分別為269%、-148%,二者由土壤類型及土壤水分含量所決定.Jury等[16]通過實驗對比了相同厚度的砂土和粘土分別覆蓋在苯污染土壤上方1年后揮發(fā)質(zhì)量,砂土中揮發(fā)質(zhì)量占總質(zhì)量的比例為34.3%,粘土揮發(fā)占比僅為0.1%,而砂土與粘土的主要區(qū)別在于air,這與污染物在土壤中的有效擴散能力呈正比,此外,土壤水分的增加會使water增大,進而抑制污染物的氣相擴散[45],因此地層土壤水相對飽和度越高,污染物越難穿透該地層到達地表.
有機碳質(zhì)量分數(shù)oc的敏感性為-118%,表明有機碳含量越高,越不利于污染物的揮發(fā)和逸散[46-47]. Sale等[48]研究表明,當oc> 0.1時,90%的三氯乙烯和四氯乙烯被土壤有機質(zhì)吸收,當oc< 0.001時,只有10%~20%的三氯乙烯和四氯乙烯被土壤有機質(zhì)吸收.因此,增加場地土壤有機碳含量可降低揮發(fā)通量,減少室內(nèi)蒸汽入侵風險.暴露周期T的參數(shù)敏感性比例為78%,呈正相關,則是由于此時暴露區(qū)間處于通量上升期造成的.暴露起始時間的敏感性比例為144%,表明通量預測結(jié)果對暴露起始時間敏感.再次證明了確定源泄露形成時間,推算暴露區(qū)間在J(t)曲線上的位置對模型預測結(jié)果的重要性.此外,考慮到源泄露形成時間對預測場地風險水平的重要性,建議未來的研究可以考慮采用分子指紋技術(shù)確定石油烴類污染源泄露形成時間,更精準的預測場地風險水平[42,49].
(a)污染源埋深的影響; (b)建筑物底板的影響
與建筑物底板相關的ac、wc、crack、b和是影響揮發(fā)通量的主要因素,其中ac的敏感性最高達到了334%.此處考慮建筑物底板存在與不存在兩種情況,具體如圖5(b)所示.二者瞬時通量變化趨勢一致,但底板的存在可有效降低通量,二者峰值通量比值為2.78,通量到達峰值所需時間增長了2.82倍,是由于底板的存在阻礙了污染物的室內(nèi)揮發(fā)過程.
Jury模型在計算室內(nèi)空氣濃度時假定室內(nèi)濃度并不影響土壤中VOCs的濃度梯度,即在揮發(fā)通量的計算中并未引入ER、b兩個參數(shù).通過對基于通量守恒的J&E模型[50]敏感性分析表明:ER和b敏感性均為0.00028%,可忽略不計.因此,Jury模型在計算VOCs土壤中傳輸通量時未考慮室內(nèi)濃度的影響對風險評估的結(jié)果影響不明顯,這證明了Jury模型可以應用于室內(nèi)濃度預測.
目前導則(HJ23.5-2019)[9]推薦采用的風險評估模型假設場地中污染源恒定、場地土層均質(zhì),而實際場地中隨著VOCs的揮發(fā)損失,源不斷衰減,VOCs向上傳輸過程中往往穿過不同性質(zhì)的土層.而Jury模型能較好的模擬VOCs污染源的衰減,但不能考慮建筑底板對VOCs的阻隔作用.針對上述問題,本文通過引入綜合擴散系數(shù)方法量化土層異質(zhì)性對傳輸過程的影響,同時考慮建筑物底板對VOCs室內(nèi)傳輸過程的阻隔,使得模型更符合場地源衰減和土層復雜性的客觀實際[51-53],更具推廣價值和普適性.
3.1 J&E模型預測進入室內(nèi)的通量恒定,與實際場地存在源衰減不符.Jury模型預測的源表面的通量初始最大,隨時間變化呈指數(shù)下降,但由于受包氣帶土壤和建筑底板的阻滯作用,進入室內(nèi)的通量在初期反而較低,隨著時間的增加,進入室內(nèi)的通量增加.
3.2 J&E模型中7個點位致癌風險超出10-6.Jury模型與污染源泄露形成時間或暴露區(qū)間在J(t)曲線中所處的位置相關.暴露區(qū)間為泄漏源形成初期,即1情景下,僅有兩個點位在暴露周期內(nèi)超出可接受風險;中期2情景下,暴露周期內(nèi)4個點位超出風險可接受水平;后期3情景下7個點位超出風險可接受水平.因此J&E模型存在高估泄漏早期的室內(nèi)風險的可能.
3.3 對Jury模型各參數(shù)進行敏感性分析發(fā)現(xiàn),地基裂隙中空氣體積比ac,污染源埋深s與地基裂隙率是影響Jury模型預測結(jié)果的主要參數(shù).同時參數(shù)敏感性分析表明Jury模型在計算VOCs土壤中傳輸通量時未考慮室內(nèi)濃度的影響對風險評估的結(jié)果影響不明顯.
[1] Zhu L, Shen D, Luo K H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods [J]. Journal of Hazardous Materials, 2020,389:122102.
[2] Li X, Jiao W, Xiao R, et al. Contaminated sites in China: Countermeasures of provincial governments [J]. Journal of Cleaner Production, 2017,147(MAR.20):485-496.
[3] 朱 輝,葉淑君,吳吉春,等.中國典型有機污染場地土層巖性和污染物特征分析[J]. 地學前緣, 2021,28(5):26-34. Zhu H, Ye S J, Wu J C, et al. Characteristics of soil lithology and pollutants in typical contamination sites in China [J]. Earth Science Frontiers, 2021,28(5):26-34.
[4] US Environmental Protection Agency. Superfund remedy report-16th edition [R]. Washington DC: Office of Land and Emergency Management, 2020.
[5] US Environmental Protection Agency. OSWER technical guide for assessing and mitigating the vapor intrusion pathway from subsurface vapor sources to indoor air [R]. Washington DC: Office of Solid Waste and Emergency Response, 2015.
[6] Mchugh T, Loll P, Eklund B. Recent advances in vapor intrusion site investigations [J]. Journal of Environmental Management, 2017,204: 783-792.
[7] HJ 25.1—2019 建設用地土壤污染狀況調(diào)查技術(shù)導則[S]. HJ 25.1-2019 Technical guidelines for investigation on soil contamination of land for construction [S].
[8] HJ 682—2019 建設用地土壤污染風險管控與修復監(jiān)測技術(shù)導則[S]. HJ 25.2-2019 Technical guidelines for monitoring during risk control and remediation of soil contamination of land for construction [S].
[9] HJ 25.3-2019 建設用地土壤污染風險評估技術(shù)導則[S]. HJ 25.3-2019 Technical guidelines for risk assessment of soil contamination of land for construction [S].
[10] Johnson P C, Ettinger R A. Heuristic model for predicting the intrusion rate of contaminant vapors into buildings [J]. Environmental Science & Technology, 1991,25(8):1445-1452.
[11] 郝辰宇,鐘茂生,姜 林,等.基于土壤氣VOCs濃度的場地污染刻畫及風險評估 [J]. 中國環(huán)境科學, DOI:10.19676/j.cnki.issn1000- 6923.20230529.015. Hao C Y, Zhong M S, Jiang L, et al. Characterization and vapor intrusion risk assessment of VOCs in contaminated sites based on soil gas [J]. China Environmental Science, DOI:10.19676/j.cnki.issn1000- 6923.20230529.015.
[12] Zhang R, Jiang L, Zhong M, et al. A source depletion model for vapor intrusion involving the influence of building characteristics [J]. Environmental Pollution, 2019,246:864-872.
[13] 鐘茂生,汪 洋,姜 林,等.污染地塊VOCs源衰減對室內(nèi)蒸氣入侵風險的影響[J]. 環(huán)境科學, 2023,44(8):61-68.Zhong M S, Wang Y, Jiang L, et al. Effects of source depletion on vapor intrusion risk assessment [J]. Environmental Sciences, 2022: 1-10.
[14] Ekre R, Johnson P C, Rittmann B E, et al. Method for assessing source zone natural depletion at chlorinated aliphatic spill sites [J]. Ground Water Monitoring & Remediation, 2014,34(2):60-70.
[15] 張文毓,鐘茂生,姜 林,等.污染場地中VOCs的環(huán)境行為與調(diào)查評估技術(shù) [J]. 中國環(huán)境科學, 2023,43(6):2814-2822. Zhang W Y, Zhong M S, Jiang L, et al. Environmental behavior, investigation and risk assessment technologies of VOCs in contaminated sites [J]. China Environmental Science, 2023,43(6): 2814-2822.
[16] Jury W A, Spencer W F, Farmer W J. Behavior assessment model for trace organics in soil: I. Model description [J]. Journal of Environmental Quality, 1983,12(4):558-564.
[17] Jury W A, Russo D, Streile G, et al. Evaluation of volatilization by organic chemicals residing below the soil surface [J]. Water Resources Research, 1990,26(1):13-20.
[18] Ghosh S, Crist K. Modeling volatilization emissions of soil-applied pesticides under agricultural field conditions [J]. Heliyon, 2022, 8(12):e11810.
[19] Brueggemann R, Nuetzmann G, Twardowska I. Model-supported ranking of pesticides with regard to risk assessment exemplified in triazine compounds [J]. Proceedings of SPIE-The International Society for Optical Engineering, 2004,(5270):119-132.
[20] Paustenbach D J, Sarlos T T, Lau V, et al. The potential inhalation hazard posed by dioxin contaminated soil [J]. Journal of the Air & Waste Management Association, 1991,41(10):1334-1340.
[21] Environmental Quality Management. Limited validation of the Jury infinite source and Jury reduced solution finite source models for emissions of soil-incorporated volatile organic compounds [R]. Washington DC:1995.3-34.
[22] Office of Solid Waste and Emergency Response Soil Screening Guidance: User’s Guide-2nd Edition [R]. Washington DC: 20460USEPA, 1996:1-4.
[23] Liang H. Dynamic transport of livestock generated VOC-odor in a ventilated airspace with mixing heterogeneity [J]. Atmospheric Environment, 2004,38(3):345-355.
[24] Liang H, Liao C. Modeling VOC-odor exposure risk in livestock buildings [J]. Chemosphere, 2007,68(4):781-789.
[25] Sanders P F, Stern A H. Calculation of soil cleanup criteria for carcinogenic volatile organic compounds as controlled by the soil-to-indoor air exposure pathway [J]. Environmental Toxicology and Chemistry: An International Journal, 1994,13(8):1367-1373.
[26] Interstate Technology & Regulatory Council. Petroleum vapor intrusion: Fundamentals of screening, investigation, and management [R]. Washington, DC: Interstate Technology & Regulatory Council, 2014.
[27] DB11/T 656—2019 建設用地土壤污染狀況調(diào)查與風險評估技術(shù)導則 [S]. DB11/T 656—2019 Site investigation and risk assessment guideline of development land [S].
[28] DeVaull G, Ettinger R, Gustafson J. Chemical vapor intrusion from soil or groundwater to indoor air: Significance of unsaturated zone biodegradation of aromatic hydrocarbons [J]. Soil and Sediment Contamination: An International Journal, 2002,11(4):625-641.
[29] Millington, R. J.; Quirk, J. M. Permeability of porous solids [J]. Transactions of the Faraday Society, 1961,57:1200?1207.
[30] Le T T, Austin S A, Lim S, et al. Hardened properties of high- performance printing concrete [J]. Cement and Concrete Research, 2012,42(3):558-566.
[31] 馬嬌媚,劉瑞芝,陶從喜,等.水泥熟料中殘?zhí)嫉姆治鲅芯縖J]. 水泥, 2016,(6):61-64.Ma J M, Liu R Z, Tao C X, et al. Analysis of residual carbon in cement clinker [J]. Cement, 2016,(6):61-64.
[32] Jury W A, Farmer W J, Spencer W F. Behavior assessment model for trace organics in soil: II. Chemical classification and parameter sensitivity [J]. Journal of Environmental Quality, 1984,13(4):567-572.
[33] US Environmental Protection Agency. Emsoft User's Guide (2002Update) [R]. Washington DC: Office of Research and Development, National Center for Environmental Assessment, 2002.
[34] 生態(tài)環(huán)境部.建設用地土壤污染修復目標值制定指南(試行) [R]. 2022.Ministry of Ecology and Environment. Guidelines for the formulation of target values for soil pollution remediation of construction land [R]. 2022.
[35] Ma J, Yan G, Li H, et al. Sensitivity and uncertainty analysis for Abreu & Johnson numerical vapor intrusion model [J]. Journal of Hazardous Materials, 2016,304:522-31.
[36] 佟瑞鵬,楊校毅.基于蒙特卡羅模擬的土壤環(huán)境健康風險評價:以PAHs為例 [J]. 環(huán)境科學, 2017,38(6):2522-2529. Tong R P, Yang X Y. Environmental health risk assessment of contaminated soil based on Monte Carlo method: a case of PAHs [J]. Environmental Science, 2017,38(6):2522-2529.
[37] DB11/T 811-2011 北京市場地土壤環(huán)境風險評價篩選值 [S]. DB11/T 811-2011 Screening levels for soil environmental risk assessment of sites [S].
[38] Yates S R, Papiernik S K, Gao F, et al. Analytical solutions for the transport of volatile organic chemicals in unsaturated layered systems [J]. Water Resources Research. 2000,36(8):1993-2000.
[39] Manco A, Ciccioli P, Famulari D, et al. Real-time air concentrations and turbulent fluxes of volatile organic compounds (VOCs) over historic closed landfills to assess their potential environmental impact [J]. Environmental Pollution, 2022,309:119748.
[40] 張曉惠,王冬梅,焦永杰,等.我國苯的環(huán)境暴露、風險評估與管控[J]. 生態(tài)毒理學報, 2020,15(3):202-209.Zhang X H, Wang D M, Jiao Y J, et al. Environmental exposure, risk assessment and control of benzene in China [J]. Asian Journal of Ecotoxicology, 2020,15(3):202-209.
[41] Hers I, Reidar Zapf-Gilje, Johnson P C, et al. Evaluation of the Johnson and Ettinger Model for prediction of indoor air quality [J]. Groundwater Monitoring & Remediation, 2003,23(2):119-133.
[42] 馬 杰.污染場地VOCs蒸氣入侵風險評估與管控[M]. 北京:科學出版社, 2020. Ma J. VOCs vapor intrusion risk assessment and mitigation at contaminated sites [M]. Beijing: Science Press, 2020.
[43] Johnson P C. Identification of critical parameters for the Johnson and Ettinger (1991) vapor intrusion model [M]. API Soil and Groundwater Research Bulletin, 2002:1-29.
[44] Tillman F D, Weaver J W. Parameter sets for upper and lower bounds on soil-to-indoor-air contaminant attenuation predicted by the Johnson and Ettinger vapor intrusion model [J]. Atmospheric Environment, 2007,41(27):5797-5806.
[45] Zhang R, Zhong M, Jiang L, et al. Effect of vapour-solid interfacial adsorption on benzene multiphase partition and its implication to vapour exposure assessment of contaminated soil in arid area [J]. Journal of Environmental Management, 2022,315:115182.
[46] Jury W A, Spencer W F, Farmer W J. Behavior assessment model for trace organics in soil: III. Application of screening model [J]. Journal of Environmental Quality, 1984,13(4):573-579.
[47] Jury W A, Spencer W F, Farmer W J. Behavior assessment model for trace organics in soil: IV. Review of experimental evidence [J]. Journal of Environmental Quality, 1984,13(4):580-586.
[48] Sale T, Newell C. A guide for selecting remedies for subsurface releases of chlorinated solvents [R]. Alexandria: GSI Environmental Incorporated, 2011.
[49] Liu Q, Xia C, Wang L, et al. Fingerprint analysis reveals sources of petroleum hydrocarbons in soils of different geographical oilfields of China and its ecological assessment [J]. Scientific Reports. 2022,12(1):4808.
[50] 姜 林,鐘茂生,夏天翔,等.基于土壤氣中實測苯濃度的健康風險評價 [J]. 環(huán)境科學研究, 2012,25(6):717-723. Jiang L, Zhong M S, Xia T X, et al. Health risk assessment based on benzene concentration detected in soil gas [J]. Research of Environmental Sciences, 2012,25(6):717-723.
[51] 姜 林,梁 競,鐘茂生,等.復雜污染場地的風險管理挑戰(zhàn)及應對 [J]. 環(huán)境科學研究, 2021,34(2):458-467. Jiang L, Liang J, Zhong M S, et al. Challenges and response to risk management of complex contaminated sites [J]. Research of Environmental Sciences, 2021,34(2):458-467.
[52] 王劉煒,楊小東,侯德義.裂隙介質(zhì)VOCs賦存遷移特征與場地修復難點 [J]. 中國環(huán)境科學, 2022,42(10):4780-4789. VOCs in fractured aquifers: presence, migration characteristics, and difficulties for contaminated site remediation [J]. China Environmental Science, 2022,42(10):4780-4789.
[53] Pizzol L, Critto A, Agostini P, et al. Regional risk assessment for contaminated sites Part 2: Ranking of potentially contaminated sites [J]. Environment International. 2011,37(8):1307-1320.
Estimation of VOCs’ mass flux depletion and risk assessment at complex contaminated sites.
LI Ji-hong1,2,3, ZHONG Mao-sheng1,2,3, JIANG Lin1,2,3*, ZHANG Wen-yu1,2,3, MA Lin1,2,3, HAO Chen-yu1,2,3
(1.Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037;2.National Engineering Research Centre of Urban Environmental Pollution Control, Beijing 100037, China;3.Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing 100037, China)., 2023,43(11):5924~5932
To reflect the source or mass flux attenuation in actual contaminated sites, Jury model was improved by considering the effect of vertical heterogeneity of site lithology and sublab. The model was compared to the J&E model in predicting volatilization flux, indoor air concentration, health risk assessment. Finally the major influential factors were discussed by using an example of a benzene contaminated site in Beijing. The results showed that the benzene flux into the room predicted by the J&E model remained constant, which was inconsistent with the source attenuation in the actual site. In contrast, the volatilization flux of benzene predicted by the Jury model was initially the largest at the source surface and decreased exponentially with time. However, due to the blocking effect of the soil in the vadose zone and the building subslab, the flux entering the indoor air was relatively low at the beginning and increased with time. By the J&E model, the carcinogenic risk of 7sampling locations exceeded 10-6. However, with the Jury model, the determination of the exposure period was the key factor affecting the risk level. The exposure under the initial stage of source formation (scenario T1), only two locations in the exposure period exceeded the acceptable risk level. Under the mid-term (scenario T2), 4locations in the exposure period exceeded the risk acceptable level, and only under late exposure state (scenario T3), 7locations exceeded the acceptable level of risk. In general, compared with the J&E model, the Jury model was more in consistent with VOCs depletion in the fields by taking into consideration of sources attenuation and vadose blocking effect of mass fluxes.
soil;J&E model;Jury model;mass fluxes;risk assessment;volatile organic compounds (VOCs)
X53
A
1000-6923(2023)11-5924-09
李吉鴻(1998-),男,河南南陽人,北京市生態(tài)環(huán)境保護科學研究院碩士研究生,主要從事土壤和地下水污染風險評估與修復方面的研究.lijihong@cee.cn.
李吉鴻,鐘茂生,姜 林,等.非均質(zhì)場地土壤VOCs通量衰減預測與風險評估 [J]. 中國環(huán)境科學, 2023,43(11):5924-5932.
Li J H, Zhong M S, Jiang L, et al. Estimation of VOCs’ mass flux depletion and risk assessment at complex contaminated sites [J]. China Environmental Science, 2023,43(11):5924-5932.
2023-04-13
國家自然科學基金資助項目(42177404)
* 責任作者, 研究員, Jianglin@cee.cn