• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine Learning-Based Gaze-Tracking and Its Application in Quadrotor Control on Mobile Device

    2023-11-22 09:11:20,*,,,

    ,*,,,

    1.College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, P.R.China;

    2.China Aeronautical Control System Research Institute, Wuxi 214000, P.R.China

    Abstract: A machine learning-based monocular gaze-tracking technology for mobile devices is proposed.This noninvasive, convenient, and low-cost gaze-tracking method can capture the gaze points of users on the screen of mobile devices in real time.Combined with the quadrotor’s 3D motion control, the user’s gaze information is converted into the quadrotor’s control signal, solving the limitations of previous control methods, which allows the user to manipulate the quadrotor through visual interaction.A complex quadrotor track is set up to test the feasibility of this method.Subjects are asked to intervene their gaze into the control flow to complete the flight tasks.Flight performance is evaluated by comparing with the joystick-based control method.Experimental results show that the proposed method can improve the smoothness and rationality of the quadrotor motion trajectory, and can introduce diversity, convenience, and intuitiveness to the quadrotor control.

    Key words:gaze-tracking; UAV control; machine learning; HRI; eye-gaze drive

    0 Introduction

    In our daily life, eyes are not only an important organ for us to obtain information, but also an important source for us to transmit our thoughts and emotions to the outside world.Recently, the gazetracking has been applied to the direct control of graphical interfaces.

    Using machine learning techniques, the mapping relationship between eye images and gaze information can be obtained.Among them, the method using convolutional neural network (CNN) is proven to be effective.In this method, information such as human eye image and head pose is input into CNN, and the gaze vector is decoded at the last fully connected layer.Theoretically, the network can be trained as long as there is sufficient data[1-2].

    However, even using deep neural network for regression analysis, its accuracy is usually limited to about six to ten degrees with high interindividual variance.This is due to many factors, including sparse calibration data, differences in human eye anatomy, and the introduction of head posture to complicate the model[3].In addition, unrestricted head motion is crucial for the generalization of gazetracking, and gaze trackers that improve prediction accuracy by fixing the head tend to have a very narrow application in reality[4-5].

    Advanced machine learning techniques are applied to this field.Recently, Huang et al.[6]used a residual network for feature extraction of eye images and treated the gaze difference as auxiliary information to improve the prediction accuracy.Zhuang et al.[7]proposed to use an attention mechanism to enhance the network effect and obtained excellent performance in a multi-camera multi-screen system.Nagpure et al.[8]proposed a compact model to accurately and efficiently solve the problem of gaze estimation by using a multi-resolution fusion transformer and improve the network performance.However,these large or complex inference process models make these technologies almost impossible to deploy on edge processors and mobile devices.In addition, easy personalization of the model is necessary for the application scenarios corresponding to this paper.

    The practical application of gaze-tracking technology has always been a vexing problem.Applications of this technology in fields such as psychology and cognition began more than a decade ago, but there are not many studies or products that use gaze information to drive mobile robots, especially in the field of eye-gaze driven quadrotors.

    In an earlier study, Hansen et al.[9]combined eye-gaze drive and a keyboard to control the quadrotor, but the gaze was only able to control two degrees of freedom (DOF) of the quadrotor, and it still could not get rid of the keyboard.Kim et al.[10]combined gaze-tracking and brain-computer interfaces to control quadrotors and obtained good results,but this work can only control a single DOF of the quadrotor at the same moment, and complex wearable devices seriously limit the diffusion of this control method.

    A novel object detection-based multi-rotor micro aerial vehicle (MAV) localization method in a human sensor framework has been proposed in recent years, which uses gaze to assist the quadrotor for spatial localization, but does not directly control the motion of the quadrotor and still uses a headmounted gaze-tracking device[11].

    Wang et al.[12]proposed GPA-teleoperation,an assisted teleoperation framework for gaze-enhanced perception that enables intent control and improves safety, but the wearing of VR glasses and the many requirements for quadrotor systems limit the application scenarios of this technology.

    To enhance the role of eye-gaze drive in real life, we apply the proposed gaze-tracking network to mobile devices.Therefore, this research work aims to develop a simple, easy-to-use, non-wearable, and low-cost gaze-tracking platform that interprets eye movements and enables real-time control of quadrotors in 3D environments.

    Therefore, the contribution of this study is to address the limitations of previous systems in a single system and provide the user with an additional,complete, and safe method of quadrotor control.The main contributions of this work are as follows:

    (1)A machine learning-based monocular gazetracking technique is proposed and deployed on mobile devices to improve the application prospects of eye-gaze drive.

    (2) An easy-to-learn and easy-to-use system:Users can convert their gaze information into control information for mobile robots in 3D space.

    (3) A non-intrusive, portable, low-cost device: Users can plan the flight trajectory of the quadrotor by gaze.

    1 System Overview

    Fig.1 Illustration of controlling a quadrotor using gaze-tracking on mobile platform

    In this section, we discuss the hardware components and software pipeline of our system.The system’s framework is shown in Fig.1, where the green, blue, and red coordinate systems represent the camera coordinate system, the head coordinate system, and the world coordinate system, respectively.This system needs to deal with the relationship between these coordinate systems.

    1.1 Hardware setup

    Our novel system is based on HONOR V7, an inexpensive Android tablet.This device is chosen because its front-facing camera is located in the middle of the long side of the screen for gaze-tracking.It has a MediaTek 1300T CPU that is capable of achieving the computing power needed for machine learning.The controlled object is DJI Mini2, a small quadcopter drone with a two-axis gimbal, a takeoff mass of less than 249 g, a maximum flight time of 31 min, support for satellite positioning and optical flow positioning, real-time image transmission at the maximum bit rate of 8 Mb/s.

    1.2 Algorithm pipeline

    As shown in Fig.2, we used the TNN inference framework provided by Tencent to provide a variety of different acceleration options for the mobile terminals on the premise of ensuring uniform models and interfaces.The optimized adaptation of face recognition and head pose detection based on the single shot multibox detector (SSD) machine learning model is finally achieved, and the computing speed of 50 Hz is reached for 1080P images.

    Fig.2 Diagram of our control system architecture

    Using the OpenCV and OpenCL libraries, the human eye image is cropped and transmitted together with the head pose and head position information to the gaze-tracking module.The Tensorflow library is used to build the gaze tracking module proposed in this paper, and the TensorflowlLite library is used to convert it into a mobile device-compatible model (.tflite) for inference.

    The result of the gaze-tracking model inference is an estimation of the user’s gaze point on the tablet screen at a rate of 25 Hz.And then the estimation of the gaze point is input to the motion analysis program module to get the expected value of the quadrotor motion, and the result is input to the quadrotor control module to get the actual amount of flight control.

    2 Method

    In this section, we describe the proposed method of gaze-tracking and the method for converting gaze information into a quadrotor control signal.

    2.1 2D monocular gaze tracking

    In this paper, a CNN model for free-head gaze point (2D) estimation is proposed.It has the characteristics of low computational demand and fast computation, as well as good prediction accuracy, and supports free rotation of the head within a certain range.The model architecture is shown in Fig.3.

    Before inference, the images captured by the front camera are processed by the face recognition model and the head pose detection model to obtain the left and right eye images, face frame and head pose.We flip one of the eye images horizontally and scale the two images to a size of 64×64.In particular, the coordinates of the upper left corner of the face frame in the image are used to indicate the position of the face relative to the screen, which is denoted by [xm,ym].The width of the face frame is used to indicate the distance of the face relative to the screen, which is denoted bywm.Finally, the eye images, face frame information, and head pose are fed into the three corresponding CNN channels of the network, and four fully connected layers are added at the end for obtaining the prediction results.

    Fig.3 Our gaze point estimation network structure

    In addition, we test the model performance on a generic dataset.The accuracy of the model tested on the MPIIFaceGaze dataset is 5.23 cm.It is superior to ITracker[2], Gaze-Net[13]and Mnist[1].

    2.2 User interface

    The user interface consists of eight parts, as shown in Fig.4, in which the view is returned by the on-board camera.The gimbal camera on the quadcopter streams the video back through the image transmission module and displays it full screen on the monitor.The transmission delay is around 200 ms, which is within the acceptable range.

    Fig.4 Components of the user interface

    There is a small box showing a face in the bottom right corner of the interface, allowing the user to determine whether they have the tablet in a reasonable position.We display the results of gazetracking (the user’s gaze point on the tablet screen)as a blue dot in the interface.The role of the distance ring is to limit the effect of the eye-gaze drive.The user can realize eye drive when the estimated result of the gaze point is outside the distance ring,otherwise the control of the quadrotor will not be triggered.

    Another prerequisite for starting eye-gaze control is that the activation button in the bottom left corner of the interface is pressed.To ensure the security of the control, the user needs to keep the button pressed.Note that the quadcopter’s DOF in the forward and backward directions are controlled manually.The forward speed of the quadcopter is adjusted by sliding up the green slider in the lower right corner, while sliding down the slider has the opposite effect.

    2.3 Quadrotor flight control

    In this work, the predicted result of the gazetracking model is the user’s gaze point (x,y) on the tablet display.Since 2D gaze-tracking is used, the quadrotor can only be controlled simultaneously by the human eye in two DOF of motion.

    By summarizing previous research works, we find a better mapping logic: (1) The motion of gaze in the vertical direction maps to the motion of the quadrotor in the altitude direction.(2) The motion of gaze in the horizontal direction maps to the motion of the quadrotor in the yaw direction.We believe that such a mapping method is the most intuitive and more in line with the user’s operation habits.

    Because the motion of the quadrotor in the vertical direction and its yaw have been determined by the gaze direction, other control methods are needed to determine the motion of the quadrotor in other directions.

    We use the roll angle of the head to determine the roll angle of the quadrotor, and use the slider on the interface to control the movement of the quadrotor in the forward and backward directions.The overall control method is shown in Fig.5.

    Fig.5 The overall control method

    We first introduce the implementation of gaze control of the quadrotor motion in the vertical and yaw directions.In Fig.5(a), the blue gaze point is located outside the distance ring with coordinates(x,y), so it can trigger eye-gaze drive.

    Let the radius of the distance ring bed1, the distance from the gaze point toOsisd1+d2, the distance from the gaze point to axisxsis set todv,and the distance from the gaze point to axisysis set tody.BecauseOsis the midpoint of the screen and the resolution of the screen is 2 560×1 600,dv=800-yganddx=1 280-xg.

    The values ofdvanddxreflect the user’s expectation on the direction of the quadrotor motion.The larger thedv, the larger the quadrotor motion in the vertical direction should be, and the larger thedx, the larger the quadrotor motion in the yaw direction should be.

    We useCvandCyto represent the value of user control over the quadrotor in the vertical and yaw directions, so whend2is larger than 0,Cv=θ1dvandCy=θ2dx.The coefficientsθ1andθ2indicate the control rate.

    The movement of the quadrotor over the roll angle is controlled by the roll of the user’s head,which is denoted by rollh.The user’s head angle is detected by the SSD machine learning model.With the head tilted to the left, the quadrotor flies to the left, and the opposite to the right.

    We useCrto represent the value of user control over the quadrotor in the roll angle direction, soCr=θ3rollh.The coefficientθ3indicates the control rate.

    As mentioned above, we manually control the forward and backward of the quadrotor, and the slider on the user interface helps us to achieve this purpose.In this research, the quadrotor is controlled simultaneously by gaze, head pose, and manual.Fig.5(b) shows the functions achieved by each control method.

    3 Experiments

    In order to conduct flight control experiments,an adequately large physical space is required.We set up the experimental environment in an open area of the school.Fig.6 illustrates the layout of the physical environment.

    Fig.6 Test grounds with multiple obstacles

    3.1 Experimental setup

    We place four types of obstacles in the field,six in total: three knife flags, a tunnel, a round hole, and an archway.Subjects are asked to turn their backs to the field and steer the quadcopter from the tarmac and back through each obstacle.They are not allowed to directly observe the field, and could only adjust the quadcopter’s flight conditions via video streams from the quadcopter’s onboard camera.

    In this experiment, each subject is required to control the quadrotor using a joystick and the proposed control method (eye-gaze drive).

    3.2 Performance evaluation

    To evaluate the effect of eye-gaze drive quadrotors, we set up the following evaluation methods with Ref.[10]: Flight distance, total time, and smooth curve deviation.Our goal is to test whether the proposed system can adequately convert gaze information into control information for the quadrotor, improve the control of the quadrotor, and thus replace the traditional joystick with eye-gaze drive.

    To compare the manipulation efficiency of the two control methods, we calculate the total time(TT) and flight distance(FD) of subjects for each completed task.

    The smooth curve deviation (SCD) can reflect the smoothness of the quadrotor flight path, as shown in Fig.7.By processing the real flight path,we can get the smoothed path.piis the point on the real path at timei,psiis the point on the smoothed path at timei.Therefore, the SCD is calculated as

    wherenis the number of quadrotor trajectory points.The quadrotor records its position once every 0.1 s.

    Fig.7 The smooth curve deviation

    4 Results and Discussion

    In this section, we analyze and compare the effectiveness of the two control methods.We collect data from five subjects, and for each control method, each subject has 20 opportunities.And the average test results are shown in Table 1.

    Table 1 The summarized performance of two control methods

    For the TT, all ten sets of data are within 2 min.The comparison reveals that all five subjects are faster in completing the flight task using the joystick than using the eye-gaze drive with average of about 15.9%.Four of the subjects show little divergence in the two control modes, but the fourth subject shows a significant difference in TT because this subject could not adapt to eye-gaze drive in a short time.

    In our control system, the forward speed of the quadrotor is determined by the position of the slider on the screen.For safety reasons, we set the speed corresponding to the slider at the maximum position to be relatively small, which, we believe, is one of the reasons for the larger TT obtained by the eyegaze control relative to that obtained by the joystick.

    Generally speaking, the shorter the flight time, the shorter the flight distance, but the experimental results of FD are counter-intuitive.The FD obtained using the eye-gaze control is nearly 4.13%lower than the FD obtained using the joystick.Using eye-gaze control mode, the subject can control the UAV to complete the flight mission through a shorter flight distance.This phenomenon is difficult to understand, but combined with the experimental results of SCD, the reason can be found out.

    Using the eye-gaze control, we can get lower FD and SCD, where SCD is reduced by almost 6.57%, and SCD can reflect the degree of trajectory fluctuation.This shows that although the TT obtained by this control method is larger, the flight trajectory of the controlled quadrotor is shorter and the trajectory is smoother.Therefore, we can conclude to a certain extent that the eye-gaze control method is smoother and more controllable, and the quadrotor travels a more efficient trajectory.

    In the experiment, we also find that by using the eye-gaze drive, subjects are able to plan their routes more proactively based on the obstacles.Because of the reduced reliance on hand movements,subjects could focus more on the route.

    The results from this study show that using gaze movements and simple body motions is still sufficient to perform a challenging task: Controlling a quadcopter in 3D physical space.The self-developed software and hardware find that an inexpensive interface is possible.

    We assign two DOF of the quadrotor to the eye to achieve intuitive gaze intervention.However,the other DOF of the quadrotor still requires limb intervention, which is believed as an area in dire need of improvement.

    In addition to using brain-computer interfaces or other bio-signals, we believe that with the interface setup, the eye is capable of controlling the quadrotor flight alone.

    5 Conclusions

    We present a mobile platform-based gaze interaction system that tracks eye movements while converting gaze information into control information for a quadrotor.The proposed interaction enables the user to manipulate the quadrotor through the eyes to accomplish complex flight tasks in 3D space.With this low-cost and mobile device, people can control their flying machines naturally and easily in their daily lives.From the results of our study, we have succeeded in demonstrating the potential of this interaction method.We believe that our solution can expand new ways of human-computer interaction and create a new dimension of quadrotor control.

    在线观看人妻少妇| 在线观看美女被高潮喷水网站| 国产极品天堂在线| 午夜福利在线观看免费完整高清在| 夜夜爽夜夜爽视频| 国产精品久久久av美女十八| 亚洲伊人色综图| 中文字幕亚洲精品专区| 欧美日韩亚洲高清精品| 十八禁高潮呻吟视频| 在线亚洲精品国产二区图片欧美| 国产无遮挡羞羞视频在线观看| 欧美3d第一页| 亚洲av综合色区一区| 欧美丝袜亚洲另类| 18禁观看日本| 看十八女毛片水多多多| 69精品国产乱码久久久| 久久99热这里只频精品6学生| 99热全是精品| 亚洲性久久影院| 亚洲激情五月婷婷啪啪| 美女xxoo啪啪120秒动态图| 国产精品99久久99久久久不卡 | 一本久久精品| 少妇精品久久久久久久| 天天操日日干夜夜撸| 色吧在线观看| 老司机影院成人| 日本91视频免费播放| 久久久久久久久久久免费av| 色婷婷av一区二区三区视频| 亚洲欧美清纯卡通| 一级爰片在线观看| 国产女主播在线喷水免费视频网站| 久久这里只有精品19| 久久青草综合色| 日韩一区二区三区影片| 赤兔流量卡办理| 国产永久视频网站| 亚洲综合色惰| 校园人妻丝袜中文字幕| 欧美亚洲日本最大视频资源| 在线亚洲精品国产二区图片欧美| 成人亚洲精品一区在线观看| 免费在线观看黄色视频的| 黄色怎么调成土黄色| 激情视频va一区二区三区| 亚洲精华国产精华液的使用体验| 香蕉国产在线看| 久久影院123| 一边摸一边做爽爽视频免费| 国产探花极品一区二区| 国产欧美日韩综合在线一区二区| 咕卡用的链子| 一级爰片在线观看| 亚洲一区二区三区欧美精品| 欧美另类一区| 少妇 在线观看| 人妻 亚洲 视频| 亚洲精品aⅴ在线观看| 在线观看三级黄色| 九色亚洲精品在线播放| 免费在线观看完整版高清| 国产精品成人在线| 黄色毛片三级朝国网站| 乱人伦中国视频| 免费高清在线观看日韩| 日韩大片免费观看网站| 美女国产高潮福利片在线看| 中国美白少妇内射xxxbb| 欧美亚洲 丝袜 人妻 在线| 国产高清国产精品国产三级| 久热久热在线精品观看| 国产免费现黄频在线看| 各种免费的搞黄视频| 2021少妇久久久久久久久久久| 在线观看人妻少妇| 亚洲激情五月婷婷啪啪| 黄片播放在线免费| 18禁动态无遮挡网站| 黄色一级大片看看| 精品久久蜜臀av无| 亚洲精品第二区| 亚洲精品一二三| 久久99蜜桃精品久久| 青青草视频在线视频观看| 国产成人欧美| 亚洲成人av在线免费| 少妇的丰满在线观看| av不卡在线播放| 青春草视频在线免费观看| 美女大奶头黄色视频| 免费av中文字幕在线| 亚洲欧美日韩另类电影网站| 国产一区二区三区综合在线观看 | 免费黄频网站在线观看国产| 一级,二级,三级黄色视频| av天堂久久9| 激情视频va一区二区三区| 亚洲国产日韩一区二区| 亚洲成国产人片在线观看| 精品一区二区三区视频在线| 宅男免费午夜| 搡女人真爽免费视频火全软件| 美女内射精品一级片tv| tube8黄色片| 永久免费av网站大全| 免费av中文字幕在线| 久久99热6这里只有精品| 欧美人与善性xxx| 在线观看免费日韩欧美大片| 亚洲伊人久久精品综合| 精品国产一区二区久久| 七月丁香在线播放| 又黄又粗又硬又大视频| 18+在线观看网站| 久久99蜜桃精品久久| 国产av国产精品国产| 韩国精品一区二区三区 | 久久精品夜色国产| 日韩在线高清观看一区二区三区| 成人黄色视频免费在线看| 一二三四中文在线观看免费高清| 精品亚洲成a人片在线观看| 精品熟女少妇av免费看| 国产日韩一区二区三区精品不卡| 丝瓜视频免费看黄片| 欧美日韩一区二区视频在线观看视频在线| 久久午夜综合久久蜜桃| 日日啪夜夜爽| 亚洲精品视频女| 在线 av 中文字幕| 少妇被粗大的猛进出69影院 | 丝袜脚勾引网站| a级片在线免费高清观看视频| 亚洲天堂av无毛| 毛片一级片免费看久久久久| 国产xxxxx性猛交| 亚洲精品日韩在线中文字幕| 王馨瑶露胸无遮挡在线观看| h视频一区二区三区| 国产极品天堂在线| 午夜福利影视在线免费观看| 日韩在线高清观看一区二区三区| 色吧在线观看| 国产69精品久久久久777片| 亚洲精品美女久久av网站| 少妇人妻久久综合中文| 亚洲欧美日韩另类电影网站| 99视频精品全部免费 在线| 少妇的逼好多水| 丰满饥渴人妻一区二区三| 女人久久www免费人成看片| 亚洲成国产人片在线观看| 99热6这里只有精品| 亚洲精品美女久久久久99蜜臀 | 在线观看免费视频网站a站| 丝袜人妻中文字幕| 午夜老司机福利剧场| 午夜免费观看性视频| 黄片无遮挡物在线观看| www日本在线高清视频| kizo精华| 成人国产av品久久久| 久久影院123| 高清毛片免费看| 高清黄色对白视频在线免费看| 久久久久人妻精品一区果冻| 极品少妇高潮喷水抽搐| 免费人妻精品一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| 80岁老熟妇乱子伦牲交| 亚洲国产av新网站| 99热全是精品| 狠狠婷婷综合久久久久久88av| 精品一区在线观看国产| 精品亚洲成a人片在线观看| 男女啪啪激烈高潮av片| 性色avwww在线观看| 久久毛片免费看一区二区三区| 美女主播在线视频| a 毛片基地| 捣出白浆h1v1| 一级a做视频免费观看| 丝袜在线中文字幕| 亚洲精品乱码久久久久久按摩| 免费观看无遮挡的男女| 国产av一区二区精品久久| 美女主播在线视频| 秋霞在线观看毛片| 精品熟女少妇av免费看| 久久综合国产亚洲精品| 国产亚洲av片在线观看秒播厂| 视频在线观看一区二区三区| 春色校园在线视频观看| 久久鲁丝午夜福利片| 精品久久蜜臀av无| 免费黄网站久久成人精品| 欧美精品人与动牲交sv欧美| 国产av国产精品国产| 成人综合一区亚洲| 精品一区二区三区四区五区乱码 | 永久网站在线| 国产av国产精品国产| 日韩精品免费视频一区二区三区 | 国产精品99久久99久久久不卡 | 亚洲,欧美,日韩| 亚洲精品乱久久久久久| 亚洲国产成人一精品久久久| 久久久久久久久久久久大奶| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美成人精品一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 久久久精品区二区三区| 中文天堂在线官网| 美国免费a级毛片| 日韩在线高清观看一区二区三区| 一级片'在线观看视频| 久久久久久人人人人人| 欧美亚洲 丝袜 人妻 在线| 日韩欧美精品免费久久| 在线天堂中文资源库| 亚洲内射少妇av| 中文字幕亚洲精品专区| 亚洲av国产av综合av卡| 老司机亚洲免费影院| 亚洲精品美女久久久久99蜜臀 | 精品人妻熟女毛片av久久网站| 五月玫瑰六月丁香| 韩国精品一区二区三区 | av线在线观看网站| 成人黄色视频免费在线看| www日本在线高清视频| www.av在线官网国产| 国产男女内射视频| 丁香六月天网| 国产精品秋霞免费鲁丝片| 秋霞在线观看毛片| 亚洲精品aⅴ在线观看| 国产精品久久久久久av不卡| 日韩精品免费视频一区二区三区 | 精品久久国产蜜桃| 卡戴珊不雅视频在线播放| 国产一级毛片在线| 免费观看av网站的网址| av卡一久久| 97超碰精品成人国产| 中国三级夫妇交换| 男人舔女人的私密视频| freevideosex欧美| www日本在线高清视频| 性高湖久久久久久久久免费观看| 国产综合精华液| 日韩视频在线欧美| 成人国语在线视频| 亚洲伊人色综图| 成人手机av| 精品一区二区三区视频在线| 免费女性裸体啪啪无遮挡网站| 亚洲欧美日韩卡通动漫| 亚洲性久久影院| 2018国产大陆天天弄谢| 国产一区有黄有色的免费视频| av福利片在线| 麻豆乱淫一区二区| 久久久亚洲精品成人影院| 99九九在线精品视频| 亚洲久久久国产精品| 一级片'在线观看视频| 国产在线一区二区三区精| 亚洲精品,欧美精品| 久久久久网色| 制服丝袜香蕉在线| 欧美人与性动交α欧美软件 | 高清欧美精品videossex| 国产色爽女视频免费观看| 久久99热6这里只有精品| 高清视频免费观看一区二区| 国产av精品麻豆| 99热网站在线观看| 人妻系列 视频| 国产精品不卡视频一区二区| 国产欧美日韩综合在线一区二区| 久久国内精品自在自线图片| 两个人免费观看高清视频| 欧美精品一区二区大全| 国产一区二区在线观看日韩| 18禁在线无遮挡免费观看视频| 乱码一卡2卡4卡精品| 日韩人妻精品一区2区三区| 2018国产大陆天天弄谢| www日本在线高清视频| 午夜视频国产福利| 最新的欧美精品一区二区| 搡老乐熟女国产| 欧美亚洲日本最大视频资源| 亚洲成av片中文字幕在线观看 | 国产亚洲av片在线观看秒播厂| 九九在线视频观看精品| 国产精品三级大全| 国产深夜福利视频在线观看| 免费高清在线观看视频在线观看| 男女高潮啪啪啪动态图| 久热久热在线精品观看| 免费高清在线观看日韩| 国产精品成人在线| 亚洲综合精品二区| 精品一区二区三卡| 国产黄频视频在线观看| 精品久久国产蜜桃| 天天躁夜夜躁狠狠躁躁| 美女脱内裤让男人舔精品视频| 大片电影免费在线观看免费| 国产无遮挡羞羞视频在线观看| 一级毛片黄色毛片免费观看视频| 97在线视频观看| 久久久精品区二区三区| 人妻一区二区av| 国产成人精品婷婷| 美女视频免费永久观看网站| 全区人妻精品视频| 国产一区亚洲一区在线观看| 天堂俺去俺来也www色官网| 国产色爽女视频免费观看| 哪个播放器可以免费观看大片| 国产av国产精品国产| 日本91视频免费播放| 精品人妻偷拍中文字幕| 啦啦啦中文免费视频观看日本| 新久久久久国产一级毛片| 欧美激情极品国产一区二区三区 | 亚洲婷婷狠狠爱综合网| 少妇被粗大的猛进出69影院 | 飞空精品影院首页| 亚洲精品,欧美精品| 丝袜脚勾引网站| 你懂的网址亚洲精品在线观看| 卡戴珊不雅视频在线播放| 久久久久精品人妻al黑| 观看美女的网站| 亚洲精品一二三| 国产精品三级大全| 少妇的逼水好多| 大片电影免费在线观看免费| 亚洲精品久久成人aⅴ小说| 一本色道久久久久久精品综合| 男女啪啪激烈高潮av片| 下体分泌物呈黄色| 久久免费观看电影| 狂野欧美激情性bbbbbb| 一级,二级,三级黄色视频| 久久久久精品性色| 母亲3免费完整高清在线观看 | 麻豆精品久久久久久蜜桃| 美女大奶头黄色视频| 好男人视频免费观看在线| 伦理电影大哥的女人| 日日爽夜夜爽网站| 90打野战视频偷拍视频| 国产精品久久久久久av不卡| 黑丝袜美女国产一区| 99久久综合免费| 岛国毛片在线播放| 丝袜美足系列| 插逼视频在线观看| 欧美 亚洲 国产 日韩一| 欧美日韩综合久久久久久| 在线观看免费高清a一片| 日本黄色日本黄色录像| 国产av国产精品国产| 久久鲁丝午夜福利片| 久久精品久久精品一区二区三区| 成年人免费黄色播放视频| xxxhd国产人妻xxx| 大香蕉久久网| 9191精品国产免费久久| 最近中文字幕2019免费版| 美女福利国产在线| 免费高清在线观看日韩| 国产亚洲精品久久久com| 精品国产露脸久久av麻豆| 亚洲综合精品二区| 亚洲一码二码三码区别大吗| 欧美精品亚洲一区二区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品成人av观看孕妇| 日产精品乱码卡一卡2卡三| 亚洲五月色婷婷综合| 国产极品天堂在线| 999精品在线视频| 亚洲精品视频女| 国产精品一区www在线观看| 交换朋友夫妻互换小说| 久久久久国产精品人妻一区二区| 亚洲精品久久久久久婷婷小说| 在线免费观看不下载黄p国产| 久久久亚洲精品成人影院| 日韩 亚洲 欧美在线| 永久免费av网站大全| 五月天丁香电影| 免费观看在线日韩| 国产精品久久久久成人av| 午夜福利在线观看免费完整高清在| 99九九在线精品视频| 国产熟女欧美一区二区| 美女国产高潮福利片在线看| 18在线观看网站| 黄网站色视频无遮挡免费观看| 在线观看免费日韩欧美大片| 纯流量卡能插随身wifi吗| 精品国产乱码久久久久久小说| 狠狠精品人妻久久久久久综合| 久久精品国产自在天天线| 国产乱来视频区| 成人毛片60女人毛片免费| av女优亚洲男人天堂| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 亚洲色图 男人天堂 中文字幕 | 国产伦理片在线播放av一区| 黄色怎么调成土黄色| 国产成人精品福利久久| 一区二区三区乱码不卡18| 肉色欧美久久久久久久蜜桃| 国产精品一区www在线观看| a级毛片在线看网站| 99热6这里只有精品| 超色免费av| 99热这里只有是精品在线观看| 街头女战士在线观看网站| 国产欧美日韩一区二区三区在线| 我的女老师完整版在线观看| 亚洲国产看品久久| 国产激情久久老熟女| 又黄又爽又刺激的免费视频.| 黑人高潮一二区| 欧美成人午夜免费资源| 777米奇影视久久| 久久这里有精品视频免费| 狂野欧美激情性xxxx在线观看| 午夜福利,免费看| 国产av国产精品国产| 亚洲成人av在线免费| 五月天丁香电影| 国产黄色免费在线视频| 国产欧美日韩一区二区三区在线| 一本色道久久久久久精品综合| 亚洲精品久久成人aⅴ小说| 国产日韩一区二区三区精品不卡| 黄色毛片三级朝国网站| 国产精品人妻久久久久久| 亚洲内射少妇av| 亚洲,欧美精品.| 最近中文字幕高清免费大全6| 免费看不卡的av| 黑人高潮一二区| 亚洲成国产人片在线观看| 午夜老司机福利剧场| 午夜视频国产福利| 国产一区二区在线观看av| 99热全是精品| 99香蕉大伊视频| 97在线人人人人妻| 多毛熟女@视频| 伦精品一区二区三区| 亚洲高清免费不卡视频| 欧美精品人与动牲交sv欧美| 亚洲国产欧美日韩在线播放| 亚洲一级一片aⅴ在线观看| 人妻 亚洲 视频| 色视频在线一区二区三区| 夫妻性生交免费视频一级片| 午夜激情av网站| 成人手机av| 乱人伦中国视频| 一边亲一边摸免费视频| 十八禁网站网址无遮挡| 春色校园在线视频观看| 蜜臀久久99精品久久宅男| 精品99又大又爽又粗少妇毛片| 99久久中文字幕三级久久日本| 久久久精品免费免费高清| 在线观看国产h片| 成人免费观看视频高清| 亚洲国产色片| 亚洲天堂av无毛| 日日啪夜夜爽| 国产亚洲最大av| 亚洲成av片中文字幕在线观看 | 国产成人免费无遮挡视频| 欧美xxⅹ黑人| 妹子高潮喷水视频| 桃花免费在线播放| 国产成人午夜福利电影在线观看| av卡一久久| 成人毛片a级毛片在线播放| 亚洲精品456在线播放app| 亚洲综合色惰| 亚洲精华国产精华液的使用体验| 好男人视频免费观看在线| 22中文网久久字幕| 在线亚洲精品国产二区图片欧美| av又黄又爽大尺度在线免费看| 免费在线观看完整版高清| 成人无遮挡网站| 日韩av不卡免费在线播放| 久久久久久久国产电影| 免费久久久久久久精品成人欧美视频 | 亚洲国产日韩一区二区| 免费日韩欧美在线观看| 国产一区二区三区av在线| 老女人水多毛片| 激情五月婷婷亚洲| 成人免费观看视频高清| 水蜜桃什么品种好| 亚洲欧洲国产日韩| 亚洲丝袜综合中文字幕| av在线播放精品| 亚洲第一区二区三区不卡| 欧美丝袜亚洲另类| 黑人高潮一二区| 在线精品无人区一区二区三| 日韩免费高清中文字幕av| 久久99精品国语久久久| 亚洲少妇的诱惑av| 丰满迷人的少妇在线观看| 久久女婷五月综合色啪小说| 97人妻天天添夜夜摸| 婷婷色综合大香蕉| 亚洲国产看品久久| 日日爽夜夜爽网站| 国产永久视频网站| 国产在线一区二区三区精| 国产精品国产三级国产av玫瑰| 亚洲美女搞黄在线观看| av免费在线看不卡| 国产成人精品一,二区| 大片电影免费在线观看免费| 久久国产精品男人的天堂亚洲 | 夜夜爽夜夜爽视频| 最近中文字幕高清免费大全6| 男女免费视频国产| 在线观看免费日韩欧美大片| 精品99又大又爽又粗少妇毛片| 一级a做视频免费观看| 欧美日本中文国产一区发布| av不卡在线播放| 日本午夜av视频| 天天影视国产精品| 两个人看的免费小视频| 亚洲av电影在线进入| 亚洲精品成人av观看孕妇| 日日撸夜夜添| 人妻一区二区av| 亚洲欧美清纯卡通| 久久99蜜桃精品久久| 97在线人人人人妻| 久久人人爽人人爽人人片va| 少妇被粗大的猛进出69影院 | 久久毛片免费看一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产精品国产三级专区第一集| 午夜福利视频在线观看免费| 久久综合国产亚洲精品| 在线看a的网站| 欧美 日韩 精品 国产| 色哟哟·www| 久久女婷五月综合色啪小说| 国产精品国产三级国产专区5o| 久久久久久伊人网av| 亚洲性久久影院| 国产亚洲精品久久久com| 观看av在线不卡| 久久人人97超碰香蕉20202| 精品一区二区三区四区五区乱码 | 日本91视频免费播放| 国产精品免费大片| 午夜福利,免费看| 毛片一级片免费看久久久久| 日本-黄色视频高清免费观看| av女优亚洲男人天堂| 蜜臀久久99精品久久宅男| 日韩一区二区三区影片| 黄片无遮挡物在线观看| 亚洲国产成人一精品久久久| 精品久久国产蜜桃| 亚洲中文av在线| 亚洲欧美清纯卡通| 国产 一区精品| 久久狼人影院| 男男h啪啪无遮挡| a级毛片在线看网站| 丁香六月天网| 中国国产av一级| 满18在线观看网站| 中文字幕免费在线视频6| 搡老乐熟女国产| 亚洲av日韩在线播放| 久久久久久久国产电影| av天堂久久9| 亚洲第一区二区三区不卡| 18禁观看日本| 狂野欧美激情性xxxx在线观看| 亚洲第一区二区三区不卡| 国产爽快片一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 欧美人与性动交α欧美软件 | 亚洲国产看品久久| 亚洲高清免费不卡视频| 香蕉国产在线看| 午夜视频国产福利| 2021少妇久久久久久久久久久| 亚洲av成人精品一二三区| 久久亚洲国产成人精品v|