• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Active learning accelerated Monte-Carlo simulation based on the modified K-nearest neighbors algorithm and its application to reliability estimations

    2023-11-11 04:08:02ZhifengXuJiyinCoGngZhngXuyongChenYushunWu
    Defence Technology 2023年10期

    Zhifeng Xu , Jiyin Co , Gng Zhng ,c,*, Xuyong Chen , Yushun Wu

    a School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan, 430200, PR China

    b School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430200, PR China

    c Failure Mechanics&Engineering Disaster Prevention and Mitigation,Key Laboratory of Sichuan Province,Sichuan University,Chengdu,610065,PR China

    Keywords:Active learning Monte-carlo simulation K-nearest neighbors Reliability estimation Classification

    ABSTRACT This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs, the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification, which is applicable for most structural reliability estimation problems.Moreover, the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements, which further validates its practicability.

    1.Introduction

    New materials, such as alloys, ceramics, matrix composites,phase change materials, reactive materials, etc., have been widely used in aerospace and defense industries, whose varied applications cover infrastructure, aircraft wings and fuselages, armor,biomedical implants, microelectromechanical systems, etc.[1-4].In order to better guarantee military products’ quality as well as personnel’s life safety, reliability-based design has become the prevailing design method of various military equipment, which usually requires an extremely low failure risk, e.g., a failure probability on the order of 10-6[5-9].Evidently, direct experimental tests are banned for probing such a low failure risk because of the corresponding unaffordable cost.To handle such a problem, two general approaches are usually adopted:probabilistic methods and statistical methods [5,10].

    Probabilistic methods resort to mechanics-based analytical models to predict failure probability,whose advantage is the ability to produce an entire reliability distribution using a relatively small amount of data.On the other hand, probabilistic methods are limited to simple failure mechanisms and simple probabilistic models, e.g., the bundle model for ductile structures [11], the weakest-link models for brittle and quasi-brittle structures [12],the fishnet model for lamellar materials [13],etc.Recently,Xu and Le proposed the first passage model based on random fields[14,15],which is a continuous model intended for describing the failure statistics of complex structures.

    On the other hand,statistical methods are anchored by Monte-Carlo (MC) simulations, which are usually computationally more expensive than probabilistic methods.But the ability to deal with sophisticated structural configurations and diverse failure mechanisms makes statistical methods more beneficial for practical engineering problems than probabilistic methods [16].Since direct MC simulations are universal but cumbersome, numerous approaches aimed at improving the computational efficiency have been developed [5], such as importance samplings [17,18],directional samplings [19,20], subset simulations [21,22], Latin hyperrectangle samplings [23,24], response surface methods [25],directional division-based methods [26,27], etc.

    In recent years, machine learning-based statistical methods[28-32] have found their superiorities to classical statistical methods on structural reliability estimations for having better computational efficiency,in which the heuristic ones are gradientbased algorithms [33,34], swarm algorithm-based methods[35-37], genetic algorithms-based methods [38-40], active learning-based methods [32,41,42], deep learning-based methods[43], etc.In terms of machine learning, reliability estimation falls into the classification problems, aiming at providing accurate predictions on random input points’ being in the safe domain or not.However, misclassifications produced by the machine learning processes would deteriorate the accuracy of these methods,which would yield considerable errors for reliability estimations when the failure probability is sufficiently low.

    Aiming at decreasing misclassifications and therefore increasing the accuracy of reliability estimations,this paper proposes an active learning-based statistical method based on the modified K-nearest neighbors (KNN) algorithm, in which the convex hull of nearest neighbors is used for improving the accuracy of classifications.Rather than regulating the sampling points through experimental design as in other active learning methods, the proposed method uses MC simulations for sampling the input points.The core idea of the proposed method is to use the modified KNN algorithm to determine whether or not a random point can be postulated or needs to be actually sampled by MC simulations.Through such an implementation, a large number of evaluations of the corresponding outputs can be saved, resulting in a satisfactory acceleration.At this point, it is noted that, since the chance of its misclassifications is low, the proposed method can be applied to accelerate most MC simulations with sufficient accuracy, which is in a sense general for reliability-related problems.Evidently, the proposed method can be combined with any method that requires MC simulations, giving birth to new methods with better efficiencies.

    The rest of the paper is organized as follows:Section 2 presents the necessary theoretical background of the proposed; Section 3 presents and validifies the proposed acceleration method for MC simulations; Section 4 studies the optimal value of K that maximizes the computational efficiency;Section 5 applies the proposed method to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random tensile displacements, from which the practicability of the proposed method is further verified.

    2.Theoretical background

    This section presents the necessary theoretical background for this paper,in which Subsection 2.1 introduces the fundamentals of reliability analysis, and Subsection 2.2 demonstrates the KNN algorithm.

    2.1.Reliability analysis

    Given a structure subjected to n number of random variables denoted by the vector x = [x1, x2, …, xn]T, and a set of nominal responses {y1(x), y2(x), …, yj(x)}, where yi(x) < 0 represents a corresponding failure state and the superscript T is the transpose operator.The following performance function is defined as the measure of the structural state

    where y>0 or y<0 indicates the structure is in the safe or failure state, respectively.If the existence of any negative nominal response can trigger the structural failure, then y = min {y1(x),y2(x), …, yj(x)} becomes the performance function of the entire structure.

    Conventionally, x and y are usually referred to as the input and output, respectively.Besides, the input x is called positive or negative according to the sign of its output y, i.e., x is positive if y>0,x is negative if y<0.It is noted that x can be a combination of loads and resistances.The limit between the safe state and the failure state is represented by the following limit state function

    Evidently, the failure probability becomes

    where fx(x1,x2,…,xn)is the joint probability density function(PDF)of each xi, and Ωs= {x| y(x) > 0} is the safe domain, and R is the reliability.

    Through MC simulation, a input set X = {x1; x2; …; xN} can be generated,in which N is the sample size,and xi=[x1i,x2i,…,xni]Tis the ith sample input.The output set with respect to X is represented by the output set Y={y1;y2;…;yN},where yi=y(xi).According to the law of large numbers, the failure probability can be computed by

    where NSis the total number sample points in Ωs.

    2.2.The K-nearest neighbors algorithm

    As one of the most widely used classifiers in machine learning,the KNN algorithm can be applied to the classification of reliability problems,in which a sample point should be classified into the safe domain or the failure domain by judging its p-value,i.e.,if p>0.5,the point is classified into the safe domain;else,it is classified into the failure domain.And the p-value is computed by

    where K is the number of neighbors, and Ksis the number of neighbor sample points that belong to the safe domain.It is noted that K can be a prescribed constant or a random variable, e.g., the number of sample points whose distances to the point of interest is smaller than a critical distance,where the distance metrics used in KNN can be Euclidean distance, Minkowski distance, Manhattan distance, Chebychev distance, correlation, etc.

    3.Active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm

    This section presents the active learning accelerated Monte-Carlo simulation method, which employs the modified KNN algorithm as the classifier for determining whether the output of a random input point can be postulated or not,in which Subsection 3.1 presents the method, Subsection 3.2 numerically validates the method, and Subsection 3.3 studies the optimal value of K numerically.

    3.1.Method presentation

    The proposed acceleration method for Monte-Carlo simulations is anchored by postulating the sampling result through the modified KNN algorithm.To be more specific, for the i-th input xi, the modified KNN algorithm will work as a classifier that determines whether the output of xican be postulated.In this case, the corresponding output is estimated by yi= y*(xi), where y* is the estimator; otherwise, the output is obtained by evaluating the performance function in Eq.(1), i.e., yi= y (xi).In conventions of machine learning,the evaluation of yithrough y(xi)is referred to as the i-th experiment.At this point, the following convention is made: inputs whose outputs are postulated through the proposed method are referred to as postulates, and postulates whose sign is contradictory to the corresponding experiments are referred to as misclassifications.

    Fig.1 shows the flowchart of the proposed method, which can be concluded into the following steps:Step 1,determine the sample size N and the number of neighbors K;Step 2,sample K number of random inputs and evaluate their corresponding outputs; Step 3,perform Step 4 and Step 5 until the number of currently sampled inputs reaches N; Step 4, sample a random input and determine whether it can be postulated through the modified KNN algorithm;Step 5, if the input sampled in Step 4 can be postulated, then estimate the output through interpolation, else evaluate the performance function.

    The classifier implemented through the modified KNN algorithm contains the following four steps: Step 1, find the K nearest neighbors of the i-th input xi,which are denoted by xi1,…xiK;Step 2,if xi1, …xiKare uniformly positive or negative,then perform Step 3 and Step 4,else,conclude that x cannot be postulated;Step 3,hatch the convex hull of xi1, …xiK; Step 4, if xiis inside the convex hull,then estimate the output of xiby yi= y*(xi), if xiis outside the convex hull, then conclude that x cannot be postulated.Fig.2(a)presents the flowchart of the modified KNN algorithm, while Fig.2(b) demonstrates the corresponding classification details.Nevertheless, this classifier would still produce misclassifications for the following cases (as shown in Fig.2(c)): (1) the limit state surface has large curvatures; (2) the limit state surface contains multiple pores;and(3)the limit state surfaces are closely adjacent.Yet the above-listed cases for misclassifications are usually rarely encountered in structural reliability assessments.Hence, the proposed classifier is expected to yield accurate classification results and therefore can be safely applied to accelerate most Monte-Carlo simulations for structural reliability estimation.

    Fig.1.Flowchart of the the proposed method.

    In the proposed method, the estimator is chosen to be the following interpolation function

    3.2.Numerical validation

    First of all, since the proposed method is designed to be a universal acceleration method for most MC simulations for reliability estimations, this subsection only studies the acceleration effect of the proposed method, while the comparison with other reliability estimation methods is not necessary.Moreover, the proposed method is applicable to most reliability estimation methods that require MC simulations, further improving their efficiency.

    In order to validate its accuracy and efficiency, the proposed method is used to accelerate the reliability estimation of the following modified version of the series system reliability problem with high non-linearity [43].

    in which x1and x2obey standard Gaussian distribution.

    Fig.2.Illustration on the modified KNN algorithm: (a) The flowchart; (b) The demonstration of the classification; (c) The missclassification cases.

    Fig.3.The numerical validation result: (a) Experiments and postulates; (b) Postulates; (c) Experiments.

    Fig.3 shows the numerical simulation result using the proposed method, in which (a) shows the simulation result of both experiments and postulates,(b)shows the simulation result of postulates,and (c) shows the simulation result of experiments.In this numerical validation,the value of K is set to 50,and the interpolation method adopted is triangulation-based linear interpolation.A total of 105input points are sampled,232 of which are negative,and the corresponding estimated failure probability is 0.232%, while the exact value is 0.226%.Table 1 shows the statistics of the numerical simulation result using the proposed method, in which 99,212 out of the 105inputs are postulated using the proposed method.As a result, the proposed method can save 99.212% of the MC simulations, which accelerated the direct MC about 126 times.And the number of misclassifications is zero.The mean and standard deviation of the postulate errors are-0.0254 and 0.1389,respectively.Fig.4 shows the histogram of the postulate errors,which indicates the proposed method also has good accuracy for estimating the performance function.Since the correct classification between positive inputs and negative inputs is crucial for reliability computation while the postulate errors are relatively trivial, it is concluded that the proposed method is surprisingly accurate and suitable for reliability estimations.

    3.3.Study on the optimal value of K

    This section analyzes the optimal value of K, which maximizesthe computational efficiency by minimizing the number of experiments.It is noted that the optimal value of K is influenced by the dimension of inputs.In order to numerically investigate the optimal value of K, the following two cases are studied: Case 1 uses the modified version of the series system reliability problem with high non-linearity as the performance function(represented by Eq.(8)),where the exact failure probability Pf= 0.226%; Case 2 is the following high-dimensional problem [32].

    Table 1The statistics of the numerical simulation result using the proposed method.

    where x1to xnobey the identical lognormal distribution with a unit mean and a standard deviation σ=0.2,n=40,and the exact failure probability Pf= 0.196%.

    The simulation results for the number of experiments and misclassifications for the above cases are shown in Table 2, and Table 3, respectively, and from Table 3, it can be seen that the proposed algorithm is amazingly accurate by producing exactly zero misclassifications for all the tested cases.Fig.5 show the corresponding number of experiments as a function of K with respect to different sample sizes, in which the number of experiments is plotted in log form.Besides, the successful application of the proposed method to Case 2 demonstrates its applicability to highdimensional cases.Furthermore, it can be seen from Fig.5 that:1), for a given sample size, the number of experiments would first decrease as K increases and then increase as K increases,indicating there exists an optimal value of K that minimizes the number of experiments;2),the optimal value of K is influenced by the sample size and the dimensionality; and 3), after K passes the corresponding optimal value, the increasing rate of the total number of experiments becomes low, implying K can be moderately greater than the corresponding optimal value in practice.

    4.Application to the reliability estimation of carbon fiber reinforced silicon carbide composite specimens

    In this section,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide (C/SiC)composite specimens under random tensile displacements.The studied specimens are representative volume elements(RVEs)that consist of C/SiC T700-12 K unidirectional ceramic matrix composite fibers.As shown in Fig.6(a), each RVE contains 10 fibers with random tensile strengths, in which the fibers are modeled as 2-dimensional rectangular elements.One side of the sample is clamped while the other side is subjected to random tensile displacements denoted by u.The length, width, and thickness of a fiber are 1000 μm,10 μm, and 10 μm, respectively, and u obey the normal distribution, whose mean are standard deviation are 4 μm and 0.4 μm, respectively.The material constitutive model for the fibers is chosen as the isotropic damage model with linear softening (shown in Fig.6(b)) [44], whose material parameters are described by Table 4.OOFEM [45], which is an open-source finite element analysis program,is applied for performing the simulation.For any RVE, failure or safety is characterized by whether there exists a fiber whose damage parameter is greater than 0.5, and Fig.6(c) shows the damage pattern of one realization that failed during the finite element simulation.

    Altogether,105samples are tested, in which each run has 200 sub-steps.The number of failed RVEs is 26,which corresponds to a failure probability equals 0.026%.Among the 105outputs,only 2771 of them are obtained experimentally, while the rest 97,229 are postulated.Therefore,the proposed method saved 97.2%of the total MC simulations,accelerating the direct MC simulations by about 35 times.In order to further validate the misclassification error,1000 postulates are selected randomly, whose outputs are evaluated experimentally.It is found that the corresponding number of misclassifications is zero, demonstrating the good classification accuracy of the proposed method.

    Table 2The statistics of the total number of experiments using the proposed method.

    Table 3The statistics of the total number of misclassifications using the proposed method.

    Fig.5.Number of experiments VS the value of K: (a) Case 1; (b) Case 2.

    Fig.6.Demonstration of the finite element simulations: (a) Configurations and loadings; (b) Implemented stress-strain diagram; (c) Dammage parttern of a failed realization.

    Table 4Material parameters of the fibers.

    5.Conclusions

    This research proposes an active learning-based method for accelerating Monte-Carlo simulations in structural reliabilityrelated problems, whose chance of misclassification is proven to be extremely low.In addition, the optimal value of K that maximizes the computational efficiency is studied numerically.Finally,the application to the reliability estimation of the C/SiC composite specimens validates the practicality of the proposed method.Moreover, the following conclusions are drawn:

    (1) The modified KNN algorithm using nearest neighbors’convex hull can accurately classify a random input into the safe domain or the failure domain;

    (2) Using triangulation-based interpolations yields estimated outputs with reasonable errors;

    (3) There exists an optimal value of K for the proposed method that minimizes the number of experiments;

    (4) The proposed method is applicable to high-dimensional cases.

    Funding

    This work was supported by the National Natural Science Foundation of China (Grant No.12002246 and No.52178301),Knowledge Innovation Program of Wuhan (Grant No.2022010801020357), the Science Research Foundation of Wuhan Institute of Technology (Grant No.K2021030), 2020 annual Open Fund of Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province (Sichuan University)(Grant No.2020JDS0022),and Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety (Grant No.2019KA03).

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    The authors wish to acknowledge the financial supports provided by the National Natural Science Foundation of China (Grant No.12002246 and No.52178301),the Science Research Foundation of Wuhan Institute of Technology (Grant No.K2021030), 2020 annual Open Fund of Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province(Sichuan University)(Grant No.2020JDS0022),and Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety (Grant No.2019KA03).

    亚洲欧美日韩另类电影网站 | 国产女主播在线喷水免费视频网站| 精品人妻视频免费看| 最黄视频免费看| 久久人人爽人人爽人人片va| 国产成人免费无遮挡视频| 久久99热6这里只有精品| 在线观看人妻少妇| 亚洲国产高清在线一区二区三| 日韩中字成人| 天美传媒精品一区二区| 麻豆乱淫一区二区| 久久婷婷青草| 免费观看av网站的网址| 亚洲国产精品专区欧美| 亚洲国产最新在线播放| 国产一区有黄有色的免费视频| 网址你懂的国产日韩在线| 亚洲精品乱码久久久久久按摩| 大码成人一级视频| 久久久久网色| 亚洲av成人精品一区久久| 黄色配什么色好看| 精品国产乱码久久久久久小说| 视频中文字幕在线观看| 国产精品蜜桃在线观看| 色综合色国产| 久久久成人免费电影| 免费观看性生交大片5| 秋霞在线观看毛片| 日日摸夜夜添夜夜添av毛片| 91aial.com中文字幕在线观看| 一本色道久久久久久精品综合| 99久久综合免费| 国产精品国产三级国产专区5o| 夜夜爽夜夜爽视频| 一级毛片黄色毛片免费观看视频| 久久99热这里只有精品18| 免费久久久久久久精品成人欧美视频 | 91在线精品国自产拍蜜月| 建设人人有责人人尽责人人享有的 | 人妻制服诱惑在线中文字幕| 亚洲成人中文字幕在线播放| 男女边吃奶边做爰视频| 亚洲国产色片| 精品一品国产午夜福利视频| 亚洲av欧美aⅴ国产| 少妇被粗大猛烈的视频| videossex国产| 亚洲美女搞黄在线观看| 少妇高潮的动态图| 日本色播在线视频| 国产黄片视频在线免费观看| 国产精品福利在线免费观看| 久久久久久久精品精品| 一级av片app| 精品亚洲乱码少妇综合久久| 大话2 男鬼变身卡| 男女国产视频网站| 欧美 日韩 精品 国产| 亚洲,欧美,日韩| 一区二区三区精品91| 精品久久国产蜜桃| 大香蕉97超碰在线| 久热这里只有精品99| av网站免费在线观看视频| 国产男人的电影天堂91| 久久久久国产精品人妻一区二区| 国产免费又黄又爽又色| 边亲边吃奶的免费视频| 日本猛色少妇xxxxx猛交久久| 日本欧美国产在线视频| 人妻 亚洲 视频| 99精国产麻豆久久婷婷| 日韩大片免费观看网站| 亚洲欧美一区二区三区国产| 小蜜桃在线观看免费完整版高清| 欧美三级亚洲精品| 午夜日本视频在线| 精品久久久久久电影网| 免费大片18禁| 国产 精品1| 老女人水多毛片| 亚洲久久久国产精品| 日日啪夜夜撸| 成人特级av手机在线观看| 99久国产av精品国产电影| 晚上一个人看的免费电影| 日韩欧美一区视频在线观看 | 联通29元200g的流量卡| 午夜福利在线观看免费完整高清在| 六月丁香七月| 久久精品国产自在天天线| 青春草亚洲视频在线观看| 亚洲欧美中文字幕日韩二区| 中文字幕久久专区| 亚洲国产高清在线一区二区三| 十分钟在线观看高清视频www | 成人黄色视频免费在线看| 国产精品一及| 一级二级三级毛片免费看| 久久国内精品自在自线图片| 国产精品蜜桃在线观看| 九草在线视频观看| 免费观看a级毛片全部| 超碰av人人做人人爽久久| 99热6这里只有精品| 亚洲丝袜综合中文字幕| h日本视频在线播放| 日韩中字成人| 综合色丁香网| 少妇人妻精品综合一区二区| 久久99热6这里只有精品| 久久国产亚洲av麻豆专区| 99久国产av精品国产电影| av线在线观看网站| 国产精品爽爽va在线观看网站| 久久久久精品久久久久真实原创| 欧美少妇被猛烈插入视频| 日韩欧美精品免费久久| 18禁动态无遮挡网站| tube8黄色片| 一级毛片aaaaaa免费看小| kizo精华| 午夜福利网站1000一区二区三区| 老司机影院成人| 天堂俺去俺来也www色官网| 熟女av电影| 91午夜精品亚洲一区二区三区| 欧美精品国产亚洲| 国内精品宾馆在线| 亚洲美女搞黄在线观看| av福利片在线观看| 五月开心婷婷网| 寂寞人妻少妇视频99o| 精华霜和精华液先用哪个| 草草在线视频免费看| 久久综合国产亚洲精品| 狂野欧美白嫩少妇大欣赏| 免费黄频网站在线观看国产| 国产精品一区二区在线观看99| 亚洲真实伦在线观看| 国产国拍精品亚洲av在线观看| 亚洲一级一片aⅴ在线观看| 色综合色国产| 成人免费观看视频高清| 国内少妇人妻偷人精品xxx网站| 这个男人来自地球电影免费观看 | 国产淫片久久久久久久久| 亚洲精品国产av蜜桃| 夜夜爽夜夜爽视频| 高清午夜精品一区二区三区| 精品久久久久久久久亚洲| 亚洲国产欧美人成| 麻豆成人午夜福利视频| 日韩强制内射视频| 我要看黄色一级片免费的| 国产精品久久久久久精品电影小说 | 欧美日韩亚洲高清精品| 日本欧美视频一区| 欧美人与善性xxx| 中文天堂在线官网| 最新中文字幕久久久久| 亚洲内射少妇av| 国产免费一区二区三区四区乱码| 亚洲精品成人av观看孕妇| 中文资源天堂在线| 18禁裸乳无遮挡动漫免费视频| 精品人妻熟女av久视频| h日本视频在线播放| 2018国产大陆天天弄谢| 久久精品国产亚洲网站| 国产高清不卡午夜福利| 97在线视频观看| 91精品国产九色| 色综合色国产| 高清av免费在线| 成人二区视频| 成人毛片a级毛片在线播放| 大片电影免费在线观看免费| 国产亚洲精品久久久com| 国产av一区二区精品久久 | 男人和女人高潮做爰伦理| 国产又色又爽无遮挡免| 亚洲国产精品专区欧美| 热re99久久精品国产66热6| 人体艺术视频欧美日本| 国产黄片视频在线免费观看| 久久久精品免费免费高清| 日韩伦理黄色片| 在线 av 中文字幕| 国产伦在线观看视频一区| 国产精品秋霞免费鲁丝片| 国产精品嫩草影院av在线观看| 亚洲国产精品国产精品| 亚洲国产高清在线一区二区三| 最近最新中文字幕免费大全7| 欧美成人一区二区免费高清观看| 久久精品国产a三级三级三级| 18+在线观看网站| 国产精品熟女久久久久浪| 日本爱情动作片www.在线观看| 毛片一级片免费看久久久久| 国产精品国产三级国产专区5o| 国产在线免费精品| 久久精品国产自在天天线| av免费在线看不卡| 亚洲高清免费不卡视频| 色视频www国产| 91精品一卡2卡3卡4卡| 亚洲精品乱码久久久久久按摩| 中国国产av一级| 国产人妻一区二区三区在| 久久久精品免费免费高清| 亚洲av中文av极速乱| 少妇的逼好多水| 夜夜骑夜夜射夜夜干| 精品久久久噜噜| 男的添女的下面高潮视频| 少妇人妻久久综合中文| 在线观看美女被高潮喷水网站| 国产黄色视频一区二区在线观看| 97在线人人人人妻| 亚洲,欧美,日韩| 国产极品天堂在线| 精品久久久久久久久av| 久久99热这里只频精品6学生| 在线观看三级黄色| 97超视频在线观看视频| 国产美女午夜福利| 欧美高清成人免费视频www| 国产永久视频网站| 18+在线观看网站| 午夜福利高清视频| 最近最新中文字幕免费大全7| 成人无遮挡网站| 欧美极品一区二区三区四区| 成人亚洲精品一区在线观看 | 国产男女内射视频| 国产精品久久久久成人av| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人av在线免费| 国产伦精品一区二区三区视频9| 国产精品爽爽va在线观看网站| 亚洲精品成人av观看孕妇| 在线播放无遮挡| 精品久久久久久久久亚洲| 在线观看免费高清a一片| 久久精品国产鲁丝片午夜精品| 黄色一级大片看看| 久久久成人免费电影| 国产淫片久久久久久久久| 不卡视频在线观看欧美| 亚洲国产欧美在线一区| 一级黄片播放器| 久久毛片免费看一区二区三区| 亚洲成人中文字幕在线播放| 一区二区三区免费毛片| 青春草视频在线免费观看| 成年美女黄网站色视频大全免费 | 欧美最新免费一区二区三区| 少妇人妻久久综合中文| 黄色怎么调成土黄色| 亚洲精品国产成人久久av| 人妻少妇偷人精品九色| 亚洲人成网站高清观看| 一级毛片黄色毛片免费观看视频| 日韩伦理黄色片| 国产精品女同一区二区软件| 我的女老师完整版在线观看| 午夜福利影视在线免费观看| 日韩视频在线欧美| 午夜日本视频在线| 观看美女的网站| 天堂俺去俺来也www色官网| 在线免费十八禁| 日韩成人伦理影院| 美女主播在线视频| a 毛片基地| 看十八女毛片水多多多| 色哟哟·www| 久久久久性生活片| 不卡视频在线观看欧美| 一本色道久久久久久精品综合| 国产精品国产三级国产专区5o| 国产精品成人在线| 亚洲国产av新网站| 成人无遮挡网站| 精品99又大又爽又粗少妇毛片| 国产一区二区三区综合在线观看 | 美女国产视频在线观看| 精品久久久精品久久久| 久久国产精品男人的天堂亚洲 | 最近中文字幕高清免费大全6| 国产美女午夜福利| 久久精品国产鲁丝片午夜精品| 国产在线男女| 女性生殖器流出的白浆| 久久久久久九九精品二区国产| 精华霜和精华液先用哪个| 国产亚洲91精品色在线| 高清不卡的av网站| 国产 精品1| 我要看黄色一级片免费的| 插阴视频在线观看视频| 亚洲精品成人av观看孕妇| av在线app专区| 97超碰精品成人国产| 精品国产一区二区三区久久久樱花 | 久久久久久久久久久免费av| 亚洲精品456在线播放app| 99久久人妻综合| 99国产精品免费福利视频| 日韩av在线免费看完整版不卡| 日韩中文字幕视频在线看片 | 18+在线观看网站| 高清黄色对白视频在线免费看 | 少妇被粗大猛烈的视频| 搡老乐熟女国产| 久久久色成人| 直男gayav资源| 人妻制服诱惑在线中文字幕| 男女边摸边吃奶| 国产男女内射视频| 久久国内精品自在自线图片| 99久久人妻综合| 大香蕉久久网| 男女边摸边吃奶| 国产亚洲午夜精品一区二区久久| 色视频www国产| 日本-黄色视频高清免费观看| 久久久久久久精品精品| 国产 一区 欧美 日韩| 天天躁夜夜躁狠狠久久av| 超碰av人人做人人爽久久| 精品亚洲成国产av| 2022亚洲国产成人精品| 久久久精品94久久精品| 久久久色成人| 亚洲人成网站高清观看| 日韩强制内射视频| 国产欧美日韩一区二区三区在线 | 国产成人a∨麻豆精品| 亚洲人与动物交配视频| 精品视频人人做人人爽| 精品酒店卫生间| 五月伊人婷婷丁香| 精品少妇久久久久久888优播| 国产精品一二三区在线看| 在线观看一区二区三区激情| 亚洲色图av天堂| 日韩精品有码人妻一区| 亚洲国产色片| 99视频精品全部免费 在线| 18禁在线播放成人免费| 国产精品国产三级国产专区5o| kizo精华| 亚洲精品,欧美精品| 日本猛色少妇xxxxx猛交久久| 国产片特级美女逼逼视频| 男人添女人高潮全过程视频| 人妻夜夜爽99麻豆av| 国产亚洲欧美精品永久| 亚洲国产色片| 国产av一区二区精品久久 | 国产精品三级大全| 丰满少妇做爰视频| 在线观看人妻少妇| 亚洲国产高清在线一区二区三| 黑人高潮一二区| 好男人视频免费观看在线| 尤物成人国产欧美一区二区三区| 亚洲精华国产精华液的使用体验| 只有这里有精品99| 超碰av人人做人人爽久久| 婷婷色av中文字幕| 伊人久久精品亚洲午夜| 欧美bdsm另类| 国产免费一区二区三区四区乱码| 国产日韩欧美亚洲二区| 自拍偷自拍亚洲精品老妇| 成人特级av手机在线观看| 久久人人爽人人片av| 国产成人一区二区在线| 欧美日韩精品成人综合77777| 卡戴珊不雅视频在线播放| 欧美xxxx性猛交bbbb| 国产伦精品一区二区三区四那| 日日啪夜夜撸| 校园人妻丝袜中文字幕| 国产91av在线免费观看| 免费大片黄手机在线观看| 亚洲精品日韩av片在线观看| 久久国产亚洲av麻豆专区| 伊人久久国产一区二区| 亚洲第一区二区三区不卡| 精品久久久久久久久av| 国产乱来视频区| 91精品一卡2卡3卡4卡| 亚洲成人中文字幕在线播放| 天天躁日日操中文字幕| 久热久热在线精品观看| 夫妻性生交免费视频一级片| av又黄又爽大尺度在线免费看| 国产美女午夜福利| 99re6热这里在线精品视频| 少妇人妻 视频| 2021少妇久久久久久久久久久| 日韩欧美一区视频在线观看 | 欧美日韩在线观看h| 国产精品女同一区二区软件| 国产爽快片一区二区三区| 国产精品久久久久久久电影| 日韩av免费高清视频| 国产精品嫩草影院av在线观看| 少妇的逼水好多| 亚洲欧美精品专区久久| 啦啦啦中文免费视频观看日本| 亚洲国产精品国产精品| 我的老师免费观看完整版| xxx大片免费视频| 国产乱来视频区| 三级经典国产精品| 欧美精品国产亚洲| 建设人人有责人人尽责人人享有的 | 国产伦理片在线播放av一区| 精品久久久久久久久亚洲| 国产在视频线精品| 男男h啪啪无遮挡| 亚洲人成网站高清观看| 亚洲av国产av综合av卡| 女人十人毛片免费观看3o分钟| av在线老鸭窝| 色网站视频免费| 久久久精品94久久精品| 18禁动态无遮挡网站| 免费观看av网站的网址| 激情 狠狠 欧美| 国产91av在线免费观看| 亚洲欧美精品自产自拍| xxx大片免费视频| 妹子高潮喷水视频| 插逼视频在线观看| 日韩强制内射视频| 欧美高清性xxxxhd video| 两个人的视频大全免费| 成人18禁高潮啪啪吃奶动态图 | 日本黄大片高清| 午夜免费鲁丝| 亚洲人成网站高清观看| 国产精品国产三级专区第一集| 少妇猛男粗大的猛烈进出视频| 欧美97在线视频| 99久久精品热视频| 街头女战士在线观看网站| 欧美少妇被猛烈插入视频| 欧美极品一区二区三区四区| 欧美三级亚洲精品| 偷拍熟女少妇极品色| 老师上课跳d突然被开到最大视频| 日韩av不卡免费在线播放| 在线观看免费高清a一片| h视频一区二区三区| 日本av免费视频播放| 国内精品宾馆在线| 内射极品少妇av片p| 日韩中文字幕视频在线看片 | 亚洲av欧美aⅴ国产| 免费观看无遮挡的男女| 精品一品国产午夜福利视频| 最黄视频免费看| 乱系列少妇在线播放| 国产白丝娇喘喷水9色精品| 夫妻午夜视频| 国产在线一区二区三区精| 日日啪夜夜撸| 亚洲精品国产av成人精品| 伦精品一区二区三区| 欧美精品国产亚洲| 纯流量卡能插随身wifi吗| 中文字幕av成人在线电影| 久久午夜福利片| 色5月婷婷丁香| 大码成人一级视频| 99热这里只有是精品50| av又黄又爽大尺度在线免费看| 黄色欧美视频在线观看| 亚洲一级一片aⅴ在线观看| 干丝袜人妻中文字幕| 午夜福利网站1000一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 国产淫语在线视频| 99久久精品热视频| 色视频www国产| 人妻夜夜爽99麻豆av| 卡戴珊不雅视频在线播放| 国产又色又爽无遮挡免| 丰满人妻一区二区三区视频av| 亚洲精品中文字幕在线视频 | 国产色爽女视频免费观看| 哪个播放器可以免费观看大片| 下体分泌物呈黄色| 久久久久久久久久人人人人人人| 久久影院123| 日韩电影二区| 亚洲av.av天堂| 免费在线观看成人毛片| 永久网站在线| 国产成人a∨麻豆精品| 日日摸夜夜添夜夜添av毛片| 国产成人精品婷婷| 精品亚洲乱码少妇综合久久| 精品人妻视频免费看| 狂野欧美激情性bbbbbb| 女人久久www免费人成看片| 成人18禁高潮啪啪吃奶动态图 | 蜜臀久久99精品久久宅男| 亚洲国产最新在线播放| 成人高潮视频无遮挡免费网站| 狂野欧美激情性xxxx在线观看| 久久久久久久亚洲中文字幕| 黄片wwwwww| 97超碰精品成人国产| 国产成人精品婷婷| 中文字幕人妻熟人妻熟丝袜美| 3wmmmm亚洲av在线观看| 人妻系列 视频| 久久热精品热| 久久久色成人| 精品国产露脸久久av麻豆| 国产成人免费无遮挡视频| 人妻一区二区av| 一级a做视频免费观看| 精品亚洲成a人片在线观看 | 国产精品久久久久久精品古装| 国产乱人视频| 精品一区二区三区视频在线| 人体艺术视频欧美日本| 天天躁日日操中文字幕| 亚洲最大成人中文| 超碰av人人做人人爽久久| 少妇的逼水好多| 国产精品三级大全| 国产免费又黄又爽又色| 日韩大片免费观看网站| 久久精品国产鲁丝片午夜精品| 99热国产这里只有精品6| 蜜桃亚洲精品一区二区三区| 在线观看免费日韩欧美大片 | 欧美日韩视频精品一区| 青春草国产在线视频| 国产爱豆传媒在线观看| 女性被躁到高潮视频| 成年美女黄网站色视频大全免费 | 纵有疾风起免费观看全集完整版| 亚洲国产最新在线播放| 亚洲成色77777| 美女福利国产在线 | 久久99精品国语久久久| 简卡轻食公司| av网站免费在线观看视频| av女优亚洲男人天堂| 高清黄色对白视频在线免费看 | 国产精品嫩草影院av在线观看| av.在线天堂| 中文字幕精品免费在线观看视频 | 亚洲av国产av综合av卡| 51国产日韩欧美| 亚洲av国产av综合av卡| 少妇人妻精品综合一区二区| 男人舔奶头视频| 少妇熟女欧美另类| 交换朋友夫妻互换小说| 亚洲国产色片| 欧美精品人与动牲交sv欧美| 亚洲欧美中文字幕日韩二区| 成人毛片a级毛片在线播放| 在线免费十八禁| 精品人妻偷拍中文字幕| 国产美女午夜福利| 亚洲一区二区三区欧美精品| 亚洲精品成人av观看孕妇| 蜜臀久久99精品久久宅男| 天堂俺去俺来也www色官网| 黄片无遮挡物在线观看| 男人狂女人下面高潮的视频| 欧美精品一区二区免费开放| 国产精品熟女久久久久浪| 两个人的视频大全免费| 人妻少妇偷人精品九色| 亚洲精品视频女| 国产视频内射| 日韩一本色道免费dvd| 51国产日韩欧美| 一级二级三级毛片免费看| 国产伦在线观看视频一区| 黄色怎么调成土黄色| 少妇高潮的动态图| 国产免费一区二区三区四区乱码| 人体艺术视频欧美日本| 一本一本综合久久| 日韩人妻高清精品专区| 狂野欧美白嫩少妇大欣赏| av在线观看视频网站免费| 超碰97精品在线观看| 精品人妻视频免费看| 精品99又大又爽又粗少妇毛片| 精品一区二区免费观看| av在线老鸭窝| 国产精品欧美亚洲77777| 日韩成人伦理影院| 一区二区三区四区激情视频| 国产成人精品福利久久| 精品久久久精品久久久| 国产免费一级a男人的天堂|