• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of deposition power on the optical and electrical performance of sputtered gallium-magnesium co-doped zinc oxide thin films

    2023-11-07 09:15:40ZHONGZhiyouWANXinGUJinghuaLONGHaoYANGChunyongCHENShoubu
    關(guān)鍵詞:時(shí)所光學(xué)薄膜

    ZHONG Zhiyou,WAN Xin,GU Jinghua,LONG Hao,YANG Chunyong,CHEN Shoubu

    (1 College of Electronic Information Engineering,South-Central Minzu University,Wuhan 430074,China;2 Hubei Key Laboratory of Intelligent Wireless Communications,South-Central Minzu University,Wuhan 430074,China;3 Experimental Teaching and Engineerring Training Center,South-CentralMinzu University,Wuhan 430074,China)

    Abstract The transparent conductor thin films of gallium-magnesium co-doped zinc oxide(ZnO:Ga-Mg)were deposited by magnetron-sputtering process.The deposition power dependence of structural,morphological,optical and electrical properties of the thin film was characterized by various techniques.The experimental results indicate that all the thin films have hexagonal wurtzite structure with highly c-axis preferred orientation along the(002)plane,and the deposition power strongly affects the properties of ZnO:Ga-Mg thin films.The thin film prepared at the deposition power of 150 W exhibits the best crystallinity quality and photoelectric properties,with the highest average visible transmittance of 92.2%,the lowest resistivity of 1.18×10-3 Ω·cm,the maximum figure of merit of 1.04×104 Ω-1·cm-1,and the minimum lattice strain of 1.95×10-3 and dislocation density of 1.17×1015 m-2.The optical constants of the thin films were obtained by the optical characterization methods.The optical dispersion behavior of the thin films was studied in terms of the single-oscillator Wemple-DiDomenico(WDD)model,and the oscillator parameters,non-linear optical constants and optical energy-gaps were achieved.The results demonstrate that the deposition power is one of the most important processing parameters to affect the structure,optical and electrical properties of ZnO:Ga-Mg thin films.

    Keywords ZnO;thin films;doping;photoelectric properties

    Gallium-doped zinc oxide(ZnO:Ga)is a promising transparent conductor material which has numerous applications in modern technologies such as organic light emitting diodes(OLEDs)[1-2],flat panel displays(FPDs)[3-4],thin film transistors(TFTs)[5-6],photovoltaic cells(PVCs)[7-8],gas sensitive devices[9-10]and ultraviolet(UV)photodetectors[11-13].Besides good electrical conductivity and high visible light transparency,the ZnO:Ga thin films have a variety of advantages,such as material abundance,non-toxicity,low manufacture cost,high exciton binding energy(about 60 meV at room temperature),broad direct energy-gap(about 3.3 eV at room temperature)and excellent chemical-stability under hydrogen plasma,as compared to the tin-doped indium oxide(In2O3:Sn)thin films[14-17].In order to further improve the optical and electrical properties of ZnO:Ga thin films,the codoping process with two elements have been used.Up to now,the titanium-gallium(Ti-Ga),aluminumgallium(Al-Ga),gallium-zirconium(Ga-Zr),galliumindium(Ga-In),boron-gallium(B-Ga),galliumfluorine(Ga-F),magnesium-gallium(Mg-Ga)and nickel-gallium(Ni-Ga)co-doping cases have been reported[18-27].However,few reports have been devoted to the non-linear optical properties and optical dispersion behavior of the co-doped ZnO thin films.

    In this work,the Ga-Mg co-doped ZnO(ZnO:Ga-Mg)thin films were prepared by radio-frequency(RF)magnetron-sputtering process under various deposition powers.The dependence of structure,morphology,photoelectric and non-linear optical properties of the thin films on power was investigated in detail.In addition,the optical constants of the thin films were obtained using the optical characterization methods,and the optical dispersion behavior was studied in terms of the single-oscillator Wemple-DiDomenico(WDD)model.

    1 Experimental

    A quartz glass was employed as the transparent substrate,and a ceramic target(ZnO:95 wt%,Ga2O3:3 wt%,MgO:2 wt%,4N in purity)was used as the sputtering source material.The ZnO:Ga-Mg samples were prepared on the quartz glass substrates by RF magnetron-sputtering system(13.56 MHz).The base pressure in deposition chamber was kept blow 2.25×10-4Pa and high purity argon gas(5N in purity)was used as the working gas.Prior to the ZnO:Ga-Mg samples deposition,the pre-sputtering for 20 min was conducted in order to clean contamination on the ceramic target surface.The ZnO:Ga-Mg samples were prepared under the following processing parameters:7.5 cm of target-substrate distance,300 ℃ of substrate temperature,3.5 Pa of gas pressure and 40 min of sputtering time.In order to investigate the effect of deposition power on the properties of ZnO:Ga-Mg thin films,the power was controlled from 110 to 170 W.

    The thickness of the ZnO:Ga-Mg thin films was measured by an Alpha-step 500 type surface profiler.The surface morphology of the thin films was observed by a JSM-6700F type scanning electron microscope(SEM).The electrical properties of the thin films were investigated at room temperature using a RH-2035 type four-point probe measurement system.The X-ray diffraction(XRD)patterns of the thin films were characterized with a D8-Advanced type diffractometer using standard Cu Kα source(wavelengthλ=0.15406 nm).The optical transmittance(T)of the thin films were measured at room temperature by using a TU-1901 type double beam UV-visible spectrophotometer.The optical constants of the ZnO:Ga-Mg thin films were obtained from the measured transmittance data using the method of optical spectrum fitting[28].All measurements were performed in ambient air.

    2 Results and discussion

    Figure 1 shows the XRD patterns of the standard ZnO powder(PDF 036-1451)and the ZnO:Ga-Mg samples prepared at various powers.From the figure,we note that these XRD peaks of the investigated samples can be assigned to ZnO according to PDF 036-1451 card.All the investigated samples exhibit a dominant(002)peak with slight(101)and(004)peaks,indicating that the ZnO:Ga-Mg thin films have hexagonal wurtzite structure of ZnO with preferredcaxis orientation along the(002)plane,regardless of power.Also,no diffraction peaks from other impurities can be detected from Figure 1,which indicates that all the ZnO:Ga-Mg thin films in this work do not have any phase segregation or secondary phase formation.Similar results have been reported by other researchers who investigated the structural properties of ZnObased thin films[18,21,29-30].

    圖1 PDF 036-1451和不同功率時(shí)所制備薄膜的XRD圖譜Fig.1 XRD patterns of PDF 036-1451 and the thin films prepared at various powers

    The intensity of(002)diffraction peak(I(002))for the ZnO:Ga-Mg samples as a function of power is shown in Figure 2a.As can be seen,the value ofI(002)rises first and thereafter drops with the increment of power.The ZnO:Ga-Mg thin film deposited at the power of 150 W presents the highest intensity of(002)diffraction peak.The degree of preferred(002)orientation of the ZnO:Ga-Mg thin films was quantified by means of the orientation factor(P(002))[31]:

    圖2 不同功率時(shí)所制備薄膜的I(002)和P(002)數(shù)值Fig.2 The values of I(002) and P(002) for the thin films prepared at various powers

    whereI(002)is the intensity of(002)diffraction peak,the subscripth,kandlare Miller indices,I(hkl)denotes the diffraction intensity of the(hkl)plane,andNis the number of the diffraction peaks.Figure 2b shows the variation ofP(002)with power for the ZnO:Ga-Mg thin films.It is found that with increasing power from 110 to 170 W,theP(002)value raises first and subsequently falls.When the power is 150 W,the maximumP(002)value can be obtained,indicating that the ZnO:Ga-Mg sample has the highestc-axis preferred orientation when the power is 150 W.

    The mean particle size(Dm)of the ZnO:Ga-Mg samples was evaluated using the Debye-Scherrer formula[31-32]:

    whereθis the Bragg’s diffraction angle,βis the fullwidth at half-maximum(FWHM,in radians)of(002)diffraction peak,andλdenotes the wavelength of XRD measurement used(λ=0.15406 nm).The lattice strain(ε0)and the dislocation density(δ0)can be obtained by means of the following relationships[33-34]:

    whereDmrepresents the mean particle size,βis the value of FWHM in radians,θdenotes the Bragg’s angle,andλis the wavelength of X-ray used.Figure 3 shows the variation in theβ,Dm,ε0andδ0values of the investigated thin films as a function of power.It can be noticed from Figure 3 that with rising power from 110 to 170 W,the values ofβ,ε0andδ0increase in advance and then fall,but theDmtakes on an opposite trend.When the power is 150 W,the ZnO:Ga-Mg thin film exhibits the optimum crystallinity quality and structural properties,with the narrowestβ(4.91×10-3rad),the largestDm(29.3 nm),the lowestε0(1.95×10-3)and the minimumδ0(1.17×1015m-2),respectively.This result demonstrates that the grain growth and structural properties of the ZnO:Ga-Mg thin films are subjected to the deposition power.

    圖3 不同功率時(shí)所制備薄膜的β,Dm,ε0和δ0數(shù)值Fig.3 The values of β,Dm,ε0 and δ0 for the thin films prepared at various powers

    Figure 4 presents the dependence of optical transmittanceTon wavelengthλfor the ZnO:Ga-Mg samples prepared at various powers.As can be seen,all theT-λcurves exhibit an interference pattern where the transmittance falls rapidly at the edge of the bands,which indicates excellent film crystallinity and low surface roughness.Also,the absorption edge is observed to blue shift firstly with the increasing power from 110 to 150 W and then red shift from 150 to 170 W,as shown in the inset of Figure 4.The power dependence of the mean transmittance(Tm)in the visible wavelength range for the ZnO:Ga-Mg samples is presented in Figure 5a.Note that theTmvalue exceeds 85.7% for the investigated samples regardless of power,which indicates that all the ZnO:Ga-Mg thin films possess high transparency in the visible light region.The highest value(92.2%)ofTmfor the ZnO:Ga-Mg sample can be achieved when the power is 150 W.The enhancement of optical transmittance may be caused by the improvement of crystallinity quality and structural properties of the ZnO:Ga-Mg thin film.

    圖4 不同功率時(shí)所制備薄膜的T-λ曲線Fig.4 The curves of T-λ for the thin films prepared at various powers

    圖5 不同功率時(shí)所制備薄膜的Tm,ρ和FM數(shù)值Fig.5 The values of Tm,ρ and FM for the thin films prepared at various powers

    In order to quantify the photoelectric properties of the ZnO:Ga-Mg transparent conductor oxide (TCO)thin films,the figure of merit(FM)was introduced.TheFMis defined by the following relation[35-36]:

    whereρdenotes the resistivity of the investigated sample,andTmis the average transmittance in the visible range.The power dependence ofρa(bǔ)ndFMfor the ZnO:Ga-Mg samples is shown in Figure 5.It is observed from Figure 5b that theρfalls firstly with the rising power from 110 to 150 W and then increases from 150 to 170 W.The minimumρ(1.18×10-3Ω·cm)of the ZnO:Ga-Mg sample can be obtained when the power is 150 W.The optimalρvalue in this work is comparable to the results of previous studies.For the ZnO-based thin films deposited by RF-sputtering technique,the lowestρvalues were reported to be ranging from 7.23×10-4to 1.52×10-3Ω·cm[19,37-38].Note also from Figure 5c that theFMvalues are found to be 1.26×103,2.49×103,1.04×104and 1.67×103Ω-1·cm-1for the ZnO:Ga-Mg samples fabricated at the power of 110,130,150 and 170 W,respectively.Clearly,theFMraises first and subsequently falls with the increment of power,the ZnO:Ga-Mg thin film deposited at the power of 150 W exhibits the maximumFMvalue,indicating that the optimum deposition power is 150 W for preparing ZnO:Ga-Mg thin film in the present work.

    The direct optical energy-gap()of the ZnO:Ga-Mg thin films was evaluated by using the Tauc’s relation in the region of high absorption[39-40]:

    圖6 不同功率時(shí)所制備薄膜的(αhν)2-hν曲線Fig.6 The curves of(αhν)2-hν for the thin films prepared at various powers

    wherehis Planck’s constant,νis the photon frequency,Bis an energy-independent constant,tfis the film thickness,andαis the absorption coefficient of the thin film[41-42].Figure 6 shows the (αhν)2vs.hνplots of the ZnO:Ga-Mg samples prepared at various powers.As can be seen,a good straight line can be obtained in the band edge region for all the investigated thin films.The straight-line portion of the curve gives the direct optical energy-gapwhen extrapolated to zero((αhν)2=0).The values ofare evaluated to be ranging from 3.41 to 3.49 eV for the ZnO:Ga-Mg samples prepared at various powers.Obviously,the obtainedvalues of all the ZnO:Ga-Mg thin films are larger than that of standard ZnO sample(3.30 eV)[18,43].The broadening inof the ZnO:Ga-Mg thin films mainly be attributed to the Burstein-Moss(B-M)effect[44-47].Similar results have been observed by many researchers who studied the optical properties of ZnObased thin films[47-50].

    Based on the measured transmittance,the optical constants including extinction coefficient(k)and refractive index(n)of the ZnO:Ga-Mg thin films were obtained by the method of optical spectrum fitting[28],and the dependence ofkandnonλfor all the samples is shown in Figure 7.It can be seen from Figure 7a that thekvalues of the investigated samples are very small at long wavelength region,which indicates that all the investigated thin films have high visible transparency.Similar to thek-λcurves,thengradually falls with raisingλfor all the ZnO:Ga-Mg samples.The result suggests that all the ZnO:Ga-Mg thin films exhibit the normal dispersion characteristics in the visible wavelength range[31].For the ZnO:Ga-Mg samples deposited at the power of 110,130,150 and 170 W,the values ofkandnare 1.16×10-2,1.87;8.93×10-3,1.96;3.54×10-3,1.91;and 8.45×10-3,1.94 atλ=450 nm,respectively.The result is in agreement with the previously reported works[51-53].

    圖7 不同功率時(shí)所制備薄膜的k-λ和n-λ曲線Fig.7 The curves of k-λ and n-λ for the thin films prepared atvarious powers

    The refractive index dispersion behavior of the ZnO:Ga-Mg samples was studied according to the single-oscillator WDD model as follows[54-55]:

    whereλis the wavelength of incident light,hdenotes Planck’s constant,cis the light speed,andE,EdandEoare the incident photon energy,the dispersion energy and the single-oscillator energy,respectively.The dependence of (n2-1)-1onE2for the ZnO:Ga-Mg samples prepared at various powers is shown in Figure 8.As can be seen,the data of all the investigated thin films can be fitted into straight lines,indicating that the single-oscillator WDD model is applicable to the ZnO:Ga-Mg samples in this work.TheEdandEoof all the ZnO:Ga-Mg thin films can be deduced from the slopeand intercept(Ed-1Eo)on the vertical axis.The lattice dielectric constant(εL),the static refractive index(n0),theM-1andM-3moments of the optical spectra were obtained using the following equations[56]:

    whereEois the single-oscillator energy,andEdis the dispersion energy.Table 1 lists the values ofEd,Eo,n0,εL,M-1andM-3for all the ZnO:Ga-Mg thin films.TheEovalues can be found to range from 6.07 to 6.80 eV,andEdfrom 11.79 to 14.43 eV for the ZnO:Ga-Mg samples deposited at various powers.In compared with theEd,theEochanges in a very narrow range.Also,it is observed from Table 1 that the deposition power significantly affects the optical parameters of the ZnO:Ga-Mg thin films.

    The third-order non-linear optical susceptibility(χ(3)),the non-linear refractive index(n2)and the non-linear absorption coefficient(α2)of the ZnO:Ga-Mg thin films can be obtained using the following formulae[57-58]:

    表1 不同功率時(shí)所制備薄膜的光學(xué)參數(shù)Tab.1 The optical parameters of the thin films prepared at various powers

    圖8 不同功率時(shí)所制備薄膜的(n2-1)-1-E2曲線Fig.8 The curves of(n2-1)-1-E2 for the thin films prepared at various powers

    whereA=1.7×10-10esu is a constant,cis the speed of light,λis the wavelength of incident light,andnis the refractive index of the thin films.Figure 9 shows the variation in theχ(3),n2andα2values of the ZnO:Ga-Mg thin films as a function of power.Note from Figure 9a that theχ(3)raises rapidly withλdecrease until it reaches a maximum value,and it drops slowly withλincrease until it reaches a constant value for higher wavelengths.In addition,the deposition power has a great influence on theχ(3)in the ultraviolet region,and little influence on theχ(3)in the visible and near-infrared range of the investigated thin films.From Figure 9,we can observe that the variation ofn2andα2follow the similar trend asχ(3)for all the ZnO:Ga-Mg thin films,and the values ofn2andα2are also subjected to the deposition power.When wavelengthλ=450 nm,corresponding to the power of 110,130,150 and 170 W,the values ofχ(3),n2andα2are 2.71×10-13,5.45×10-12,8.49×10-13;4.38×10-13,8.45×10-12,1.26×10-12;3.19×10-13,6.31×10-12,9.73×10-13;4.01×10-13esu,7.78×10-12m2W-1,1.17×10-12mW-1,respectively.The result is in agreement with the data obtained by Aida et al.who studied the optical properties of the sputtered Sm-doped ZnO thin films[58].

    圖9 不同功率時(shí)所制備薄膜的χ(3)-λ,n2-λ和α2-λ曲線Fig.9 The curves of χ(3)-λ,n2-λ and α2-λ for the thin films prepared at various powers

    3 Conclusion

    The TCO thin films of ZnO:Ga-Mg were prepared by magnetron sputtering.The effects of sputtering power on the microstructural,electrical and optical characteristics of the deposited films were investigated.The XRD analysis results show that all the deposited films have hexagonal wurtzite structure with highlycaxis preferred orientation along the(002)plane regardless of the sputtering powers.When the sputtering power is 150 W,the ZnO:Ga-Mg thin film possesses the best crystal quality and photoelectric properties,with the minimum resistivity,dislocation density and lattice strain,and the maximum figure of merit,average visible transmittance and mean particle size.The optical constants of all the deposited films were determined by the method of optical spectrum fitting from the measured transmittance data.It is observed that the refractive index and extinction coefficient tend to reduce with the increment of wavelength.Meanwhile,the dispersion behavior of the refractive index was analyzed by means of the single-oscillator WDD model,and the optical parameters including direct energygap,single-oscillator energy,dispersion energy,the first order of moment,the third order of moment,static refractive index and lattice dielectric constant were achieved.In addition,the dependence of nonlinear optical properties of the deposited films on sputtering power were also investigated in detail.The results demonstrate that the sputtering power is one of the most important deposition parameters to affect the microstructure,optical and electrical properties of ZnO:Ga-Mg TCO thin films.

    猜你喜歡
    時(shí)所光學(xué)薄膜
    復(fù)合土工薄膜在防滲中的應(yīng)用
    滑輪組的裝配
    Kappa運(yùn)動(dòng)搖搖杯
    中國品牌(2021年9期)2021-09-14 12:48:24
    光學(xué)常見考題逐個(gè)擊破
    β-Ga2O3薄膜的生長(zhǎng)與應(yīng)用
    光源與照明(2019年4期)2019-05-20 09:18:18
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    CIGS薄膜太陽電池柔性化
    光學(xué)遙感壓縮成像技術(shù)
    Endress+Hauser 光學(xué)分析儀WA系列
    舉手之勞做環(huán)保之時(shí)令果蔬篇
    1000部很黄的大片| 黄色日韩在线| 最新中文字幕久久久久| eeuss影院久久| 久久久久久久亚洲中文字幕| 日本欧美国产在线视频| 五月伊人婷婷丁香| 三级男女做爰猛烈吃奶摸视频| 久久久精品大字幕| 老师上课跳d突然被开到最大视频| 精品久久国产蜜桃| 国产亚洲av嫩草精品影院| 老司机福利观看| 国产又色又爽无遮挡免| 久久久午夜欧美精品| 99久久中文字幕三级久久日本| 激情 狠狠 欧美| 成人av在线播放网站| 观看免费一级毛片| 永久网站在线| 国产私拍福利视频在线观看| 男人的好看免费观看在线视频| 蜜桃久久精品国产亚洲av| 亚洲,欧美,日韩| 久久久午夜欧美精品| 丰满乱子伦码专区| 国产乱来视频区| 联通29元200g的流量卡| 插逼视频在线观看| 热99在线观看视频| 男女边吃奶边做爰视频| 99在线人妻在线中文字幕| 2021天堂中文幕一二区在线观| 级片在线观看| 欧美三级亚洲精品| 18+在线观看网站| 18禁动态无遮挡网站| 午夜激情福利司机影院| 久久韩国三级中文字幕| 一区二区三区乱码不卡18| 欧美性猛交黑人性爽| 长腿黑丝高跟| 不卡视频在线观看欧美| 国产精品乱码一区二三区的特点| 国产综合懂色| 成人亚洲精品av一区二区| 久久精品夜色国产| 麻豆乱淫一区二区| 六月丁香七月| 中国国产av一级| 激情 狠狠 欧美| 久久99热这里只频精品6学生 | 亚洲精品国产成人久久av| av又黄又爽大尺度在线免费看 | 久久99热6这里只有精品| 欧美变态另类bdsm刘玥| 亚洲精品,欧美精品| 国产一区二区亚洲精品在线观看| 99热全是精品| 免费看光身美女| 国产真实伦视频高清在线观看| 欧美性猛交╳xxx乱大交人| 免费黄色在线免费观看| 欧美人与善性xxx| 国产一区二区三区av在线| 国产亚洲91精品色在线| 国产乱来视频区| 亚洲无线观看免费| 亚洲成人精品中文字幕电影| 国产精品久久久久久精品电影| 26uuu在线亚洲综合色| 成人毛片a级毛片在线播放| 高清视频免费观看一区二区 | 国产精品国产高清国产av| 亚洲国产日韩欧美精品在线观看| 久久久欧美国产精品| 人人妻人人看人人澡| 人人妻人人看人人澡| 亚洲性久久影院| .国产精品久久| 亚洲性久久影院| 中国美白少妇内射xxxbb| 伊人久久精品亚洲午夜| 午夜视频国产福利| 小蜜桃在线观看免费完整版高清| 午夜久久久久精精品| 日韩在线高清观看一区二区三区| 免费观看a级毛片全部| 偷拍熟女少妇极品色| 一级av片app| 国产成人freesex在线| 婷婷色综合大香蕉| 国产成人a∨麻豆精品| 又爽又黄a免费视频| 美女脱内裤让男人舔精品视频| 国产成年人精品一区二区| 国内精品宾馆在线| 久久这里有精品视频免费| 国产三级中文精品| 午夜亚洲福利在线播放| 亚洲国产精品国产精品| 寂寞人妻少妇视频99o| 亚洲av免费在线观看| 亚洲四区av| 国产欧美日韩精品一区二区| 亚洲精品,欧美精品| 久久精品久久精品一区二区三区| 十八禁国产超污无遮挡网站| 亚洲精品自拍成人| 免费观看性生交大片5| 高清毛片免费看| 日本免费在线观看一区| 亚洲欧洲日产国产| 99热6这里只有精品| 国产亚洲精品av在线| 亚洲精品,欧美精品| 国产高清有码在线观看视频| 99热这里只有精品一区| 91精品一卡2卡3卡4卡| 国产亚洲av片在线观看秒播厂 | 国产黄a三级三级三级人| 亚洲国产欧美在线一区| 色综合亚洲欧美另类图片| 国产男人的电影天堂91| 久久久精品欧美日韩精品| 免费看美女性在线毛片视频| 少妇猛男粗大的猛烈进出视频 | 精品人妻视频免费看| 免费av毛片视频| av免费观看日本| 26uuu在线亚洲综合色| 亚洲精品久久久久久婷婷小说 | 精品久久久久久成人av| 日本-黄色视频高清免费观看| 97超视频在线观看视频| 最近的中文字幕免费完整| 久久久久免费精品人妻一区二区| 国产一区二区在线观看日韩| 日韩亚洲欧美综合| a级一级毛片免费在线观看| 村上凉子中文字幕在线| 一个人观看的视频www高清免费观看| 亚洲国产精品国产精品| 日韩av不卡免费在线播放| 18禁在线播放成人免费| 精品人妻一区二区三区麻豆| 日韩欧美 国产精品| 美女xxoo啪啪120秒动态图| 亚洲一区高清亚洲精品| 夫妻性生交免费视频一级片| 中文天堂在线官网| 一夜夜www| 国产大屁股一区二区在线视频| 全区人妻精品视频| 激情 狠狠 欧美| 精品久久久久久成人av| 国产精品综合久久久久久久免费| 黑人高潮一二区| 国产黄色视频一区二区在线观看 | 亚洲高清免费不卡视频| 桃色一区二区三区在线观看| 性插视频无遮挡在线免费观看| 高清午夜精品一区二区三区| 国内精品宾馆在线| 麻豆成人午夜福利视频| 日本三级黄在线观看| 联通29元200g的流量卡| 欧美日本视频| 国产av码专区亚洲av| 男人舔奶头视频| 亚洲av男天堂| 99在线人妻在线中文字幕| 日韩av在线大香蕉| 99在线视频只有这里精品首页| 女人被狂操c到高潮| 国产av一区在线观看免费| 久久久欧美国产精品| 国产免费一级a男人的天堂| 国产一区二区在线观看日韩| 欧美一区二区亚洲| 精品一区二区三区视频在线| videos熟女内射| 夫妻性生交免费视频一级片| 国产成年人精品一区二区| 国产精品一二三区在线看| 欧美激情久久久久久爽电影| 美女国产视频在线观看| 久热久热在线精品观看| 又粗又爽又猛毛片免费看| 免费观看人在逋| 国产色爽女视频免费观看| 男人舔奶头视频| 亚洲精品影视一区二区三区av| 夜夜爽夜夜爽视频| 看非洲黑人一级黄片| 男插女下体视频免费在线播放| 国产亚洲精品av在线| 婷婷六月久久综合丁香| 日韩 亚洲 欧美在线| 不卡视频在线观看欧美| 淫秽高清视频在线观看| 三级国产精品片| 欧美最新免费一区二区三区| 日本爱情动作片www.在线观看| 真实男女啪啪啪动态图| 又粗又爽又猛毛片免费看| 性插视频无遮挡在线免费观看| 欧美潮喷喷水| 热99在线观看视频| 国产单亲对白刺激| 你懂的网址亚洲精品在线观看 | 成人综合一区亚洲| 哪个播放器可以免费观看大片| 久久久色成人| 亚洲av二区三区四区| 国产成年人精品一区二区| 成人二区视频| 日本-黄色视频高清免费观看| 欧美性感艳星| 99久久精品一区二区三区| 国产真实伦视频高清在线观看| 亚洲最大成人手机在线| 一个人看视频在线观看www免费| 婷婷六月久久综合丁香| 嘟嘟电影网在线观看| 九九在线视频观看精品| 日韩成人av中文字幕在线观看| 十八禁国产超污无遮挡网站| 日韩精品有码人妻一区| 男人狂女人下面高潮的视频| 亚洲精品aⅴ在线观看| 99九九线精品视频在线观看视频| 青春草视频在线免费观看| 国产精品无大码| 亚洲欧美日韩高清专用| 一级黄色大片毛片| 两个人视频免费观看高清| 国产探花在线观看一区二区| 人人妻人人澡欧美一区二区| 欧美性猛交╳xxx乱大交人| 三级国产精品片| 免费人成在线观看视频色| 熟女电影av网| 中文字幕av成人在线电影| 亚州av有码| 亚洲av熟女| 国产单亲对白刺激| 伦精品一区二区三区| 精品人妻偷拍中文字幕| 日本猛色少妇xxxxx猛交久久| 亚洲婷婷狠狠爱综合网| 老司机福利观看| 中国美白少妇内射xxxbb| 亚洲乱码一区二区免费版| 国产黄a三级三级三级人| 久久久久九九精品影院| 啦啦啦韩国在线观看视频| 亚洲精品日韩av片在线观看| 国产精品一区www在线观看| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图| 男女那种视频在线观看| 九九久久精品国产亚洲av麻豆| 久久久久网色| 老司机影院毛片| 国产黄色小视频在线观看| 亚洲在线观看片| 少妇被粗大猛烈的视频| 一级黄片播放器| 精品国产一区二区三区久久久樱花 | 黄片wwwwww| 婷婷色综合大香蕉| 国产一区亚洲一区在线观看| 青青草视频在线视频观看| 乱系列少妇在线播放| 99热这里只有是精品50| 欧美+日韩+精品| 亚洲国产精品sss在线观看| 亚洲一级一片aⅴ在线观看| 欧美激情在线99| 非洲黑人性xxxx精品又粗又长| 午夜免费男女啪啪视频观看| 欧美精品一区二区大全| 亚洲美女视频黄频| 亚洲人成网站高清观看| 中文在线观看免费www的网站| 99热精品在线国产| 特级一级黄色大片| 99热网站在线观看| 69人妻影院| 亚洲人与动物交配视频| 级片在线观看| 三级男女做爰猛烈吃奶摸视频| 在线观看一区二区三区| 女人十人毛片免费观看3o分钟| 99热这里只有精品一区| 中文欧美无线码| 国产美女午夜福利| 国产女主播在线喷水免费视频网站 | 精品人妻视频免费看| 日韩av在线大香蕉| 国产成人a区在线观看| 天天躁夜夜躁狠狠久久av| 亚洲综合精品二区| 在线a可以看的网站| 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| 亚洲av日韩在线播放| 国产精品久久视频播放| 赤兔流量卡办理| 日韩精品有码人妻一区| 国产v大片淫在线免费观看| 亚洲精品亚洲一区二区| 国产老妇伦熟女老妇高清| av天堂中文字幕网| 九色成人免费人妻av| 国产69精品久久久久777片| 一区二区三区高清视频在线| 能在线免费看毛片的网站| 91精品一卡2卡3卡4卡| 久久久久久久午夜电影| 亚洲人成网站高清观看| 日韩三级伦理在线观看| 老女人水多毛片| 久久精品久久久久久噜噜老黄 | www.色视频.com| 少妇熟女欧美另类| 日韩欧美 国产精品| 国产精品久久久久久av不卡| 国产精品一区二区在线观看99 | 91精品伊人久久大香线蕉| 欧美激情国产日韩精品一区| 青春草亚洲视频在线观看| 国产精品野战在线观看| 麻豆国产97在线/欧美| 久久久久久久亚洲中文字幕| 亚洲av福利一区| av线在线观看网站| 精品国产三级普通话版| 九九爱精品视频在线观看| 看非洲黑人一级黄片| 成人二区视频| 日本色播在线视频| 成人二区视频| 免费观看a级毛片全部| 美女高潮的动态| 日本免费一区二区三区高清不卡| 午夜激情福利司机影院| 日日啪夜夜撸| 狂野欧美白嫩少妇大欣赏| 边亲边吃奶的免费视频| 日韩亚洲欧美综合| 国内少妇人妻偷人精品xxx网站| 亚洲va在线va天堂va国产| 美女脱内裤让男人舔精品视频| 毛片一级片免费看久久久久| 色综合色国产| av国产久精品久网站免费入址| 欧美不卡视频在线免费观看| 久久99热这里只频精品6学生 | 亚洲国产欧美人成| 精品久久久久久久人妻蜜臀av| 国产亚洲午夜精品一区二区久久 | 中文字幕亚洲精品专区| 在线观看一区二区三区| 99热这里只有精品一区| 色噜噜av男人的天堂激情| 一卡2卡三卡四卡精品乱码亚洲| 黄片无遮挡物在线观看| 美女高潮的动态| 黄片无遮挡物在线观看| 91精品国产九色| 日韩中字成人| 中文字幕亚洲精品专区| 久久久成人免费电影| 亚洲图色成人| 久久精品国产自在天天线| 精品99又大又爽又粗少妇毛片| 精华霜和精华液先用哪个| 一级av片app| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| 少妇丰满av| 免费看日本二区| 婷婷色综合大香蕉| 内地一区二区视频在线| 日本wwww免费看| 别揉我奶头 嗯啊视频| 少妇丰满av| 国产久久久一区二区三区| 久久99蜜桃精品久久| 国产精品嫩草影院av在线观看| 免费一级毛片在线播放高清视频| 亚洲成人精品中文字幕电影| 最近中文字幕高清免费大全6| 国产乱人偷精品视频| 九九在线视频观看精品| 变态另类丝袜制服| 亚洲人与动物交配视频| 伦精品一区二区三区| 亚洲欧美成人综合另类久久久 | 人体艺术视频欧美日本| av免费在线看不卡| 久久99热6这里只有精品| 国产精品1区2区在线观看.| 欧美性猛交黑人性爽| 桃色一区二区三区在线观看| 夫妻性生交免费视频一级片| 成人特级av手机在线观看| 天堂网av新在线| 亚洲av男天堂| 欧美潮喷喷水| 久久久精品欧美日韩精品| 尾随美女入室| 91精品伊人久久大香线蕉| 美女脱内裤让男人舔精品视频| 春色校园在线视频观看| 大话2 男鬼变身卡| 最近2019中文字幕mv第一页| 欧美日本亚洲视频在线播放| 国产精品伦人一区二区| 亚洲av成人精品一二三区| videos熟女内射| 国产欧美另类精品又又久久亚洲欧美| 成人欧美大片| 欧美性猛交黑人性爽| 国产亚洲精品av在线| 69人妻影院| 成年版毛片免费区| 亚洲最大成人手机在线| 日韩一本色道免费dvd| 99热全是精品| 亚洲国产精品sss在线观看| 亚洲av电影不卡..在线观看| 国产成人免费观看mmmm| 久久久精品大字幕| 最近视频中文字幕2019在线8| 久久精品熟女亚洲av麻豆精品 | 国产精品一区二区三区四区久久| 婷婷色av中文字幕| 国产精品久久久久久精品电影| 国产一区有黄有色的免费视频 | 97超视频在线观看视频| 国产精品野战在线观看| 国产精品精品国产色婷婷| 黄色配什么色好看| 日日摸夜夜添夜夜爱| 国产熟女欧美一区二区| 精品人妻熟女av久视频| 97人妻精品一区二区三区麻豆| 18禁动态无遮挡网站| 3wmmmm亚洲av在线观看| 老女人水多毛片| 变态另类丝袜制服| 天堂影院成人在线观看| 少妇的逼好多水| 欧美变态另类bdsm刘玥| 女人十人毛片免费观看3o分钟| 国产高清不卡午夜福利| 久99久视频精品免费| 蜜桃久久精品国产亚洲av| 久久婷婷人人爽人人干人人爱| 国产大屁股一区二区在线视频| 欧美精品国产亚洲| 高清视频免费观看一区二区 | 国产久久久一区二区三区| 免费电影在线观看免费观看| 久久这里有精品视频免费| 深爱激情五月婷婷| 成人亚洲欧美一区二区av| 1024手机看黄色片| 日韩欧美精品v在线| 国产v大片淫在线免费观看| 久久久久久久久大av| 久久久精品大字幕| 我要搜黄色片| 精品不卡国产一区二区三区| 久99久视频精品免费| 成人三级黄色视频| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久黄片| 日韩欧美在线乱码| 欧美激情在线99| 国产精品久久久久久久电影| 国产黄色视频一区二区在线观看 | 国产亚洲av片在线观看秒播厂 | 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区在线观看99 | 国产v大片淫在线免费观看| 亚洲国产精品专区欧美| 真实男女啪啪啪动态图| 日韩强制内射视频| 黄色配什么色好看| 毛片女人毛片| 午夜日本视频在线| 高清毛片免费看| 国产成人精品婷婷| 亚洲最大成人中文| 毛片女人毛片| 国产一区二区三区av在线| 亚洲精品一区蜜桃| 国产视频首页在线观看| 久久久久久久久久久免费av| 水蜜桃什么品种好| 午夜福利网站1000一区二区三区| 国产v大片淫在线免费观看| 亚洲av男天堂| 国产又色又爽无遮挡免| 国产精品久久视频播放| 天天躁夜夜躁狠狠久久av| 午夜福利成人在线免费观看| 婷婷色麻豆天堂久久 | 国产精品人妻久久久影院| 日韩在线高清观看一区二区三区| 97热精品久久久久久| 午夜福利网站1000一区二区三区| 欧美成人免费av一区二区三区| 久久久久久久久久黄片| 特级一级黄色大片| 国产精华一区二区三区| 日韩欧美精品v在线| 久久精品国产鲁丝片午夜精品| 一级毛片电影观看 | 日韩强制内射视频| 99久久九九国产精品国产免费| 麻豆成人午夜福利视频| 亚洲精品成人久久久久久| 亚洲av电影不卡..在线观看| 又粗又硬又长又爽又黄的视频| 伊人久久精品亚洲午夜| 国产精品熟女久久久久浪| 2022亚洲国产成人精品| 国产亚洲av片在线观看秒播厂 | av视频在线观看入口| av.在线天堂| 三级毛片av免费| 久久久久精品久久久久真实原创| 免费观看精品视频网站| 69人妻影院| 成人毛片60女人毛片免费| 日本黄色片子视频| 国产成年人精品一区二区| 欧美日韩国产亚洲二区| 日本欧美国产在线视频| 美女大奶头视频| 国产精品麻豆人妻色哟哟久久 | 亚洲国产成人一精品久久久| 久久人人爽人人爽人人片va| 日日摸夜夜添夜夜添av毛片| 日韩欧美精品免费久久| 国产av在哪里看| 国产 一区 欧美 日韩| 九九热线精品视视频播放| 三级男女做爰猛烈吃奶摸视频| 最近的中文字幕免费完整| 久久99精品国语久久久| 亚洲国产成人一精品久久久| 99久久精品热视频| 亚洲在线观看片| 国产精品三级大全| 国产淫语在线视频| 日本色播在线视频| av线在线观看网站| 亚洲精品乱久久久久久| 国产精品电影一区二区三区| 国产国拍精品亚洲av在线观看| 精品人妻一区二区三区麻豆| 国产精品人妻久久久影院| 中文字幕久久专区| 欧美性猛交黑人性爽| 国产伦一二天堂av在线观看| 18禁在线播放成人免费| 中国美白少妇内射xxxbb| 日本av手机在线免费观看| 黄色配什么色好看| 一区二区三区免费毛片| 国产精品一区二区性色av| 国产人妻一区二区三区在| 亚洲精品久久久久久婷婷小说 | 91狼人影院| 天美传媒精品一区二区| 大香蕉久久网| 国产亚洲精品久久久com| 一区二区三区高清视频在线| 国产亚洲一区二区精品| 精品人妻一区二区三区麻豆| 成人三级黄色视频| 免费黄网站久久成人精品| 久久精品国产自在天天线| 又爽又黄a免费视频| 国产成人精品婷婷| 午夜免费男女啪啪视频观看| 日日干狠狠操夜夜爽| 三级男女做爰猛烈吃奶摸视频| 亚洲综合精品二区| 天堂中文最新版在线下载 | 中文字幕av在线有码专区| 九九久久精品国产亚洲av麻豆| 麻豆成人午夜福利视频| 国产免费一级a男人的天堂| 精品人妻熟女av久视频| 久久99精品国语久久久| 如何舔出高潮| 国产成人免费观看mmmm| 人人妻人人看人人澡| 日韩强制内射视频| 伊人久久精品亚洲午夜| videossex国产| 成人毛片60女人毛片免费| 美女高潮的动态| 亚洲欧美成人综合另类久久久 | 91aial.com中文字幕在线观看| 亚洲美女搞黄在线观看| 精品久久久久久电影网 | 欧美精品国产亚洲|