• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    深度學(xué)習(xí)引導(dǎo)的高通量分子篩選用于鍶銫的選擇性配位

    2023-11-01 06:58:36張智淵邱雨晴畢可鑫胡孔球戴一陽石偉群
    核化學(xué)與放射化學(xué) 2023年5期
    關(guān)鍵詞:高能物理四川大學(xué)工程學(xué)院

    張智淵,董 越,邱雨晴,畢可鑫,胡孔球,戴一陽,周 利,劉 沖,*,吉 旭,石偉群

    1.四川大學(xué) 化學(xué)工程學(xué)院,四川 成都 610065;2.中國(guó)科學(xué)院 高能物理研究所,北京 100049

    To meet the carbon neutral agenda globally, development and expansion of nuclear power remains an ideal option to provide electricity for an ever-growing world population while minimizing environmental impacts during operation[1]. State-of-the-art nuclear technologies that hold the promise of a future of clean energy require a closed fuel cycle for safety and sustainability reasons among others, necessitating more research on advanced reprocessing of spent nuclear fuel(SNF). Over the past seven decades, various SNF reprocessing processes have been established to recover critical radionuclides and to reduce radioactive wastes, such as PUREX(plutonium-uranium extraction), UNEX(universal extraction), FPEX(fission product extraction), etc[2]. Among all radionuclides in the high-level liquid waste(HLLW) generated from SNF reprocessing,90Sr and137Cs are major sources for the heat load and radiation[3-5]. Therefore, processes like UNEX were employed to separate90Sr and137Cs simultaneously to lessen the raffinates’ radioactivity, beneficial for downstream operations[3]. Additionally, a further separation between chemically similar90Sr and137Cs could produce valuable materials for radiation therapy, radioisotope thermoelectric generators, industrial gauging devices, etc[3].

    In fact, for many SNF reprocessing scenarios, differential coordinative chemical properties of various species are usually the basis to realize successful separation. The same principle is applicable for Sr/Cs separation[6-7], where a large number of coordinating ligands need to be assessed and compared to identify ones with selectivity to achieve preferential coordination(for extraction or crystallization). In our previous work, a machine-learning-guided methodology was developed to rank bridging linkers to form coordination polymers for crystallizing separation of Sr2+over Cs+, in which strengths of coordination bonds were found to be critical in evaluating and comparing different linker molecules’ coordinative affinities and selectivity[8]. Continuing on that, we now propose a more comprehensive study to reliably assess and rank ligands based on their coordinative affinities toward Sr/Cs, using a deep learning(DL) architecture. Specifically, we employ atransformerframework that originated in the field of natural language processing(NLP)[9], specializing in the identification of meaningful segments(e.g., functional groups in molecules) and extraction of contextual information(e.g., structure-property relationships). Moreover, considering the complexities of DL(i.e.,transformer) models and demanding computational burdens thereof, Bayesian optimization(BO) was applied to improve efficiency of the training process[10-11].

    An overview of the workflow is shown in Fig.1. The present study started with mining the crystal data of the Cambridge Structural Database(CSD)[12], from which we retrieved information regarding relevant metal-ligand(M-L, M=select 1A/2A metals) pairs and corresponding ligands for subsequent analysis. Next, we trained DL models(i.e.,transformer) using said M-L pairs, which enabled us to systematically evaluate the coordination capabilities of the ligands toward metals of interest. Specifically,to optimize the DL models efficiently, the hyperparameters(HPs) were tuned employing a BO approach. Finally, we ranked the ligands according to their predicted(differential) coordinative affinities for Sr and Cs. We expect that, for a certain ligand, the more different affinities it exhibits toward Cs over Sr(or vice versa), the higher degree of selective coordination is anticipated, hence better separation capability.

    Fig.1 Overview of deep-learning-centered protocol to identify and rank candidate ligands for selective Sr/Cs coordination

    1 Methods

    1.1 Data mining and molecular representation

    Using the CSD Python API[12]provided by the Cambridge Crystallographic Data Centre(CCDC), we were able to extract all M-L pairs and corresponding ligands from crystallographic data that contain 1A(Na, K, Rb, Cs) and 2A(Mg, Ca, Sr, Ba) elements. Then, these data were pre-processed to remove 74 CSD-predefined solvents[13], self-defined free anions/gas molecules[8], and standalone atoms without linkage to ligands. Subsequently, all M-L pairs and ligands were extracted from the pre-processed data. Data pre-processing and extraction of M-L pairs and ligands are illustrated in an example in Fig.2. Next, to be used as input for the DL models, the extracted M-L pairs were linearly represented by the canonical simplified molecular-input line-entry system(canonical SMILES)[14-15]. Along with the molecular structures, structural parameters like bond lengths, bond angles, and coordination numbers could also be extracted from the datasets, among which the coordination bond length was selected as the representative parameter to describe the coordinative affinity or strength of interaction between M and L in a given M-L pair. Additionally, we also extracted 9 169 ligands that would be used for virtual M-L pair generation.

    Fig.2 An example of data pre-processing and molecular structure extraction

    1.2 Transformer architecture

    We usedtransformer[9, 16]as the DL architecture to model the relationship between the molecular structures of M-L pairs and the coordinative affinity(i.e., bond length) of the ligands involved. As shown in Fig.3, thetransformerarchitecture is composed of a word embedding layer, a positional encoding layer, the main body(encoder/decoder) and a multilayer perceptron(MLP) predictor.

    Fig.3 Schematic illustration of transformer architecture

    Specifically, the word embedding layer[16]can convert discrete symbolic representation(i.e., the abovementioned SMILES symbols) to continuous vectors, as required by thetransformerarchitecture. The positional encoding layer[17]

    compiles the positional information for the sequence of characters in the SMILES, creating another set of vectors to be used as input fortransformermain module. The main oftransformeris composed of encoder and decoder[16]. In short, the encoder can recognize certain combinations of characters in a SMILES sequence, which usually have higher abstract meanings in chemistry than individual characters. Then the decoder would identify which combinations are important for the target(i.e., coordination bond length in our work). Finally, the coordination bond lengths would be predicted by the MLP predictor according to the decoder-proposed important structural combinations.

    It should be noted, as illustrated in Fig.3, that two inputs are required for the encoder and decoder oftransformer, respectively. In general, the input for encoder is the complete original SMILES in our dataset. For the decoder, the input should provide information about the specific target of prediction, that is the coordination bond length of a specific bond, considering there are possibly multiple coordination bonds in a given M-L pair.

    1.3 Model training and Bayesian optimization

    To train thetransformermodels, all M-L pairs were divided into train set, validation set and test set in a ratio of 8∶1∶1. The train set was used to train the models; the validation set was used to validate the performance of trained model and as the “target” for HP optimization; the test set was to test the generalizability of the optimal model. Thetransformermodels were trained by a back-propagation(BP) algorithm[18]and gradient descent to minimize the mean-square-error loss function:

    (1)

    Table 1 HP tuning space

    To improve efficiency, we proposed to apply BO algorithm[19-20]to optimize the HPs. As shown in Fig.4(a)(using only a one-dimensional objective function as an example), Gaussian process(GP)[21]and expected improvement(EI)[22]were chosen as the surrogate function and acquisition function, respectively. In our higher-dimensional objective function of HP tuning, GP fits the(unknown) objective function with estimated uncertainties. Consequently, EI proposes the most valuable samples(HPs) to try next. For a given dataset, optimization was performed by applying BO process for 8 batches(4 models per batch). Comparing to manual optimization(Fig.4(b)), the BO approach(Fig.4(c)) was shown to be superior to optimize thetransformermodels, achieving a higherr2(0.927 vs 0.856 for manual) after 8 batches of optimization. As illustrated in Fig.4(d) where the HPs were reduced to a two-dimensional space by t-distributed Stochastic Neighbor Embedding(t-SNE)[23], BO could cover wider parameter space, beneficial for avoiding local optima which constantly challenge manual optimization strategies.

    Fig.4 An example of Bayesian optimization on a one-dimensional objective function(top, black curve), using a GP surrogate function(top, magenta curve and pink area) to generate an EI acquisition function(bottom)(a); comparison of manual optimization(b) and Bayesian optimization(c) on coefficients of determination(r2, scattered points) for transformer models, blue line indicates the averaged r2 for models in the current batch, red line indicates the max r2 of trained models so far; distribution of HPs after dimension reduction by t-SNE, where blue and red dots are HPs selected by BO algorithm and manual optimization, respectively(d)

    1.4 Ligand assessment

    Based on 9 169 ligand molecules extracted from CSD(section 1.1) that contain 12 common coordinating groups(listed in Table 2), Cs-L/Sr-L pairs were generated by virtually bonding the coordinating atoms(e.g., N/O) with Sr/Cs and subsequently represented using SMILES. For the 2×9 169 virtual M-L pairs(i.e., 9 169 Sr-L pairs and 9 169 Cs-L pairs) generated, there is always a Cs-L pair for any Sr-L pair, sharing the identical molecular structure except for the metal, and vice versa, therefore enabling us to predict said L’s different affinity toward Sr/Cs. We grouped each of the 9 169 Sr-L/Cs-L pairs, denoted asGi, wherei=1, 2,…, 9 169.

    Table 2 Counts of coordinating functional groups for generating virtual (Sr, Cs)-L pairs

    (2)

    (3)

    2 Results and discussion

    2.1 Datasets

    After mining of structural data of targeted 1A/2A elements in CSD, we extracted 33 095 M-L pairs, in which 19 467 were mono-coordinated and 13 628 multi-coordinated. A statistical summary is given in Table 3, broken into different elements. In total, these M-L pairs contained 98 411 coordination bonds, i.e., 98 411 samples. It is widely accepted that, for deep learning, to contain as many relevant samples as possible in the training dataset is always beneficial for the model performance[25-27]. Therefore, we argue that all 33 095 M-L pairs(not just ones with Sr/Cs) should be used to train and optimizetransformermodels. Specifically, those M-L pairs containing Na, K, Rb, Mg, Ca and Ba were considered relevant because: 1) they provided information about molecular structures of ligands; and 2) periodicity-dictated elemental similarity in 1A(Na, K, Rb, Cs) and 2A(Mg, Ca, Sr, Ba) groups should lead to similar coordination properties(e.g., coordinating function groups and atoms).

    Table 3 Statistics of extracted M-L pairs of specified 1A/2A elements

    In order to experimentally confirm this empirical rule and justify our choice of expanded datasets instead of focusing on directly relevant(Sr, Cs)-L samples,transformermodels based on two datasets(i.e., all 33 095 M-L pairs and 4 271(Sr, Cs)-L pairs) were trained and optimized using the same protocol(section 1.3). The mean absolute error(MAE) of the best model based on the dataset of all 33 095 M-L pairs was 0.076 6 ?(1 ?=0.1 nm), 14% less than the best MAE based on 4 271(Sr, Cs)-L pairs, which was 0.088 9 ?.

    2.2 Transformer model

    As described in section 1.3 and illustrated in Fig.5(a), based on all 33 095 M-L pairs,transformermodel with the highest performance(r2= 0.927 and MAE=0.077 5 ?) on the test dataset was the 21stmodel(its HPs are characterized by the underlined numbers in Table 1) produced by the BO process. The regression diagram and the distribution histogram of absolute error, comparing the model-predicted values against actual coordination bond lengths(i.e., target) for samples in the test dataset, are shown in Fig.5(a) and 5(b), respectively. Overall, thetransformerarchitecture, expanded dataset and BO algorithm have generated a better prediction model comparing to our previous approach[8].

    Fig.5 Regression diagram between prediction and target(higher density of scatters is brighter-colored)(a); histogram of absolute error between prediction and target(b)

    2.3 Ligand and functional group analysis

    Fig.6 Top 10 identified M-L pairs with the largest

    Further, as functional groups usually play critical roles in determining the coordination properties of ligand molecules, the distribution of most frequent 8 coordinating groups(out of 12 that were listed in Table 2) on the ranking list was analyzed. The mean probability density(MPD) of each functional group appearing in the top 1%, 1%-10%, 10%-50% and bottom 50% of the ranking list was calculated by the following:

    (4)

    WhereNis the total number of virtual M-L pairs(i.e., 9 169),gis the index of functional groups(g=1, 2, …, 8),jis the index of ranking percentages(i.e., 1%, 1%-10%, 10%-50% and bottom 50%, respectively),ngis the amount of functional groupg,pjrepresents the percentage span ofj,cg,jis the count of functional groupgin percentage(range)j. As shown in Fig.7, for any functional groupgin ranking positionj, if MPD(g,j)>1(indicated by the broken line), the occurrence probability(OP) ofginjis greater that the OP ofgin the total list. Therefore, we could conclude that phosphoric acid group, with 3.82 MPD in top 1% and 2.10 MPD in 1%-10%, had the highest probability to be incorporated in a Sr-selective ligand[28-30]. Next in line, hydroxyl, ketone and ether groups showed moderate selectivity toward Sr. Surprisingly, the other common acidic functional groups(i.e., sulfonic acid and carboxylic acid), were not predicted to be coordinatively selective for Sr, which was counterintuitive according to the Hard and Soft Acids and Bases principle as Sr2+is considered a harder Lewis acid than Cs+.

    Fig.7 MPD of 8 frequent functional groups in specified ranking percentages

    3 Conclusions

    In summary, tackling the Sr/Cs separation challenge in SNF reprocessing, we have conducted a deep-learning-guided comprehensive study from the perspective of coordination chemistry. Based on crystal structural data of Sr/Cs and select congeners in respective groups, with the aid of Bayesian optimization, we developedtransformermodels with high performances in predicting coordination bond lengths which were identified as a figure of merit for assessing coordinative affinities. As a proof of concept, we analyzed 9 169 CSD-registered ligands and predicted their differential coordination capabilities toward Sr/Cs, as demonstrated in the top 10 molecular structures and a detailed analysis of functional groups with different potentials for selective coordination toward Sr over Cs. The ranking list of ligands and identification of promising functional groups(e.g., phosphoric acid) would be beneficial for downstream experimental screening and evaluation in separation scenarios.

    猜你喜歡
    高能物理四川大學(xué)工程學(xué)院
    福建工程學(xué)院
    盛宴已經(jīng)結(jié)束
    福建工程學(xué)院
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    福建工程學(xué)院
    福建工程學(xué)院
    百年精誠(chéng) 譽(yù)從信來——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    高能物理中的數(shù)據(jù)分析
    四川大學(xué)信息顯示研究所
    液晶與顯示(2014年2期)2014-02-28 21:12:58
    国产黄色视频一区二区在线观看| 国产亚洲最大av| 亚洲欧美一区二区三区国产| 亚洲欧美日韩东京热| 看非洲黑人一级黄片| av卡一久久| 在线观看免费视频网站a站| 亚洲精品,欧美精品| videossex国产| 久久久国产欧美日韩av| 全区人妻精品视频| 久久午夜综合久久蜜桃| 免费av中文字幕在线| 久久青草综合色| 日韩电影二区| 又大又黄又爽视频免费| 精品一区二区三区视频在线| 国产精品伦人一区二区| 黑丝袜美女国产一区| 亚洲精品国产成人久久av| 国产爽快片一区二区三区| 91久久精品电影网| 色视频在线一区二区三区| 欧美丝袜亚洲另类| 亚洲一区二区三区欧美精品| 国产精品99久久99久久久不卡 | 国产伦精品一区二区三区四那| 亚洲精品乱久久久久久| 丝袜喷水一区| 少妇人妻 视频| 老熟女久久久| 我的女老师完整版在线观看| 中文字幕人妻熟人妻熟丝袜美| 日本vs欧美在线观看视频 | 高清视频免费观看一区二区| 亚洲精品乱久久久久久| 欧美xxxx性猛交bbbb| 国产在线免费精品| 观看美女的网站| 国产在线男女| 国产精品久久久久成人av| 少妇人妻精品综合一区二区| 在线精品无人区一区二区三| 国产午夜精品久久久久久一区二区三区| av一本久久久久| 久久免费观看电影| 插逼视频在线观看| 国产在线一区二区三区精| 久久精品久久精品一区二区三区| 男女边吃奶边做爰视频| 如日韩欧美国产精品一区二区三区 | 成年美女黄网站色视频大全免费 | 水蜜桃什么品种好| 国产有黄有色有爽视频| www.色视频.com| 日韩欧美精品免费久久| 成年女人在线观看亚洲视频| 美女国产视频在线观看| 九九爱精品视频在线观看| 亚洲精品456在线播放app| 国产片特级美女逼逼视频| 91精品伊人久久大香线蕉| www.色视频.com| 亚洲av国产av综合av卡| 国产黄片美女视频| 一级毛片aaaaaa免费看小| 最新中文字幕久久久久| 久久毛片免费看一区二区三区| 97超视频在线观看视频| 蜜桃久久精品国产亚洲av| 汤姆久久久久久久影院中文字幕| 色婷婷久久久亚洲欧美| 亚洲欧美日韩东京热| 美女xxoo啪啪120秒动态图| 久久婷婷青草| 亚洲av.av天堂| 高清毛片免费看| 欧美日韩视频精品一区| 麻豆精品久久久久久蜜桃| a级毛片在线看网站| 成年人午夜在线观看视频| 午夜福利在线观看免费完整高清在| 午夜福利视频精品| 国产欧美日韩精品一区二区| 国产一区二区在线观看av| 久久久久久久大尺度免费视频| 日韩av不卡免费在线播放| 我要看黄色一级片免费的| 欧美日韩综合久久久久久| 久久6这里有精品| 99re6热这里在线精品视频| 久久人人爽av亚洲精品天堂| 成人综合一区亚洲| 国产精品国产三级国产av玫瑰| 国产深夜福利视频在线观看| 黄色日韩在线| 久久午夜综合久久蜜桃| 两个人免费观看高清视频 | 黄片无遮挡物在线观看| av专区在线播放| 久久人人爽人人爽人人片va| 内地一区二区视频在线| 日本色播在线视频| 欧美 日韩 精品 国产| 一区在线观看完整版| 91精品国产九色| 男女免费视频国产| 中文乱码字字幕精品一区二区三区| 大话2 男鬼变身卡| 毛片一级片免费看久久久久| 伦精品一区二区三区| 一边亲一边摸免费视频| 免费黄网站久久成人精品| 最新中文字幕久久久久| 久热久热在线精品观看| 亚洲在久久综合| 婷婷色综合大香蕉| 18禁动态无遮挡网站| 欧美精品一区二区免费开放| 青春草国产在线视频| av播播在线观看一区| 亚洲精品456在线播放app| 哪个播放器可以免费观看大片| 欧美3d第一页| 日韩伦理黄色片| 中文字幕精品免费在线观看视频 | 多毛熟女@视频| 我的老师免费观看完整版| 夜夜爽夜夜爽视频| 国产 精品1| 亚洲欧洲日产国产| 又爽又黄a免费视频| 一本色道久久久久久精品综合| 日韩视频在线欧美| 成人影院久久| 国产日韩欧美在线精品| 永久免费av网站大全| 狂野欧美激情性bbbbbb| 欧美激情国产日韩精品一区| 老熟女久久久| 最近2019中文字幕mv第一页| 狂野欧美激情性xxxx在线观看| 国产一区二区三区av在线| 免费大片黄手机在线观看| 欧美日韩亚洲高清精品| 国产伦精品一区二区三区四那| 国产精品女同一区二区软件| 久久精品熟女亚洲av麻豆精品| 国产亚洲最大av| 人妻 亚洲 视频| 久久韩国三级中文字幕| 国产91av在线免费观看| 色吧在线观看| 性色av一级| 又大又黄又爽视频免费| 久久久久国产精品人妻一区二区| 国产 一区精品| 高清在线视频一区二区三区| 18禁动态无遮挡网站| 日韩 亚洲 欧美在线| 你懂的网址亚洲精品在线观看| 女性被躁到高潮视频| 一区二区三区精品91| 黑人巨大精品欧美一区二区蜜桃 | h视频一区二区三区| 亚洲精品国产成人久久av| 国产亚洲av片在线观看秒播厂| 久久午夜综合久久蜜桃| 看十八女毛片水多多多| 久久 成人 亚洲| 久久久久久久久久久免费av| 亚洲av免费高清在线观看| 91aial.com中文字幕在线观看| 在线观看人妻少妇| 26uuu在线亚洲综合色| 免费黄频网站在线观看国产| 精华霜和精华液先用哪个| 国产色爽女视频免费观看| 三级经典国产精品| 水蜜桃什么品种好| 国产一区二区三区综合在线观看 | 国产精品久久久久久久电影| av女优亚洲男人天堂| 亚洲精品日韩av片在线观看| 成人美女网站在线观看视频| 日韩熟女老妇一区二区性免费视频| 欧美国产精品一级二级三级 | 午夜免费观看性视频| 亚洲婷婷狠狠爱综合网| 久久精品国产亚洲av涩爱| 精品一区二区三区视频在线| 成人亚洲欧美一区二区av| 免费黄色在线免费观看| 久久毛片免费看一区二区三区| 国产 一区精品| 老熟女久久久| 伊人亚洲综合成人网| 伊人久久国产一区二区| a级毛片免费高清观看在线播放| 大香蕉97超碰在线| 国产精品.久久久| 最近手机中文字幕大全| 亚洲av国产av综合av卡| 婷婷色综合www| 国产精品成人在线| 亚洲国产毛片av蜜桃av| 日韩人妻高清精品专区| 中文字幕亚洲精品专区| 欧美少妇被猛烈插入视频| .国产精品久久| 简卡轻食公司| 少妇丰满av| 日韩不卡一区二区三区视频在线| 亚洲精品一二三| 妹子高潮喷水视频| 国内精品宾馆在线| 精品午夜福利在线看| 亚洲av成人精品一区久久| 国产高清有码在线观看视频| 国产av码专区亚洲av| 一级a做视频免费观看| 欧美区成人在线视频| 91精品国产国语对白视频| 亚洲精品,欧美精品| 人妻系列 视频| 亚洲av福利一区| 看十八女毛片水多多多| 少妇被粗大的猛进出69影院 | 亚洲情色 制服丝袜| 两个人的视频大全免费| 成人综合一区亚洲| 午夜久久久在线观看| 全区人妻精品视频| 99久久人妻综合| 久久人人爽av亚洲精品天堂| 午夜日本视频在线| 在线观看免费视频网站a站| 成人无遮挡网站| 精品国产乱码久久久久久小说| 又爽又黄a免费视频| 国产高清有码在线观看视频| 久久国产乱子免费精品| 亚洲国产日韩一区二区| 免费看av在线观看网站| 丰满迷人的少妇在线观看| 天天躁夜夜躁狠狠久久av| 日韩精品免费视频一区二区三区 | 国产视频内射| 色哟哟·www| 中文天堂在线官网| 国产午夜精品一二区理论片| 免费黄色在线免费观看| 18禁在线播放成人免费| 国产一区二区三区av在线| 97超碰精品成人国产| 亚洲欧美中文字幕日韩二区| 国产一区二区在线观看日韩| 精品人妻熟女毛片av久久网站| 国产视频内射| 免费观看性生交大片5| av福利片在线| 五月开心婷婷网| 欧美日韩亚洲高清精品| 欧美国产精品一级二级三级 | 成人亚洲精品一区在线观看| 老熟女久久久| 精品国产国语对白av| 亚洲自偷自拍三级| 亚洲av欧美aⅴ国产| 精品99又大又爽又粗少妇毛片| 六月丁香七月| 亚洲av.av天堂| 少妇高潮的动态图| 免费看av在线观看网站| 亚洲精品国产色婷婷电影| 这个男人来自地球电影免费观看 | 你懂的网址亚洲精品在线观看| 老女人水多毛片| 国产精品熟女久久久久浪| 成人特级av手机在线观看| 一区二区三区精品91| 九草在线视频观看| 内地一区二区视频在线| 一本久久精品| 色哟哟·www| 国产爽快片一区二区三区| 人人妻人人添人人爽欧美一区卜| 日本av免费视频播放| 午夜免费观看性视频| 啦啦啦啦在线视频资源| av国产久精品久网站免费入址| 国产精品人妻久久久影院| 美女大奶头黄色视频| 欧美激情国产日韩精品一区| 亚洲av不卡在线观看| 黄色毛片三级朝国网站 | 一级毛片久久久久久久久女| 国产 一区精品| 极品人妻少妇av视频| 天堂8中文在线网| 嫩草影院新地址| 亚洲情色 制服丝袜| 欧美日韩视频高清一区二区三区二| 国产精品一区二区在线不卡| 亚洲欧美成人综合另类久久久| 九九在线视频观看精品| 久久毛片免费看一区二区三区| 欧美日韩亚洲高清精品| av国产久精品久网站免费入址| 精品久久久久久久久av| 亚洲精品自拍成人| 午夜免费男女啪啪视频观看| 免费黄色在线免费观看| 亚洲精品国产成人久久av| 最新的欧美精品一区二区| 国产白丝娇喘喷水9色精品| 久久久亚洲精品成人影院| 深夜a级毛片| 99热网站在线观看| 桃花免费在线播放| 十分钟在线观看高清视频www | 男人舔奶头视频| h日本视频在线播放| 久热这里只有精品99| 国产深夜福利视频在线观看| 亚洲国产精品成人久久小说| 久久精品久久精品一区二区三区| 国产一区亚洲一区在线观看| 男女边摸边吃奶| 三级经典国产精品| kizo精华| 观看免费一级毛片| 国产精品久久久久久精品古装| 日韩亚洲欧美综合| 日本爱情动作片www.在线观看| 亚洲一级一片aⅴ在线观看| 亚洲精品乱码久久久久久按摩| 国产成人精品福利久久| 精品一品国产午夜福利视频| 另类精品久久| 国内精品宾馆在线| av国产精品久久久久影院| 国产欧美另类精品又又久久亚洲欧美| 久久99精品国语久久久| 久久久久久久久久成人| 欧美一级a爱片免费观看看| 丝袜在线中文字幕| 最近2019中文字幕mv第一页| av在线播放精品| 日本猛色少妇xxxxx猛交久久| 亚洲欧洲国产日韩| 日韩一本色道免费dvd| 国产精品一区二区在线观看99| 国产精品不卡视频一区二区| 老女人水多毛片| 嘟嘟电影网在线观看| 51国产日韩欧美| 久久6这里有精品| 大片电影免费在线观看免费| 亚洲av男天堂| 久久99蜜桃精品久久| 成人毛片60女人毛片免费| 99久久精品一区二区三区| 国产精品久久久久久久久免| 国产中年淑女户外野战色| 大香蕉97超碰在线| 久久99热这里只频精品6学生| 免费不卡的大黄色大毛片视频在线观看| 哪个播放器可以免费观看大片| 人妻夜夜爽99麻豆av| av天堂中文字幕网| 久久鲁丝午夜福利片| 国产成人午夜福利电影在线观看| 99热这里只有是精品在线观看| 国产精品久久久久成人av| 六月丁香七月| 免费观看无遮挡的男女| 爱豆传媒免费全集在线观看| 精华霜和精华液先用哪个| 国内少妇人妻偷人精品xxx网站| 亚洲第一区二区三区不卡| 国产成人freesex在线| 国产精品不卡视频一区二区| 日韩视频在线欧美| 99热这里只有精品一区| 在线 av 中文字幕| 春色校园在线视频观看| 大片免费播放器 马上看| 黄色怎么调成土黄色| 欧美性感艳星| 成人特级av手机在线观看| 久久久久久久久大av| 精华霜和精华液先用哪个| 精品国产一区二区三区久久久樱花| 日本黄色日本黄色录像| 在线观看人妻少妇| 亚洲美女搞黄在线观看| 精品亚洲乱码少妇综合久久| av专区在线播放| 黄色配什么色好看| 国产成人精品无人区| 精华霜和精华液先用哪个| 亚洲精品色激情综合| 视频中文字幕在线观看| 国产精品久久久久成人av| 五月天丁香电影| 精品一区二区三区视频在线| 我要看黄色一级片免费的| 免费观看性生交大片5| 久久精品久久精品一区二区三区| 视频中文字幕在线观看| 综合色丁香网| 一二三四中文在线观看免费高清| 日日爽夜夜爽网站| 校园人妻丝袜中文字幕| 91久久精品国产一区二区成人| 国产黄片视频在线免费观看| 欧美日韩视频高清一区二区三区二| 美女xxoo啪啪120秒动态图| 日本av手机在线免费观看| 久久久久精品性色| 18禁动态无遮挡网站| av视频免费观看在线观看| 久久人人爽人人片av| 狂野欧美激情性bbbbbb| 国产精品久久久久久久久免| 高清在线视频一区二区三区| 欧美精品高潮呻吟av久久| a级一级毛片免费在线观看| 午夜福利,免费看| 黄色日韩在线| 九九在线视频观看精品| 久久久久国产网址| 插逼视频在线观看| 三级国产精品欧美在线观看| 亚洲精品亚洲一区二区| 亚洲精品视频女| 国产极品天堂在线| 丰满人妻一区二区三区视频av| 校园人妻丝袜中文字幕| 日韩免费高清中文字幕av| 国产精品一区www在线观看| 女的被弄到高潮叫床怎么办| 久久这里有精品视频免费| 成人亚洲精品一区在线观看| 亚洲性久久影院| 在线观看www视频免费| 国产色爽女视频免费观看| 人人妻人人爽人人添夜夜欢视频 | 汤姆久久久久久久影院中文字幕| 男人舔奶头视频| 亚洲精品久久久久久婷婷小说| a级毛片在线看网站| 国产亚洲5aaaaa淫片| 国产午夜精品久久久久久一区二区三区| 欧美精品人与动牲交sv欧美| a级毛片在线看网站| 色94色欧美一区二区| 欧美xxⅹ黑人| 大陆偷拍与自拍| 欧美人与善性xxx| 大陆偷拍与自拍| 欧美区成人在线视频| 成年美女黄网站色视频大全免费 | 国产精品福利在线免费观看| 欧美日韩在线观看h| 精品国产乱码久久久久久小说| 视频区图区小说| 七月丁香在线播放| 国产精品免费大片| 国产成人精品婷婷| av在线播放精品| 超碰97精品在线观看| 国产精品人妻久久久久久| 国产91av在线免费观看| 成年人午夜在线观看视频| 国产一区有黄有色的免费视频| 高清午夜精品一区二区三区| 亚洲一级一片aⅴ在线观看| 亚洲欧美清纯卡通| 丁香六月天网| 你懂的网址亚洲精品在线观看| 99久久中文字幕三级久久日本| 国产黄片视频在线免费观看| 丝袜在线中文字幕| 国产在线免费精品| 99久久精品热视频| 国产成人a∨麻豆精品| av线在线观看网站| 国产精品一区二区在线观看99| 99久久精品热视频| 国语对白做爰xxxⅹ性视频网站| 观看免费一级毛片| 国产精品一区二区性色av| 日韩av免费高清视频| 曰老女人黄片| 欧美日韩亚洲高清精品| 99re6热这里在线精品视频| 天堂中文最新版在线下载| 少妇丰满av| 欧美日韩国产mv在线观看视频| 日本91视频免费播放| 我的老师免费观看完整版| 国产亚洲午夜精品一区二区久久| 少妇人妻精品综合一区二区| 午夜福利,免费看| 国产一区二区在线观看日韩| 亚洲高清免费不卡视频| tube8黄色片| 久久久久久久久久久久大奶| 国产精品一区二区在线不卡| 美女视频免费永久观看网站| 国产黄片美女视频| 日韩三级伦理在线观看| 水蜜桃什么品种好| 久久久久久久久久成人| 少妇人妻 视频| 男人和女人高潮做爰伦理| 国产欧美日韩精品一区二区| 国产黄频视频在线观看| 日日爽夜夜爽网站| av在线老鸭窝| 这个男人来自地球电影免费观看 | 丰满少妇做爰视频| 成年女人在线观看亚洲视频| 国产精品成人在线| 亚洲婷婷狠狠爱综合网| 欧美97在线视频| 国产精品成人在线| 国产免费一区二区三区四区乱码| 一个人免费看片子| 美女大奶头黄色视频| 亚洲精品久久午夜乱码| 日本91视频免费播放| 亚洲精品自拍成人| 国产免费视频播放在线视频| 亚洲国产毛片av蜜桃av| 久久久午夜欧美精品| 日日爽夜夜爽网站| 久久国产精品男人的天堂亚洲 | 一级毛片久久久久久久久女| 久久精品国产a三级三级三级| 午夜福利网站1000一区二区三区| 人人澡人人妻人| 免费黄频网站在线观看国产| 91午夜精品亚洲一区二区三区| av国产精品久久久久影院| 欧美精品高潮呻吟av久久| av播播在线观看一区| 精品国产国语对白av| 国产精品人妻久久久久久| 精品久久久久久电影网| 国产精品一区www在线观看| 人妻制服诱惑在线中文字幕| 久久99热这里只频精品6学生| 免费看不卡的av| 一级毛片久久久久久久久女| 亚洲精华国产精华液的使用体验| 又粗又硬又长又爽又黄的视频| 99热这里只有精品一区| 国产精品偷伦视频观看了| 最近的中文字幕免费完整| 亚洲av日韩在线播放| 午夜免费鲁丝| 午夜福利,免费看| 日日撸夜夜添| 亚洲精品中文字幕在线视频 | 欧美日韩一区二区视频在线观看视频在线| 男女国产视频网站| 观看免费一级毛片| 国产熟女午夜一区二区三区 | av天堂久久9| 国产一区有黄有色的免费视频| 黑人巨大精品欧美一区二区蜜桃 | 日韩中文字幕视频在线看片| 国产精品久久久久久久久免| 欧美精品一区二区大全| 国产免费一区二区三区四区乱码| 91精品一卡2卡3卡4卡| 亚洲一级一片aⅴ在线观看| 国产成人精品一,二区| 丰满乱子伦码专区| 精品酒店卫生间| 2021少妇久久久久久久久久久| 国产永久视频网站| 日韩一区二区三区影片| 欧美日韩精品成人综合77777| 国产乱人偷精品视频| 国产一区亚洲一区在线观看| 亚洲精品一二三| 在线观看免费高清a一片| 女性生殖器流出的白浆| 好男人视频免费观看在线| 午夜福利网站1000一区二区三区| 久久人人爽人人片av| 精品久久久久久久久亚洲| 观看免费一级毛片| 久久久精品94久久精品| 久久亚洲国产成人精品v| 久久97久久精品| 在线精品无人区一区二区三| 男男h啪啪无遮挡| av天堂中文字幕网| 大香蕉97超碰在线| 亚洲一区二区三区欧美精品| 亚洲国产欧美日韩在线播放 | 超碰97精品在线观看| 国内揄拍国产精品人妻在线| 老女人水多毛片| 18禁裸乳无遮挡动漫免费视频| 国产成人午夜福利电影在线观看| 人人妻人人添人人爽欧美一区卜| 国产白丝娇喘喷水9色精品| 亚洲四区av| 在线观看免费日韩欧美大片 |