• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Micropores Drilling Force for Printed Circuit Board Micro-holes Based on Energy Method

    2023-10-29 11:41:42ZHENGXiaohu鄭小虎RUANHaoCHENHongbo陳宏博LIUXiaojia劉驍佳LIUZhenghao劉正好
    關(guān)鍵詞:宏博

    ZHENG Xiaohu(鄭小虎), RUAN Hao(阮 浩), CHEN Hongbo(陳宏博), LIU Xiaojia(劉驍佳), LIU Zhenghao(劉正好)

    1 Institute of Artificial Intelligence, Donghua University, Shanghai 201620, China 2 Shanghai Industrial Big Data and Intelligent Systems Engineering Technology Center, Shanghai 201620, China 3 College of Mechanical Engineering, Donghua University, Shanghai 201620, China 4 Shanghai Institute of Aerospace Precision Machinery, Shanghai 201600, China

    Abstract:The quality of printed circuit board (PCB) micro-hole processing directly determines the stability of the inner and outer circuit connections. Micro-hole drilling technology is a typical method for PCB micro-hole processing. The problem of optimal control of its drilling force is one of the main factors affecting the quality of micro-hole machining. To address this problem, the thrust forces and torques in PCB drilling were first modeled and analyzed, and the corresponding prediction models were established. The drilling force analysis was carried out through the micro-hole drilling experiment, the specific cutting energy under different feed rates was calculated, the influence of the size effect was clarified, and the accuracy of the prediction model was verified. The result shows that during the drilling of glass fiber cloth, changes in the material removal mechanism are induced as the feed per revolution is varied. When the feed per revolution is less than the tool edge radius, the glass fiber is not cut by the main cutting edge, but is crushed and broken. When the feed per revolution is greater than the radius of the tool edge, the glass fiber is cut by the main cutting edge. At the same time, the established analytical model can accurately reflect the influence of the size effect on the drilling torque in PCB micro-hole drilling, and the error is within 10%. This method has certain practical application value in controlling PCB micro hole processing quality.

    Key words:printed circuit board(PCB); micro-hole drilling; predictive model; size effect; multi-layer material

    0 Introduction

    With the increasing demand for data transmission in the information age, it has brought great challenges to the development of printed circuit board (PCB) technology that undertakes data transmission carriers. As an important micro-component for the connection and support of components in electronic products, it is widely used in micro-electromechanical systems (MEMS), electronics and biomedicine industries[1-3]. The micropores inside the PCB are the main form of information exchange between layers of the multi-layer PCB, so it is particularly important to ensure the micropores processing of composite materials represented by the glass fiber reinforced polymer (GFRP)[4-5]. Due to its high efficiency and high precision, micro-hole drilling technology is the main method for micro-diameter processing. As for the research on PCB drilling, domestic and foreign scholars usually focus on the optimization of the drilling path, the control of the drilling temperature, and the optimal design in the selection of drilling materials[6-9]. With the development trend of miniaturization, integration and precision of electronic products, the number of micropores, the diameter of micropores and the quality of the wall of the PCB have put forward new requirements[10]. Therefore, drilling force modeling is important for predicting the quality of PCB micro-hole machining and improving tool life.

    A lot of research has been done in China and abroad on the modeling of drilling forces for multi-layer composite materials. Diaz-Alvarezetal.[11]proposed a relevant model for the drilling of biocomposite materials, and analyzed the influence of different conditions on the drilling quality during drilling. Lietal.[12]developed a drilling force model based on oblique cutting theory, which could be used to predict the thrust force and torque of deep hole drilling with staggered teeth boring and trepanning association (BTA). Anandetal.[13]used the method of converting right-angle cutting into the oblique-angle cutting to predict the mechanical model of thrust force and torque of micro-drilling of carbon fiber reinforced plastic composite laminates. In order to control the layering and burr height of laminated materials, relevant scholars[14-15]have proposed different mechanism models to predict the drilling force and torque suffered by carbon fiber reinforced plastics (CFRP)/Ti machining. Gaikheetal.[16]predicted the thrust force and torque for drilling glass fiber reinforced plastic materials to investigate the effect of different combinations of cutting speed and feed rate on thrust force and torque. Many studies have shown that in the field of micro-hole drilling, research on drilling force and its characteristics is crucial for controlling the quality of micro-hole processing. However, the application of the drilling force model to PCB micro-drilling is seldom studied and needs to be further explored.

    For the modeling issue of PCB micro-hole drilling, this paper established an analytical model of PCB micro-hole drilling force based on a specific cutting energy formula, aiming to predict thrust force and torque. Then, micro-hole drilling experiments were conducted to analyze drilling force while clarifying the influence of size effects during the drilling process. Finally, the experimental data were used to verify the analytical model and provide guidance for quality control of micro-hole drilling.

    1 Establishment of PCB Micro-hole Drilling Force Model

    In this study, the analytical model method is used to model the thrust force and torque in PCB drilling, as shown in Eqs. (1) and (2). Shawetal.[17]established a drilling force prediction formula for metal processing, including the axial force and torque prediction formula. The specific form is as follows:

    (1)

    (2)

    whereFis the thrust force,Tis the torque,HBis the hardness of the workpiece,cis the chisel edge length,dis the diameter of a drill, andfis the feed rate. The other parameters,a,K′1,K′2,K′3,K′4andK′5, can be obtained by drilling experiments. In the above formula, in addition to the existence of 6 fixed constants, the ratioc/dof the chisel edge to the drill diameter is also a constant, so the above formula can be simplified as

    F=K1(fd)1-a+K2d2,

    (3)

    T=K3f1-ad2-a,

    (4)

    whereK1,K2andK3are new constants.

    Shawetal.[17]established another equation of calculating torque based on size effect theory, which was the relation between effective specific cutting energyuand (fd)-a, shown as

    (5)

    Dharan pointed out in his study[18]that since the above equations are discussed mainly for the work done by the tool, related to material properties and machining parameters, avoiding the issue of tool geometry. Therefore, Eqs. (1) and (2) with suitable values ofa,K′1,K′2andK′3can be used to predict the drilling force in composites as well, in addition to metal drilling.

    Since the prediction model can be determined after the values ofa,K1,K2andK3are obtained, the logarithm of both sides of Eq. (5) can be taken at the same time, as shown in Eq. (6), where the constantais still obtained through Eq. (5). The torqueTis measured experimentally.

    (6)

    When the specific cutting energyuis calculated, Eq. (6) can be regarded as a linear equation with lg (fd) as the independent variable. The regression equation of lguand lg (fd) can be obtained through experiments, and the coefficient of the regression equation is (-a), which is the slope of the straight line.

    After the indexais determined, then (fd)1-aandf1-ad2-ain Eq. (3) and Eq. (4) are taken as two variables, and the logarithms are taken for each of the two equations, and Eqs. (3) and (4) are converted into 2 linear equations with (fd)1-aandf1-ad2-aas independent variables respectively. In order to determine the value of the above constants, it is necessary to carry out micro-hole drilling experiments. The regression equations ofF,Tand (fd)1-a,f1-ad2-aobtained through the experiments are the equations ofFandT.

    2 PCB Micro-hole Drilling Experiment

    2.1 Experimental procedure

    Since the size effect in PCB micro-drilling process is mainly reflected in the change of drilling specific energy, which is mainly obtained by drilling torque calculation, this study adopts the experimental method of dynamometer torque measurement to analyze the size effect in PCB micro-hole drilling process and provides experimental data for drilling force model.

    In this study, the drilling force measurement experimental platform designed with reference to the relevant micromachining literature[19-20]is shown in Fig.1. In Fig.1,Xrepresents the left-right movement,Yrepresents the front-back movement, andZrepresents the up-down movement. The platform uses a Kistler9272 dynamometer (originally from Winterthur, Zurich state, Switzerland) to measure torque and conduct micro-hole drilling experiments with a diameter of 0.4 mm. The geometric parameters of the drill are shown in Table 1. And the processing material is FR-4 double-sided copper-clad PCB, and its performance parameters are shown in Table 2.

    Fig.1 Schematic of hardware system for force measurement

    Table 1 Characteristic parameters of FR-4 board

    Table 2 Geometric parameters of drill bit

    In this study, the single-factor experimental method is used to study the influence of the size effect during PCB drilling by analyzing the torque variation with different feed per revolution selected while the spindle speed is kept constant. The torque signals obtained are shown in Fig.2.

    Fig.2 The measured torque signals(feed=0.002 mm/r, speed=40 000 r/min)

    Some of the experimental parameters are shown in Table 3. The experiments are repeated three times for each group.

    Table 3 Experimental parameters

    2.2 Determination of model constants

    The drilling force model constant was determined by micro-hole drilling experiments, and the fitted curve between the specific cutting energy lguand lg(fd) is obtained after data analysis, as shown in Fig.3. The fitted equation is shown as

    lgu=2.065-0.418 9lg (fd).

    (7)

    The slope of Eq. (7) is the value of (-a), then we can getaas 0.418 9.

    Fig.3 lg u vs lg(fd) (d=0.4 mm)

    Therefore, after substituting the value of the constanta, the fitting curve between the thrust force and (fd)1-ais determined, as shown in Fig.4, and the determined fitting equation is the thrust force model shown as

    F=1.201+341.4(fd)0.5811.

    (8)

    Fig.4 Thrust force vs (fd)1-a (d=0.4 mm)

    Similarly, the fitting curve between the obtained torqueTandf1-ad2-ais shown in Fig.5, and the torque fitting equation is shown as

    T=-0.0089+14.79f1-ad2-a=
    -0.0089+14.79f0.5811d1.5811.

    (9)

    Fig.5 Torque vs f1-ad2-a (d=0.4 mm)

    3 Results and Discussion

    3.1 Analysis of experimental results

    After the above experiments, the variation curve of the relationship between torque and feed per revolution can be obtained, as shown in Fig.6. Figure 6 reflects that the relationship between drilling torque and feed per revolution is generally proportional. In particular, there is a small jump in drilling torque when the feed is 0.003 mm/r, but a significant drop in drilling torque when the feed is 0.004 mm/r, followed by a continuous positive increase, a phenomenon that occurs due to the effect of size effect in micro-fabrication.

    Fig.6 Feed per revolution vs torque (d=0.4 mm, speed=40 000 r/min)

    The relationship between specific cutting energy and feed per revolution is shown in Fig.7, where the value of specific cutting energy is derived from Eq.(5), which reflects the general trend of decreasing specific cutting energy as feed per revolution increases. Among them, the specific cutting energy can jump significantly when the feed is 0.003 mm/r, indicating that the material removal process is mainly based on extrusion at this stage. When the feed reaches 0.005 mm/r, the change of specific cutting energy tends to be stable, indicating that in the steady-state cutting stage, the fiber material mainly occurs shear fracture.

    Fig.7 Specific cutting energy vs feed (d=0.4 mm, speed=40 000 r/min)

    The structure of glass fiber cloth is shown in Fig.8. Glass fiber cloth is made of glass balls or glass blocks, which are melted, drawn and spun at high temperatures. Each bundle of the original filaments is composed of hundreds or even thousands of monofilaments. Due to the characteristics of high tensile strength and high brittleness of glass fiber, in the process of drilling glass fiber cloth, with the change of the feed per revolution, the material removal mechanism will change. The diameter of the glass fiber in the PCB board used in this study is 0.011 mm, which is exactly within the variation range of the tool edge radius.

    Fig.8 Picture of structure of glass fiber cloth

    The principle of the size effect of PCB micro-drilling is shown in Fig.9. When the feed per revolutionfrevis greater than the radius of the tool edger, the glass fiber is cut by the main cutting edge; whenfrevis less thanr, the glass fibers are crushed after being squeezed, and the above changes in the material removal mechanism are specifically reflected as changes in specific cutting energy.

    Fig.9 Size effect in micro-drilling of PCB

    3.2 Model verification

    After obtaining the fitting equations for the thrust force and the torque, those are Eqs. (8) and (9), experimental verification was conducted using drill bits with diameters of 0.6 mm and 1.0 mm, and the verification results are shown in Figs.10 and 11. The analysis shows that the predicted drilling force of 1.0 mm diameter drill bit is more accurate than that of 0.6 mm diameter, while the results obtained from the experiment and the theoretical calculation show the same variation trend with an error within 10%, so the analytical model is reasonably designed and the results are valid.

    Fig.10 A plot showing comparison of experimental values and estimated values of the thrust force (speed=40 000 r/min)

    Fig.11 A plot showing comparison of experimental values and estimated values of the torque (speed=40 000 r/min)

    4 Conclusions

    1) Based on Shaw and Oxford established cutting equation theory[17], the constantsa,K′1,K′2,K′3,K′4,K′5andc/dcombination formulas determined by experiments are simplified. After simplification,K1,K2andK3are obtained as new constants, and the drilling force model constants are determined through the drilling force measurement experimental platform, which provides experimental data for the specific cutting energy, thrust force and torque fitting curves.

    2) During the drilling of glass fiber cloth, changes in the material removal mechanism are induced as the feed per revolution is varied. When the feed per revolutionfrevis less than the tool edge radiusr, the glass fiber is not cut by the main cutting edge, but is crushed and broken. When the feed per revolutionfrevis greater than the radiusrof the tool edge, the glass fiber is cut by the main cutting edge.

    3) The fitted formulas for thrust force and torque are obtained experimentally and verified by data comparison. Experiments are conducted using drill bits with diameters of 1.0 mm and 0.6 mm, respectively, and the error rate of the prediction model is found to be within 10%, indicating that the method has some practical application.

    This study focuses on the optimization control of drilling force in PCB micro-hole machining, and establishes a prediction model for drilling force. At the same time, drilling force analysis and model validation are conducted through micro-hole drilling experiments. Through comparison of experimental data, it is found that the prediction error rate of the model is within 10%, indicating that the prediction method has certain practical application functions.

    In addition, for PCB board micro-hole drilling, the drilling quality can be further improved by the following ways. One is to optimize the tool structure and improve the working accuracy of the machining platform. The other is that we can continue to establish the formula for calculating the edge stress of micro milling cutter and establish the edge design method of micro milling cutter based on this to optimize the PCB micro hole drilling process. These will be the next major research directions.

    猜你喜歡
    宏博
    省了一味藥
    Influence of Ti3C2Tx (MXene) on the generation of dielectric barrier discharge in air
    Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis?
    省了一味藥
    上海故事(2021年1期)2021-03-18 12:38:56
    Simulation study on the influence of magnetic field in the near-anode region on anode power deposition of ATON-type Hall thruster
    安丘市宏博機(jī)械制造有限公司(原安丘市華
    ——機(jī)械廠)
    中國釀造(2019年9期)2019-10-08 05:44:04
    My English Learning
    頑固“臺獨(dú)”臺灣同胞告訴我們
    臺聲(2016年5期)2016-09-13 06:36:02
    取材宏博 立論中肯 成一家言——評《南北皮黃戲史述》
    黃腐酸與人血清白蛋白相互作用機(jī)制的光譜研究
    腐植酸(2015年6期)2015-04-17 00:21:21
    亚洲精华国产精华精| 天天躁狠狠躁夜夜躁狠狠躁| 日韩中文字幕欧美一区二区| 国产av精品麻豆| 久久精品国产a三级三级三级| 亚洲午夜精品一区,二区,三区| 国产精品国产三级国产专区5o| 极品少妇高潮喷水抽搐| 考比视频在线观看| 免费高清在线观看视频在线观看| 黑人猛操日本美女一级片| 在线 av 中文字幕| 老熟妇仑乱视频hdxx| 国产一卡二卡三卡精品| 一级片免费观看大全| 桃花免费在线播放| 午夜91福利影院| 999久久久国产精品视频| 男女床上黄色一级片免费看| 久久香蕉激情| 大片免费播放器 马上看| 少妇粗大呻吟视频| 亚洲精品国产精品久久久不卡| 久久九九热精品免费| 高清在线国产一区| 99热全是精品| 人人妻人人爽人人添夜夜欢视频| 久久香蕉激情| 亚洲av成人一区二区三| 人人妻,人人澡人人爽秒播| 国产亚洲欧美在线一区二区| 色婷婷av一区二区三区视频| 亚洲专区字幕在线| 一区福利在线观看| 亚洲av国产av综合av卡| 人人澡人人妻人| 麻豆乱淫一区二区| 在线精品无人区一区二区三| 久久性视频一级片| 亚洲精品久久午夜乱码| 久久久久久人人人人人| 国产精品一区二区在线观看99| 日韩有码中文字幕| 搡老熟女国产l中国老女人| 国产精品影院久久| 欧美xxⅹ黑人| 精品欧美一区二区三区在线| 美女国产高潮福利片在线看| 男人添女人高潮全过程视频| 欧美精品人与动牲交sv欧美| 两个人看的免费小视频| 亚洲五月色婷婷综合| 午夜福利一区二区在线看| 老鸭窝网址在线观看| 高清av免费在线| 国产老妇伦熟女老妇高清| 青春草视频在线免费观看| 大型av网站在线播放| 亚洲国产欧美在线一区| 亚洲欧美精品综合一区二区三区| 久久亚洲国产成人精品v| 免费人妻精品一区二区三区视频| 国产激情久久老熟女| 亚洲一区中文字幕在线| 久久亚洲国产成人精品v| 中文欧美无线码| 久久人人爽av亚洲精品天堂| 18禁观看日本| 99国产综合亚洲精品| 亚洲免费av在线视频| av电影中文网址| 亚洲国产毛片av蜜桃av| 午夜福利在线观看吧| 亚洲精品国产色婷婷电影| 麻豆乱淫一区二区| 成人免费观看视频高清| 亚洲第一欧美日韩一区二区三区 | 国产高清videossex| 丝袜脚勾引网站| 久久精品国产亚洲av香蕉五月 | 国产精品av久久久久免费| av片东京热男人的天堂| 欧美精品亚洲一区二区| 国产欧美日韩精品亚洲av| 欧美日韩一级在线毛片| 一本大道久久a久久精品| 亚洲国产毛片av蜜桃av| 汤姆久久久久久久影院中文字幕| 在线观看免费高清a一片| 亚洲伊人色综图| 美女脱内裤让男人舔精品视频| 国产精品亚洲av一区麻豆| www日本在线高清视频| 国产真人三级小视频在线观看| cao死你这个sao货| 国产精品一区二区免费欧美 | 精品一区二区三区四区五区乱码| a级毛片黄视频| 午夜福利一区二区在线看| 大香蕉久久成人网| 午夜日韩欧美国产| 亚洲国产看品久久| 久久免费观看电影| 真人做人爱边吃奶动态| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 成人18禁高潮啪啪吃奶动态图| 妹子高潮喷水视频| 久久中文字幕一级| 伦理电影免费视频| 91字幕亚洲| 成在线人永久免费视频| 欧美中文综合在线视频| 麻豆乱淫一区二区| 亚洲九九香蕉| 亚洲欧洲精品一区二区精品久久久| 黄网站色视频无遮挡免费观看| 中文字幕人妻丝袜一区二区| 一本—道久久a久久精品蜜桃钙片| 久久久久网色| 亚洲精品美女久久av网站| 女警被强在线播放| 精品欧美一区二区三区在线| 亚洲欧美精品综合一区二区三区| 国产精品.久久久| 夜夜夜夜夜久久久久| 精品卡一卡二卡四卡免费| 热re99久久精品国产66热6| 在线十欧美十亚洲十日本专区| 国产黄色免费在线视频| 日韩人妻精品一区2区三区| 国产精品偷伦视频观看了| 视频在线观看一区二区三区| 亚洲美女黄色视频免费看| 亚洲国产欧美在线一区| 亚洲精品久久午夜乱码| 久热爱精品视频在线9| 波多野结衣av一区二区av| 国产精品九九99| 欧美亚洲 丝袜 人妻 在线| 成人三级做爰电影| 一区二区三区乱码不卡18| 午夜视频精品福利| 国产不卡av网站在线观看| 亚洲欧美一区二区三区黑人| 少妇人妻久久综合中文| 亚洲中文日韩欧美视频| 成年动漫av网址| 成人手机av| 国产成人a∨麻豆精品| 国产日韩欧美在线精品| 18在线观看网站| 免费一级毛片在线播放高清视频 | 深夜精品福利| 中文字幕色久视频| 免费在线观看影片大全网站| 久久久久久久久久久久大奶| 国产成人a∨麻豆精品| 精品国产一区二区三区四区第35| 国产极品粉嫩免费观看在线| 97精品久久久久久久久久精品| 老汉色av国产亚洲站长工具| 高清av免费在线| 国产精品久久久久久精品古装| 国产精品一区二区在线观看99| 高清av免费在线| 国产无遮挡羞羞视频在线观看| 国产一区二区三区在线臀色熟女 | 精品人妻熟女毛片av久久网站| 两人在一起打扑克的视频| 欧美日韩精品网址| 十八禁网站免费在线| 老司机午夜十八禁免费视频| 国产亚洲一区二区精品| 黄频高清免费视频| 日日摸夜夜添夜夜添小说| 国产在线一区二区三区精| 欧美老熟妇乱子伦牲交| 黄色视频不卡| 天天添夜夜摸| 大香蕉久久成人网| 18禁裸乳无遮挡动漫免费视频| 亚洲情色 制服丝袜| 女人高潮潮喷娇喘18禁视频| 国产黄频视频在线观看| 久久精品亚洲熟妇少妇任你| 美女高潮到喷水免费观看| 精品欧美一区二区三区在线| 中文字幕制服av| 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美 | 多毛熟女@视频| 成年av动漫网址| 美女大奶头黄色视频| 亚洲色图综合在线观看| 久久天堂一区二区三区四区| 91麻豆av在线| 成年av动漫网址| 美女大奶头黄色视频| 久久 成人 亚洲| 亚洲国产看品久久| 亚洲精品自拍成人| 国产一区二区三区av在线| 久久亚洲精品不卡| 久久久国产精品麻豆| 成年人黄色毛片网站| 多毛熟女@视频| 国产精品久久久久成人av| 亚洲少妇的诱惑av| 最近最新中文字幕大全免费视频| 男男h啪啪无遮挡| 日韩精品免费视频一区二区三区| 国产成人免费观看mmmm| 国产亚洲一区二区精品| 久久久久久久久久久久大奶| 我要看黄色一级片免费的| 免费在线观看完整版高清| 国产成人av教育| 久热爱精品视频在线9| 国产免费现黄频在线看| 色视频在线一区二区三区| 国产日韩欧美在线精品| 日韩一卡2卡3卡4卡2021年| 少妇 在线观看| 90打野战视频偷拍视频| 丰满迷人的少妇在线观看| 久久人人97超碰香蕉20202| 美女脱内裤让男人舔精品视频| 俄罗斯特黄特色一大片| 性少妇av在线| 王馨瑶露胸无遮挡在线观看| 久久精品国产a三级三级三级| 亚洲人成77777在线视频| e午夜精品久久久久久久| av电影中文网址| 亚洲第一av免费看| 99国产精品一区二区蜜桃av | 在线观看免费视频网站a站| 亚洲激情五月婷婷啪啪| 国产精品久久久久成人av| 捣出白浆h1v1| 制服人妻中文乱码| 亚洲成人免费av在线播放| 91国产中文字幕| 免费在线观看视频国产中文字幕亚洲 | 男女边摸边吃奶| 天天躁日日躁夜夜躁夜夜| 亚洲成av片中文字幕在线观看| 老司机福利观看| 久久免费观看电影| 午夜日韩欧美国产| 亚洲第一青青草原| 女人精品久久久久毛片| 免费在线观看影片大全网站| 日韩人妻精品一区2区三区| 91九色精品人成在线观看| av免费在线观看网站| videosex国产| 人妻人人澡人人爽人人| 考比视频在线观看| 91麻豆av在线| 波多野结衣av一区二区av| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩一级在线毛片| 国产视频一区二区在线看| 成年美女黄网站色视频大全免费| 亚洲成人手机| 欧美黄色片欧美黄色片| www.精华液| av在线app专区| 欧美成狂野欧美在线观看| a级毛片黄视频| 90打野战视频偷拍视频| 一级毛片精品| 成年人免费黄色播放视频| 午夜成年电影在线免费观看| 日韩 欧美 亚洲 中文字幕| 午夜老司机福利片| 免费在线观看视频国产中文字幕亚洲 | 性少妇av在线| 日韩制服丝袜自拍偷拍| 国产欧美日韩综合在线一区二区| 动漫黄色视频在线观看| 母亲3免费完整高清在线观看| 精品国产国语对白av| 在线亚洲精品国产二区图片欧美| 亚洲九九香蕉| av网站免费在线观看视频| 久久亚洲精品不卡| 日韩,欧美,国产一区二区三区| 香蕉丝袜av| 2018国产大陆天天弄谢| 午夜两性在线视频| 亚洲欧美色中文字幕在线| 国产精品九九99| 国产成人免费观看mmmm| 丝袜脚勾引网站| 国产精品二区激情视频| 操出白浆在线播放| 欧美人与性动交α欧美软件| 久热这里只有精品99| 91国产中文字幕| 大片免费播放器 马上看| 日本欧美视频一区| kizo精华| 黄色片一级片一级黄色片| 国产在视频线精品| 成年动漫av网址| 欧美亚洲 丝袜 人妻 在线| 黄色毛片三级朝国网站| 国产精品国产三级国产专区5o| 亚洲第一av免费看| 免费女性裸体啪啪无遮挡网站| 少妇的丰满在线观看| 99re6热这里在线精品视频| 亚洲美女黄色视频免费看| 黑人操中国人逼视频| 国产成人系列免费观看| 国产黄色免费在线视频| 天天躁日日躁夜夜躁夜夜| 考比视频在线观看| 国产欧美日韩综合在线一区二区| 欧美国产精品va在线观看不卡| 亚洲成人国产一区在线观看| 免费观看av网站的网址| 国产高清国产精品国产三级| 久久人人97超碰香蕉20202| 91av网站免费观看| 精品高清国产在线一区| 一个人免费在线观看的高清视频 | 婷婷色av中文字幕| 国产欧美日韩一区二区精品| 成人av一区二区三区在线看 | 国产野战对白在线观看| 18禁黄网站禁片午夜丰满| 另类精品久久| 波多野结衣一区麻豆| 午夜91福利影院| 视频区欧美日本亚洲| 看免费av毛片| 亚洲国产日韩一区二区| 熟女少妇亚洲综合色aaa.| 成年av动漫网址| 男女免费视频国产| 色婷婷av一区二区三区视频| 黄色a级毛片大全视频| 日韩 亚洲 欧美在线| 国产一区二区激情短视频 | 精品人妻1区二区| 最近最新免费中文字幕在线| 国产免费一区二区三区四区乱码| 亚洲视频免费观看视频| 欧美黄色淫秽网站| 国产精品久久久久久精品古装| 亚洲一码二码三码区别大吗| 国产成人a∨麻豆精品| 国产一卡二卡三卡精品| 成人国语在线视频| 久久久久久久大尺度免费视频| 国产成人精品无人区| 亚洲色图综合在线观看| 日本欧美视频一区| bbb黄色大片| 麻豆乱淫一区二区| 狠狠婷婷综合久久久久久88av| 成人18禁高潮啪啪吃奶动态图| 午夜福利视频精品| av在线老鸭窝| 亚洲三区欧美一区| 国产三级黄色录像| 搡老乐熟女国产| 老熟女久久久| 亚洲国产精品一区二区三区在线| 国产成人精品无人区| 国产1区2区3区精品| 国产在线观看jvid| 中文字幕人妻丝袜制服| 亚洲精品久久午夜乱码| 亚洲精品一二三| 老司机午夜福利在线观看视频 | 免费在线观看视频国产中文字幕亚洲 | 黄片大片在线免费观看| 我要看黄色一级片免费的| 女性生殖器流出的白浆| 91大片在线观看| 日韩制服丝袜自拍偷拍| 51午夜福利影视在线观看| 国产精品一区二区免费欧美 | 欧美另类亚洲清纯唯美| 亚洲精品一区蜜桃| 高潮久久久久久久久久久不卡| tube8黄色片| 操出白浆在线播放| 丝袜脚勾引网站| 欧美激情极品国产一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲专区字幕在线| 精品国产一区二区三区四区第35| 制服诱惑二区| 两性午夜刺激爽爽歪歪视频在线观看 | 美国免费a级毛片| 亚洲精品美女久久久久99蜜臀| 亚洲精品乱久久久久久| 午夜视频精品福利| 久久天躁狠狠躁夜夜2o2o| netflix在线观看网站| www.999成人在线观看| 国产成人啪精品午夜网站| 新久久久久国产一级毛片| 中文欧美无线码| 亚洲欧美精品综合一区二区三区| 大香蕉久久成人网| 999久久久国产精品视频| 极品人妻少妇av视频| 国产亚洲av片在线观看秒播厂| 久久久久国产一级毛片高清牌| avwww免费| 成人影院久久| 在线精品无人区一区二区三| 亚洲成人手机| 在线看a的网站| 国产精品免费视频内射| 男人操女人黄网站| 丝瓜视频免费看黄片| 99久久国产精品久久久| 搡老岳熟女国产| √禁漫天堂资源中文www| 国产精品国产av在线观看| 黄片播放在线免费| 一个人免费在线观看的高清视频 | 久久狼人影院| 国产高清国产精品国产三级| 亚洲精品粉嫩美女一区| 午夜福利影视在线免费观看| 老鸭窝网址在线观看| 韩国高清视频一区二区三区| 视频区图区小说| 久久久国产欧美日韩av| 午夜久久久在线观看| 亚洲精品一二三| 脱女人内裤的视频| 国产有黄有色有爽视频| 狂野欧美激情性bbbbbb| 久久久国产成人免费| 亚洲精品一区蜜桃| 亚洲精品国产一区二区精华液| 一区福利在线观看| 婷婷丁香在线五月| 日本五十路高清| 激情视频va一区二区三区| 天堂中文最新版在线下载| 女人爽到高潮嗷嗷叫在线视频| 19禁男女啪啪无遮挡网站| 亚洲情色 制服丝袜| 人妻 亚洲 视频| 老司机福利观看| 国产在线一区二区三区精| 十八禁人妻一区二区| 午夜激情av网站| 国产免费福利视频在线观看| 在线观看舔阴道视频| 亚洲av日韩精品久久久久久密| 精品国产乱子伦一区二区三区 | 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费观看性视频| 久久久久视频综合| 精品国产一区二区久久| 国产亚洲精品第一综合不卡| 欧美少妇被猛烈插入视频| 国产精品二区激情视频| 午夜成年电影在线免费观看| 十八禁网站免费在线| 99九九在线精品视频| 男女下面插进去视频免费观看| 黄网站色视频无遮挡免费观看| 日本一区二区免费在线视频| 美女午夜性视频免费| 国产一区二区 视频在线| 性高湖久久久久久久久免费观看| 色老头精品视频在线观看| 青草久久国产| 亚洲精品一区蜜桃| 黑人猛操日本美女一级片| 成年人免费黄色播放视频| 亚洲欧美清纯卡通| 亚洲人成电影观看| 精品亚洲乱码少妇综合久久| 国产亚洲午夜精品一区二区久久| 日韩三级视频一区二区三区| 老司机亚洲免费影院| 国产成人影院久久av| 91字幕亚洲| 大片电影免费在线观看免费| 国产精品二区激情视频| 亚洲专区字幕在线| 亚洲五月婷婷丁香| 91成人精品电影| 中文字幕最新亚洲高清| 老司机影院毛片| 下体分泌物呈黄色| 亚洲人成电影免费在线| 久久狼人影院| 啦啦啦在线免费观看视频4| 亚洲欧美精品自产自拍| 亚洲精品国产区一区二| 狂野欧美激情性xxxx| 午夜福利,免费看| 欧美日韩国产mv在线观看视频| 日韩人妻精品一区2区三区| 老熟妇仑乱视频hdxx| 中文精品一卡2卡3卡4更新| 亚洲久久久国产精品| 丰满少妇做爰视频| 欧美亚洲 丝袜 人妻 在线| 午夜免费成人在线视频| 成人影院久久| 最近中文字幕2019免费版| 日韩 亚洲 欧美在线| 国产精品偷伦视频观看了| 精品人妻1区二区| 伦理电影免费视频| 欧美日韩视频精品一区| 国产日韩欧美亚洲二区| 久久热在线av| 免费观看人在逋| 性色av一级| 最新在线观看一区二区三区| 欧美老熟妇乱子伦牲交| 日韩免费高清中文字幕av| 久久精品亚洲av国产电影网| 波多野结衣av一区二区av| 国产一区二区 视频在线| 美女脱内裤让男人舔精品视频| 麻豆乱淫一区二区| 最新在线观看一区二区三区| 亚洲男人天堂网一区| 无限看片的www在线观看| 久久性视频一级片| 国产在线观看jvid| 精品少妇久久久久久888优播| 亚洲精品中文字幕一二三四区 | 十八禁网站免费在线| 99国产精品一区二区三区| 香蕉国产在线看| 久久影院123| 精品久久久久久久毛片微露脸 | 国产成人精品无人区| 中文字幕制服av| 法律面前人人平等表现在哪些方面 | 国产激情久久老熟女| 国产一区二区激情短视频 | 日韩有码中文字幕| 久久精品aⅴ一区二区三区四区| 美女福利国产在线| 麻豆av在线久日| 97在线人人人人妻| 国产精品一区二区免费欧美 | 亚洲精品在线美女| 久久久久视频综合| 久久久水蜜桃国产精品网| 丝袜脚勾引网站| 日本wwww免费看| 日韩欧美一区二区三区在线观看 | 国产精品亚洲av一区麻豆| 国产精品二区激情视频| 成年人午夜在线观看视频| 国产极品粉嫩免费观看在线| 国产免费av片在线观看野外av| netflix在线观看网站| 黄片大片在线免费观看| 免费少妇av软件| 国产成人免费无遮挡视频| 午夜福利在线观看吧| 91成人精品电影| 看免费av毛片| 最近最新免费中文字幕在线| 新久久久久国产一级毛片| 天堂8中文在线网| 国产免费福利视频在线观看| 狠狠精品人妻久久久久久综合| www.熟女人妻精品国产| 久久中文字幕一级| 亚洲国产欧美日韩在线播放| 国产精品 欧美亚洲| 黄色视频,在线免费观看| 一区二区三区激情视频| 精品欧美一区二区三区在线| 成人免费观看视频高清| 亚洲成人免费电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 老熟女久久久| 青青草视频在线视频观看| 亚洲七黄色美女视频| 伊人久久大香线蕉亚洲五| 久久影院123| 亚洲一码二码三码区别大吗| 老熟女久久久| 50天的宝宝边吃奶边哭怎么回事| 伊人亚洲综合成人网| 日本五十路高清| 亚洲精品久久午夜乱码| 色精品久久人妻99蜜桃| 国产亚洲av片在线观看秒播厂| av在线播放精品| 日韩大码丰满熟妇| 欧美在线黄色| 99九九在线精品视频| 波多野结衣一区麻豆| 久久毛片免费看一区二区三区| 国产精品久久久久成人av| 人人妻人人澡人人看| 欧美老熟妇乱子伦牲交| a级毛片黄视频| 国产97色在线日韩免费| 国产精品九九99|