• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Calculation and Analysis of Acoustic Characteristics of Straight-Through Perforated Pipe Muffler Based on Multilayer Sound Absorbing Material

    2023-10-29 11:41:40LIURongji劉镕基ZHUCongyun朱從云DINGGuofang丁國(guó)芳YUANLei

    LIU Rongji(劉镕基), ZHU Congyun(朱從云), DING Guofang(丁國(guó)芳), YUAN Lei(院 蕾)

    School of Mechatronics Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China

    Abstract:Using the multi-physical field simulation software COMSOL, the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method. The results show that the finite element calculation of the multilayer sound absorbing material straight-through the perforated pipe muffler agrees well with the experimental measurement results. The reliability of the finite element method for studying the acoustic performance of the straight-through perforated pipe muffler with multilayer sound absorbing materials is shown. Furthermore, the influence of some structural parameters of porous sound absorbing material and micro-perforated plate on the acoustic performance of the multilayer sound absorbing material straight-through perforated pipe muffler is analyzed. The muffler based on multilayer sound absorbing material is different from the traditional muffler. After applying the multilayer sound absorbing material to the straight-through perforated pipe muffler, the transmission loss value greatly increases, which provides new ideas and directions for future research on the muffler.

    Key words:porous sound absorbing material; perforated tube; finite element method; muffler; acoustic characteristics

    0 Introduction

    Straight-through perforated tube muffler is often applied to the import and export of automobile engine to reduce the noise of automobile intake and exhausts[1]. At present, most of the research on straight-through perforated tube muffler is based on single-layer micro-perforated pipes, and it is rare to see the straight-through perforated pipe mufflers based on the combination of multi-layer micro-perforated pipes and porous sound-absorbing materials (porous medium). And although there are one-dimensional frequency domain and time domain methods for predicting the silencer performance of perforated pipe silencers, they are only applicable to the calculation of low-frequency acoustic characteristics of silencers[2-5]. In order to effectively predict high-frequency acoustic characteristics, three-dimensional numerical methods are needed[6]. Seybertetal.[7]applied the boundary element method for noise attenuation characteristics of resistant mufflers and sound absorption pipes, but they did not consider the existence of perforated pipes. Considering the influence of perforated pipes, Xuetal.[8]used the finite element method to predict and analyze the acoustic performance of circular straight perforated pipe mufflers, and the calculated results were in good agreement with the experimental results.

    But their analysis was based on a single layer of sound-absorbing material and perforated pipes. The multilayer sound-absorbing material and perforated pipes are not calculated and analyzed.

    In this paper, the Galerkin weighted parameter method is used to derive the finite element equation in the presence of perforated structures[9]. COMSOL has additional functional modules(such as acoustic module) and extended software functions,which are widely used in numerical simulation[10-11]. Therefore, the multi-physical field simulation software COMSOL is used to conduct simulation calculation and compare the experimental results. The influences of porous sound-absorbing materials on the multilayer sound-absorbing material straight-through perforated pipe muffler (including filling density, thickness and air cavity) and some structural parameters of the micro-perforated plate (including the effect of aperture and thickness) on the acoustic performance of multilayer sound absorbing material straight-through perforated pipe muffler are studied.

    1 Three-Dimensional Finite Element Calculation

    The muffler composed of multilayer sound absorbing materials as shown in Fig.1 is divided into four areas which are respectively represented byA1,A2(porous medium 1),A3(cavity) andA4(porous medium 2). At the same time, the boundary is divided into inlet, outlet, perforated tube surface 1, perforated tube surface 2, perforated tube surface 3 and rigid wall surface. They are respectively represented bySi,So,Sp11,Sp12,Sp21,Sp22,Sp31,Sp32andSw, as shown in Fig.1.His the external diameter of the muffler.Lis the length of the muffler.D1andD2are the diameters of the inlet and the outlet, respectively. The governing equations of 3D sound propagation in areasA1,A2,A3,andA4[12]are respectively as

    (1)

    (2)

    (3)

    (4)

    whereP1,P2,P3andP4represent the sound pressures in four areas.k1,k2,k3andk4represent the wave numbers of the medium in each region.

    Fig.1 Multilayer sound absorbing material straight-through perforated pipe muffler

    In the acoustic finite element calculation, the interpolation function is used to represent the sound pressure

    Pi={N}T{Pi},

    (5)

    where {Pi} (i=1, 2, …, 4) is the column vector of sound pressure of each node in regionAi(i=1, 2, …, 4); and {N} is the column vector of the shape function.

    There are four types of boundary conditions for perforated pipe mufflers[13-14].

    (a) Rigid wall boundary conditions, in which the vibration velocity of the normal particle is zero,

    (6)

    (b) The perforated tube exists at the interface between air and sound-absorbing material. In this case, the velocity of the normal particle is continuous and the normal pressure gradient on both sides is in direct proportion to the density ratio:

    ua·na=-ub·nb,

    (7)

    (8)

    whereuais particle vibration velocity on the air side;ubis the particle vibration velocity on the side of sound absorbing material;ρa(bǔ)is air density;ρbis the density of sound absorbing material;nais the unit external normal force on the air side of the perforated pipe wall;nbis the unit external normal force on the sound-absorbing material side. Therefore, the relationship between the sound pressure difference on both sides of the perforated wall and the vibration velocity of the normal particleuncan be established through the characteristic acoustic impedance of the perforated pipe.

    (i) If the sound first passes through the air layer and enters the sound-absorbing material through the perforated element,

    (9)

    (ii) If the sound first passes through the sound absorbing material and enters the air layer through the perforated element,

    (10)

    whereζpis the characteristic acoustic impedance of the perforated pipe;Ppais the sound pressure of the perforated tube on both sides of the air side;Ppbis the sound pressure of the sound-absorbing material on either side of the perforated pipe. The perforated tube is a thin-walled structure with a high perforation rate and uniform distribution of holes. The momentum equation is used to obtain,

    (11)

    (12)

    (c) If the boundary condition of the inlet is known, then

    (13)

    (d) If the outlet is set to a non-reflective boundary condition, then

    (14)

    Using the Galerkin weighted parameter method[15]in regionA1, it can be

    (15)

    From the transformation of Green's formula, we can obtain

    (16)

    Using the same method in areasA2,A3andA4, respectively, we can obtain

    (17)

    (18)

    (19)

    According to Fig.1, Eqs. (6)- (7), Eqs. (11)- (14) are substituted into Eqs. (16)-(19)by using applicable conditions, the following rearranged formulaA1,A2,A3, andA4can be obtained

    (20)

    (21)

    (22)

    (23)

    Add Eqs. (20)-(23) and substitute Eq. (5) into the formula:

    (24)

    In the above formula:

    (25)

    (26)

    (27)

    (28)

    (29)

    (30)

    (31)

    (32)

    (33)

    (34)

    (35)

    (36)

    (37)

    (38)

    (39)

    (40)

    The sound pressure at each node can be obtained by solving Eq.(24), and then the transmission loss of the muffler can be calculated according to Eq. (41). The expression of the transmission loss (L) is[16]

    (41)

    whereS1is the cross-sectional area of the muffler inlet;S2is the muffler outlet cross-sectional area;Piis the muffler inlet incident sound pressure;Pois the muffler outlet transmission sound pressure.

    2 Acoustic Characteristics of Sound Absorbing Material and Perforation Acoustic Impedance

    The sound absorbing material inside the muffler is ideal status to be uniform adiabatic and equivalent to a fluid with complex sound velocity and density. The internal structure of the sound-absorbing material is complex, and its acoustic characteristics are not easy to be obtained and are generally obtained through experimental measurement[17]. The expressions of complex impedance and complex wave number of sound absorbing materials used in this paper are[18]

    Z′/Z0=[1+0.085 5(f/R)-0.754]+
    j[-0.076 5(f/R)-0.732],

    (42)

    k′/k0=[1-0.147 2(f/R)-0.577]+
    j[-0.173 4(f/R)-0.595],

    (43)

    wherefis the frequency;Z' is the complex impedance of sound-absorbing material;k′ is the complex wave number of the sound-absorbing material;Z0=ρ0c0is air characteristic acoustic impedance;k0=2πf/c0is the wave number in the air (air densityρ0=1.156 kg/m3and sound speedc0=340 m/s);Ris the flow resistance rate of the sound-absorbing materials (fiberglass silk cotton). When the filling density of sound-absorbing material is 100 kg/m3, the flow resistance rate is 5 000 N/m2, and when it is 200 kg/m3, the flow resistance rate of this material is 15 000 N/m2. The flow resistance rate of the sound-absorbing material is measured with the standing wave tube[19]. The complex sound velocity and density of the sound-absorbing materials are

    (44)

    (45)

    Because the media on both sides of the perforated tube are different, air on one side and the sound-absorbing material on the other side, the modified acoustic impedance expression of perforated characteristicsξp[20]is

    ξp=(0.006+jka[t+0.375dh(1+Zbka)]),

    (46)

    wheredhrepresents the thickness of the cavity.

    3 Discussion and Analysis

    Figure 2 is the three-dimensional picture of the multilayer sound absorbing material straight-through perforated pipe muffler.Its specific dimensions are the expansion cavity lengthL=500 mm, the expansion cavity heightH=140 mm, three layers of the micro-perforated pipe, the distance between each layer of micro-perforated tube is 10 mm, the areasA2andA4are porous sound absorbing materials, the areaA3is the cavity (the cavity set after the micro-perforated plate can form a resonance cavity), the inner diameterD1=D2=50 mm, the sound speedc0=340 m/s. The basic parameters of sound absorbing materials (including micro-perforated plates and porous sound-absorbing materials) are set as shown in Table 1.

    Fig.2 Three-dimensional model of multi-layer sound absorbing material straight-through perforated pipe muffler

    The multilayer sound-absorbing material straight-through perforated pipe muffler is divided into finite element meshes with the free quadrilateral body, and the meshes contain 51 524 domain elements, 19 074 boundary elements and 10 491 nodes. The meshing diagram is shown in Fig.3.

    Table 1 Basic parameters of sound absorbing materials

    Fig.3 Finite element mesh of multilayer sound-absorbing material straight-through perforated pipe muffler

    The experimental schematic of transfer loss is shown in Fig.4.

    Fig.4 Experimental schematic of transfer loss

    According to the experimental schematic diagram in Fig.4, the experimental block diagram of muffler transmission loss shown in Fig.5 can be designed.

    Fig.5 Experimental block diagram for measurement of transmission loss of multilayer sound-absorbing material straight-through perforated pipe muffler

    The experimental platform as shown in Fig.6 is built according to the experimental block diagram.

    Fig.6 Experimental platform for measurement of transmission loss of multi-layer sound absorbing material straight-through perforated pipe muffler

    3.1 Verification of numerical calculation results

    In order to verify the correctness of the finite element method used to study the multi-layer sound absorbing material straight-through perforated tube muffler, the finite element results are compared with the experimental results, as shown in Fig.7. It can be seen that the muffler with multi-layer sound-absorbing material straight-through perforated pipe muffler has much better muffler effect than that with the resistant muffler. The results of the finite element calculation and experimental measurement are in good agreement in the whole frequency range, which indicate that the finite element method can accurately predict the acoustic characteristics of the multilayer sound absorbing material straight-through the perforated pipe muffler. The viscous damping effect is the reason for the error between the experimental results and the simulation results at high frequency.

    Fig.7 Simulation results of transmission loss compared with experimental results

    3.2 Influence of flow resistance rate on transmission loss

    Flow resistance is one of the important parameters of porous sound absorbing materials. It affects the complex impedance and the complex wave number of porous sound absorbing material and perforated acoustic impedance, and ultimately affects the acoustic characteristics of the muffler[21]. The porous media with low flow resistance (1 500 N/m2) and high flow resistance (16 000 N/m2) were combined in pairs to conduct the research. The transmission loss is shown in Fig.8. It can be seen from Fig.8 that in the low-frequency regions, porous medium 1 and porous medium 2 have little influence on the transmission loss regardless of the low or high flow resistance; while in the high-frequency regions, porous medium 1 and porous medium 2 have better flow resistance, and the sound attenuation effect is better. When porous medium 1 has a low flow resistance rate and porous medium 2 has a high flow resistance rate, the noise frequency before 1 750 Hz has a good noise attenuation effect. When porous medium 1 has a high flow resistance rate and porous medium 2 has a low flow resistance rate, the noise frequency after 1 750 Hz has a good noise attenuation effect. In order to reduce the mass of the muffler, the bulk density of the porous media could be reduced, and the flow resistance of each layer of the porous media could be selected according to the noise reduction requirements.

    Fig.8 Influence of flow resistance rate on transmission loss

    3.3 Effect of micro-perforated pipe thickness on transmission loss

    The influence of thicknessestp1,tp2andtp3of micro-perforated pipe 1, perforated pipe 2 and perforated pipe 3 on the transmission loss is shown in Fig.10.

    As can be seen from Fig.9(a), at the noise frequency lower than 1 500 Hz, the transmission loss is the largest when the thickness of perforated pipe 1tp1=1 mm; at the moise frequency higher than 1 500 Hz, the transmission loss is the largest whentp1=2 mm, followed by the transmission loss attp1=3 mm, and the transmission loss is the smallest attp1=4 mm is between 1 500 Hz and 2 300 Hz. At about 2 500 Hz, there is a sharp increase in the transmission loss whentp1=4 mm, because at about 2 500 Hz, perforated pipe 1 reaches the resonant frequency of noise and produces resonance, followed by a sharp decline. It can be seen from Fig.9(b) thattp2=1 mm has the largest transmission loss before 1 500 Hz, and there is almost no difference in transmission loss whentp2is 2, 3 and 4 mm, respectively. At the noise frequency about 1 550 Hz, the transfer loss attp2=4 mm reaches the resonant peak, following by a sharp decline. After the noise frequency of 1 550 Hz, the transmission loss oftp2=2 mm is the largest, the muffler frequency band is the widest, and the muffler effect is the best. It can be seen from Fig.9(c) that the thickness of perforated pipe 2 has little influence on the transmission loss before the noise frequency of 2 200 Hz, but at about 1 500 Hz, the transmission loss oftp3=4 mm reaches the resonance peak. After the noise frequency of 2 200 Hz, the larger the thickness of micro-perforated pipe 3, the smaller the transmission loss.

    Fig.9 Effect of different thicknesses of micro-perforated pipe on transmission loss: (a) perforated pipe 1; (b) perforated pipe 2; (c) perforated pipe 3

    3.4 Influence of perforation rate of micro-perforated pipe on transmission loss

    The effect of perforation ratesδ1,δ2andδ3of micro-perforated pipes 1, 2 and 3 on the transfer loss is shown in Fig.10.

    Fig.10 Effect of perforation rate of different micro-perforated pipes on transfer loss: (a) perforated pipe 1; (b) perforated pipe 2; (c) perforated pipe 3

    As can be seen from Fig.10, when the perforation rate of micro-perforated pipes 1, 2 and 3 is 10%, the transmission loss is the greatest and the noise attenuation effect is the best.At the noise frequency lower than 1 500 Hz, when the perforation rate of the three pipes is equal to 5%, the transmission loss reaches the resonance peak and then decline sharply around 1 550 Hz. When the perforation rate of the three micro-perforated tubes is 20%, the transmission loss is the largest, and the sound attenuation effect is good. The reason is that in the high-frequency stage, the larger the perforation rate of the micro-perforated pipe, the more high-frequency noise passes through the micro-perforation. The more high-frequency noise is absorbed by the porous sound absorbing material, the sound attenuation effect is better.

    3.5 Influence of center distance of inlet and outlet pipe on transmission loss

    In order to study the influence of distance between the axes inlet and outlet on the transmission loss, the distance of the inlet and outlet was set as 0, 50, 100 and 150 mm, respectively. Its plane diagram is shown in Fig.11, where the center distance of inlet and outlet pipes isl. The results are shown in Fig.12.

    Fig.11 Layout diagram of distance between the axes inlet and outlet

    Fig.12 Influence of center distance of inlet and outlet pipes on transmission loss

    It can be seen from Fig.12 that in the low-frequency band, at the noise frequency lower than 1 400 Hz, the transmission loss is the largest whenl=0 mm. The noise frequency is 1 400-1 600 Hz, the transmission loss is almost the same atl=50 mm andl=100 mm. In the high-frequency band higher than 1 600 Hz, the distance between the axes of inlet and outlet for the transmission loss is biggest atl= 150 mm. Because this arrangement makes the propagation path longer, the high-frequency noise is absorbed more by the absorbing porous medium.The better noise reduction effect can be achieved. Therefore, in order to design a muffler with a better effect, the center distance between the axes of inlet and outlet pipe can be properly deviated.

    4 Conclusions

    The finite element method is used to calculate the acoustic characteristics of the muffler based on multilayer sound absorbing materials. The finite element calculation results of the muffler based on multilayer sound absorbing material straight-through perforated pipe agree well with the experimental measurement results, which indicates the reliability of the finite element method used to study the acoustic performance of the muffler based on multi-layer sound absorbing material straight-through perforated pipe muffler. Through the influence of racetrack cross section multi-layer sound absorbing material directly through the perforated pipe muffler, some structural parameters of the perforated plate and the center distance between the inlet and outlet of the pipe on the acoustic performance of the muffler, the following conclusions are drawn.

    1) Among the above parameters, the aperture of perforated pipe 1 and the thickness of perforated pipe 3 have little influence on the acoustic performance of the muffler at low frequencies. The other parameters are the basic parameters in Table 1. The muffler has a good noise attenuation characteristic in the low-frequency bands.

    2) In the high-frequency bands, the smaller the aperture of the perforated pipe, the greater the transmission loss of the muffler. With the increase of the perforation rate and the distance between the inlet and outlet of the perforated pipe, the high-frequency transmission loss in the muffler increases. The thicknesses of perforated pipes 1, 2 and 3 do not show strong regularity in middle and high-frequency bands, so it is necessary to select appropriate values to achieve large transmission loss.

    3) Different from the traditional straight-through perforated pipe muffler, this paper applies the multilayer sound absorbing material to the straight-through perforated pipe muffler. The new type muffler increases the transmission loss and improves the sound attenuation effect of the straight-through perforated pipe muffler, which has strong guiding significance and application value for the future research of such mufflers.

    久久久精品国产亚洲av高清涩受| 免费无遮挡裸体视频| 日韩中文字幕欧美一区二区| 天天躁夜夜躁狠狠躁躁| 国产蜜桃级精品一区二区三区| 精品乱码久久久久久99久播| 欧美性猛交╳xxx乱大交人| 亚洲黑人精品在线| 亚洲成av人片免费观看| 男女那种视频在线观看| 久久精品亚洲精品国产色婷小说| 一区二区三区激情视频| 国产不卡一卡二| 亚洲熟妇熟女久久| 丝袜人妻中文字幕| 熟女少妇亚洲综合色aaa.| 国内精品久久久久精免费| 女人爽到高潮嗷嗷叫在线视频| 欧美成人午夜精品| 国产又爽黄色视频| 精品久久久久久久毛片微露脸| 天天添夜夜摸| 午夜精品在线福利| svipshipincom国产片| 一级毛片高清免费大全| 欧美三级亚洲精品| 久久婷婷人人爽人人干人人爱| 久久久久久久久久黄片| 91av网站免费观看| 人人妻人人澡人人看| 人妻久久中文字幕网| 日韩大尺度精品在线看网址| 免费无遮挡裸体视频| 亚洲国产高清在线一区二区三 | 高潮久久久久久久久久久不卡| 99国产精品一区二区三区| 欧美三级亚洲精品| 亚洲人成网站在线播放欧美日韩| 丰满的人妻完整版| 两个人视频免费观看高清| 欧美人与性动交α欧美精品济南到| 日韩一卡2卡3卡4卡2021年| 国产aⅴ精品一区二区三区波| 色播在线永久视频| 国产高清视频在线播放一区| 久热这里只有精品99| 丝袜美腿诱惑在线| 99久久精品国产亚洲精品| 九色国产91popny在线| 欧美乱色亚洲激情| 女人高潮潮喷娇喘18禁视频| 黄色视频,在线免费观看| 国产精品久久视频播放| 国产成人啪精品午夜网站| 国产1区2区3区精品| 国产精品免费视频内射| 丰满的人妻完整版| 欧美zozozo另类| 禁无遮挡网站| 亚洲天堂国产精品一区在线| 麻豆一二三区av精品| 亚洲欧洲精品一区二区精品久久久| 日韩有码中文字幕| 免费女性裸体啪啪无遮挡网站| 久久久久久久午夜电影| 欧美黑人精品巨大| 午夜影院日韩av| 韩国精品一区二区三区| 免费在线观看完整版高清| 国产91精品成人一区二区三区| 人人妻人人澡欧美一区二区| 国产一级毛片七仙女欲春2 | 久久天堂一区二区三区四区| 久久狼人影院| avwww免费| 女生性感内裤真人,穿戴方法视频| 国产亚洲欧美在线一区二区| 久久精品成人免费网站| 婷婷丁香在线五月| 日韩大尺度精品在线看网址| 免费在线观看影片大全网站| 黄色女人牲交| 99国产精品一区二区蜜桃av| 十分钟在线观看高清视频www| 黑人欧美特级aaaaaa片| 国产成人欧美| 十八禁网站免费在线| 一个人观看的视频www高清免费观看 | 成人18禁在线播放| 色婷婷久久久亚洲欧美| 久久久久亚洲av毛片大全| 亚洲,欧美精品.| 两个人视频免费观看高清| 日韩一卡2卡3卡4卡2021年| 免费观看精品视频网站| 黑人巨大精品欧美一区二区mp4| 国产一区在线观看成人免费| 99国产精品一区二区蜜桃av| 亚洲aⅴ乱码一区二区在线播放 | 国产在线精品亚洲第一网站| 亚洲中文字幕一区二区三区有码在线看 | 亚洲成人久久爱视频| 正在播放国产对白刺激| 国产亚洲av高清不卡| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区三区在线臀色熟女| 很黄的视频免费| 一级毛片女人18水好多| 日本黄色视频三级网站网址| avwww免费| 免费观看人在逋| bbb黄色大片| 欧美久久黑人一区二区| 亚洲国产欧美日韩在线播放| 香蕉av资源在线| 满18在线观看网站| 亚洲欧美精品综合久久99| 精品卡一卡二卡四卡免费| 亚洲精品中文字幕在线视频| 一区福利在线观看| 亚洲国产精品成人综合色| 国产亚洲欧美98| 中文字幕av电影在线播放| 亚洲精品中文字幕在线视频| 亚洲精品美女久久av网站| 久久久久国内视频| 国产久久久一区二区三区| 757午夜福利合集在线观看| 午夜影院日韩av| 国产精品爽爽va在线观看网站 | 在线国产一区二区在线| 国产精品久久久久久亚洲av鲁大| 久久中文字幕一级| 国产精品亚洲av一区麻豆| 国产精品 欧美亚洲| 国产成人精品久久二区二区免费| 少妇粗大呻吟视频| www日本黄色视频网| 亚洲七黄色美女视频| 亚洲国产中文字幕在线视频| 国产成+人综合+亚洲专区| 美女午夜性视频免费| 中国美女看黄片| cao死你这个sao货| 国产亚洲欧美精品永久| av片东京热男人的天堂| 搞女人的毛片| 国产99久久九九免费精品| 一区二区三区激情视频| 19禁男女啪啪无遮挡网站| xxxwww97欧美| 亚洲精品av麻豆狂野| 免费看a级黄色片| 亚洲熟妇中文字幕五十中出| 很黄的视频免费| 国产aⅴ精品一区二区三区波| 成年版毛片免费区| 亚洲专区字幕在线| 伊人久久大香线蕉亚洲五| 91字幕亚洲| av有码第一页| 国产97色在线日韩免费| 欧美中文综合在线视频| 99久久久亚洲精品蜜臀av| 亚洲男人天堂网一区| 日韩高清综合在线| 久久午夜综合久久蜜桃| 不卡一级毛片| 久久中文看片网| av在线天堂中文字幕| 在线看三级毛片| 欧美国产日韩亚洲一区| 午夜福利18| 国产亚洲欧美在线一区二区| 岛国视频午夜一区免费看| 日本成人三级电影网站| 12—13女人毛片做爰片一| 黄频高清免费视频| 精品午夜福利视频在线观看一区| 中文亚洲av片在线观看爽| 变态另类丝袜制服| 亚洲无线在线观看| 成人手机av| 少妇裸体淫交视频免费看高清 | 色综合站精品国产| 精品人妻1区二区| 免费高清视频大片| 日本五十路高清| 国产精品爽爽va在线观看网站 | 国产亚洲av嫩草精品影院| www.精华液| 亚洲人成电影免费在线| 亚洲欧洲精品一区二区精品久久久| 美女 人体艺术 gogo| 看片在线看免费视频| 久久人妻av系列| 亚洲三区欧美一区| 少妇被粗大的猛进出69影院| 国产精品久久久久久人妻精品电影| 精品日产1卡2卡| 日韩精品中文字幕看吧| 欧美又色又爽又黄视频| 琪琪午夜伦伦电影理论片6080| 99热6这里只有精品| 久久伊人香网站| 日本免费一区二区三区高清不卡| 国产黄a三级三级三级人| 99精品久久久久人妻精品| 久久青草综合色| 18禁观看日本| av在线天堂中文字幕| 可以免费在线观看a视频的电影网站| av电影中文网址| 精品国产一区二区三区四区第35| 久久久久国内视频| 老司机午夜福利在线观看视频| 欧美精品亚洲一区二区| 丰满的人妻完整版| 在线观看免费午夜福利视频| 日韩有码中文字幕| 精品少妇一区二区三区视频日本电影| 国产精品久久久久久亚洲av鲁大| 香蕉丝袜av| 久久久久国产一级毛片高清牌| 欧美日韩瑟瑟在线播放| 久久精品aⅴ一区二区三区四区| 午夜福利在线观看吧| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三区视频在线观看免费| 国内毛片毛片毛片毛片毛片| 亚洲av电影不卡..在线观看| 女同久久另类99精品国产91| 国产欧美日韩精品亚洲av| 亚洲av电影不卡..在线观看| 国语自产精品视频在线第100页| 在线永久观看黄色视频| 国产成人欧美在线观看| 欧美激情久久久久久爽电影| 男女床上黄色一级片免费看| 在线av久久热| 国产高清videossex| 成人特级黄色片久久久久久久| 99在线人妻在线中文字幕| 中文字幕精品亚洲无线码一区 | 亚洲自偷自拍图片 自拍| 一区二区三区高清视频在线| 久久中文字幕一级| 国产色视频综合| 级片在线观看| 欧美黄色淫秽网站| 亚洲国产欧美网| 亚洲精品中文字幕在线视频| 丰满的人妻完整版| а√天堂www在线а√下载| 级片在线观看| 日韩欧美国产一区二区入口| 人成视频在线观看免费观看| 日韩欧美国产在线观看| 人人妻,人人澡人人爽秒播| 琪琪午夜伦伦电影理论片6080| 女人被狂操c到高潮| 久久精品国产综合久久久| 一a级毛片在线观看| 夜夜爽天天搞| 黑人欧美特级aaaaaa片| 午夜视频精品福利| 久久人妻福利社区极品人妻图片| 狂野欧美激情性xxxx| 国产亚洲精品av在线| 搞女人的毛片| 国语自产精品视频在线第100页| 精品乱码久久久久久99久播| 久久久精品国产亚洲av高清涩受| 色哟哟哟哟哟哟| 成人亚洲精品一区在线观看| 欧美成人免费av一区二区三区| 在线观看66精品国产| 18禁国产床啪视频网站| 哪里可以看免费的av片| 满18在线观看网站| 国产在线精品亚洲第一网站| 啦啦啦免费观看视频1| 99久久无色码亚洲精品果冻| 精品第一国产精品| 女人高潮潮喷娇喘18禁视频| 成人手机av| 国产伦在线观看视频一区| 丁香欧美五月| 欧美成狂野欧美在线观看| 色老头精品视频在线观看| 免费电影在线观看免费观看| 久久久精品国产亚洲av高清涩受| 天天一区二区日本电影三级| 99在线人妻在线中文字幕| www国产在线视频色| 中文亚洲av片在线观看爽| 日韩视频一区二区在线观看| 老司机午夜福利在线观看视频| 精品国产超薄肉色丝袜足j| 丝袜美腿诱惑在线| 久久九九热精品免费| 亚洲人成网站高清观看| 久久婷婷人人爽人人干人人爱| 人成视频在线观看免费观看| 欧美久久黑人一区二区| 久久久久亚洲av毛片大全| 久久中文字幕一级| 黑人欧美特级aaaaaa片| av中文乱码字幕在线| 69av精品久久久久久| 国产av一区在线观看免费| 一进一出抽搐gif免费好疼| 91av网站免费观看| 久久午夜综合久久蜜桃| 国产一区在线观看成人免费| 给我免费播放毛片高清在线观看| 无限看片的www在线观看| 国产一卡二卡三卡精品| 亚洲欧美激情综合另类| 亚洲精品国产区一区二| 久久精品国产亚洲av高清一级| 我的亚洲天堂| 国产一级毛片七仙女欲春2 | 少妇 在线观看| 成人免费观看视频高清| 日本三级黄在线观看| 999久久久国产精品视频| 一夜夜www| 制服丝袜大香蕉在线| 免费搜索国产男女视频| www.www免费av| netflix在线观看网站| 一级a爱视频在线免费观看| 久久天堂一区二区三区四区| 国产欧美日韩精品亚洲av| 欧美丝袜亚洲另类 | 精华霜和精华液先用哪个| 久久久国产成人免费| 国内精品久久久久精免费| 男女午夜视频在线观看| 18美女黄网站色大片免费观看| 亚洲一区中文字幕在线| 长腿黑丝高跟| 国产久久久一区二区三区| 国产高清视频在线播放一区| 母亲3免费完整高清在线观看| e午夜精品久久久久久久| 在线观看66精品国产| 在线永久观看黄色视频| 十分钟在线观看高清视频www| 欧美色欧美亚洲另类二区| 国产精品国产高清国产av| 精品国产美女av久久久久小说| 热99re8久久精品国产| 人妻久久中文字幕网| 成人国产一区最新在线观看| 久久久精品欧美日韩精品| 欧美中文综合在线视频| 午夜两性在线视频| 国内毛片毛片毛片毛片毛片| 亚洲av中文字字幕乱码综合 | 日韩三级视频一区二区三区| 法律面前人人平等表现在哪些方面| 12—13女人毛片做爰片一| 99久久久亚洲精品蜜臀av| 极品教师在线免费播放| 一级毛片女人18水好多| 国产免费av片在线观看野外av| 免费在线观看成人毛片| 免费在线观看影片大全网站| 国产亚洲精品第一综合不卡| 1024手机看黄色片| 99国产精品99久久久久| 老司机靠b影院| 久久99热这里只有精品18| 成人午夜高清在线视频 | 9191精品国产免费久久| 国产免费av片在线观看野外av| 免费在线观看成人毛片| 亚洲精品国产区一区二| 欧美成人一区二区免费高清观看 | 久久天堂一区二区三区四区| 女人被狂操c到高潮| 色哟哟哟哟哟哟| 少妇裸体淫交视频免费看高清 | 欧美黑人欧美精品刺激| 成人三级做爰电影| 午夜免费成人在线视频| 久久精品成人免费网站| 曰老女人黄片| 男女床上黄色一级片免费看| 国产av一区在线观看免费| 色婷婷久久久亚洲欧美| 少妇裸体淫交视频免费看高清 | 美女高潮到喷水免费观看| 99精品久久久久人妻精品| 国产亚洲精品久久久久久毛片| 天堂√8在线中文| 日本在线视频免费播放| 自线自在国产av| 99久久精品国产亚洲精品| 精品一区二区三区视频在线观看免费| 日韩大码丰满熟妇| 欧美绝顶高潮抽搐喷水| 天天添夜夜摸| 麻豆一二三区av精品| 亚洲精品色激情综合| 国产精品 欧美亚洲| 看片在线看免费视频| 午夜免费观看网址| 麻豆国产av国片精品| 成年版毛片免费区| 亚洲中文av在线| 人人澡人人妻人| 丁香欧美五月| 成人国语在线视频| 欧美性长视频在线观看| 欧美激情极品国产一区二区三区| 日本三级黄在线观看| 欧美在线黄色| 国产色视频综合| 精品福利观看| 两个人视频免费观看高清| 香蕉久久夜色| videosex国产| 国产av又大| 国语自产精品视频在线第100页| 久久精品国产亚洲av香蕉五月| 国产成人欧美在线观看| 欧美日本亚洲视频在线播放| 国产成年人精品一区二区| 婷婷丁香在线五月| 一区二区三区国产精品乱码| www.999成人在线观看| 欧美日韩一级在线毛片| 久久久久久免费高清国产稀缺| 19禁男女啪啪无遮挡网站| 精品久久久久久久久久久久久 | 久久精品国产亚洲av香蕉五月| 禁无遮挡网站| 夜夜看夜夜爽夜夜摸| 色在线成人网| 在线观看免费午夜福利视频| 日本免费一区二区三区高清不卡| 桃红色精品国产亚洲av| av免费在线观看网站| 国产成人精品久久二区二区91| 看片在线看免费视频| 久久精品aⅴ一区二区三区四区| 国产午夜精品久久久久久| 亚洲国产日韩欧美精品在线观看 | 免费女性裸体啪啪无遮挡网站| 成人国语在线视频| 黄色丝袜av网址大全| 精品不卡国产一区二区三区| 国产真人三级小视频在线观看| 久久中文字幕人妻熟女| www国产在线视频色| 搞女人的毛片| 午夜福利欧美成人| 最近最新中文字幕大全免费视频| 人妻丰满熟妇av一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲aⅴ乱码一区二区在线播放 | 十八禁网站免费在线| 成年免费大片在线观看| 99国产精品一区二区三区| 国产精品一区二区三区四区久久 | 中文字幕精品免费在线观看视频| 国产一级毛片七仙女欲春2 | 久久国产精品男人的天堂亚洲| 黑丝袜美女国产一区| www国产在线视频色| 天堂影院成人在线观看| 黄色成人免费大全| 国产野战对白在线观看| 久久香蕉国产精品| 很黄的视频免费| 欧美乱码精品一区二区三区| 精品国产乱子伦一区二区三区| 老司机深夜福利视频在线观看| 999精品在线视频| 欧美激情 高清一区二区三区| 亚洲 欧美 日韩 在线 免费| 日本五十路高清| 女生性感内裤真人,穿戴方法视频| www日本黄色视频网| 婷婷六月久久综合丁香| 嫁个100分男人电影在线观看| 久久午夜亚洲精品久久| 三级毛片av免费| 久久久久精品国产欧美久久久| 日韩大码丰满熟妇| 欧美日韩亚洲国产一区二区在线观看| 少妇的丰满在线观看| 久久久国产成人精品二区| 午夜日韩欧美国产| 国产精品亚洲一级av第二区| 女同久久另类99精品国产91| 亚洲人成网站高清观看| 一二三四在线观看免费中文在| 亚洲av成人不卡在线观看播放网| 亚洲真实伦在线观看| 国产在线观看jvid| 欧美日韩亚洲综合一区二区三区_| 久久久久久久午夜电影| 啦啦啦 在线观看视频| 国产一区二区在线av高清观看| 人人澡人人妻人| 99国产综合亚洲精品| 人成视频在线观看免费观看| 国产精品永久免费网站| 白带黄色成豆腐渣| 色综合婷婷激情| 欧美 亚洲 国产 日韩一| 少妇熟女aⅴ在线视频| 神马国产精品三级电影在线观看 | 美国免费a级毛片| 成人精品一区二区免费| 国产99久久九九免费精品| 中文在线观看免费www的网站 | 高清在线国产一区| 国产精品亚洲美女久久久| 12—13女人毛片做爰片一| 久久久精品欧美日韩精品| 一本一本综合久久| 日本在线视频免费播放| 欧美乱码精品一区二区三区| 999久久久国产精品视频| 国产又爽黄色视频| 亚洲激情在线av| 男女之事视频高清在线观看| 免费在线观看亚洲国产| 精品国产乱子伦一区二区三区| 中文亚洲av片在线观看爽| 久久狼人影院| 久久久久九九精品影院| 久久久久久人人人人人| 欧美午夜高清在线| 国产成人精品无人区| 中文字幕人妻丝袜一区二区| 亚洲国产欧美日韩在线播放| 亚洲av五月六月丁香网| 久久亚洲精品不卡| 日韩成人在线观看一区二区三区| 日韩欧美免费精品| cao死你这个sao货| 国产日本99.免费观看| 青草久久国产| 久久人妻av系列| 国产精品综合久久久久久久免费| 丁香六月欧美| 99国产精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 男女午夜视频在线观看| 超碰成人久久| 亚洲五月色婷婷综合| 在线永久观看黄色视频| 精品久久久久久久末码| 熟女少妇亚洲综合色aaa.| 欧美乱码精品一区二区三区| 窝窝影院91人妻| 午夜视频精品福利| 免费av毛片视频| 亚洲五月天丁香| 亚洲一卡2卡3卡4卡5卡精品中文| 久99久视频精品免费| 久久午夜综合久久蜜桃| www国产在线视频色| 亚洲国产中文字幕在线视频| 美女国产高潮福利片在线看| 色在线成人网| 国产黄色小视频在线观看| 两性夫妻黄色片| 色尼玛亚洲综合影院| 国产成人啪精品午夜网站| 亚洲人成网站在线播放欧美日韩| 日韩欧美一区视频在线观看| 久久婷婷成人综合色麻豆| a级毛片a级免费在线| 日本在线视频免费播放| 一本综合久久免费| 成人亚洲精品一区在线观看| 91大片在线观看| 午夜免费观看网址| 国产成人av教育| 国产一级毛片七仙女欲春2 | 亚洲成人久久性| 亚洲精华国产精华精| 黄片播放在线免费| 日韩精品免费视频一区二区三区| 母亲3免费完整高清在线观看| 满18在线观看网站| 色综合婷婷激情| 午夜福利18| 国产日本99.免费观看| 夜夜看夜夜爽夜夜摸| a级毛片在线看网站| 日韩欧美国产在线观看| 宅男免费午夜| 99久久精品国产亚洲精品| 日本成人三级电影网站| 欧美日韩中文字幕国产精品一区二区三区| x7x7x7水蜜桃| 韩国精品一区二区三区| 视频在线观看一区二区三区| 熟妇人妻久久中文字幕3abv| 变态另类丝袜制服| 高潮久久久久久久久久久不卡| 日韩中文字幕欧美一区二区| 每晚都被弄得嗷嗷叫到高潮| 香蕉丝袜av| 国产精品亚洲美女久久久| 亚洲精品美女久久久久99蜜臀| 日本三级黄在线观看|