• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observer-based motion axis control for hydraulic actuation systems

    2023-10-25 12:13:12XiaoweiYANGYaowenGEWenxiangDENGJianyongYAO
    CHINESE JOURNAL OF AERONAUTICS 2023年9期

    Xiaowei YANG, Yaowen GE, Wenxiang DENG, Jianyong YAO

    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

    KEYWORDS

    Abstract Unknown dynamics including mismatched mechanical dynamics(i.e.,parametric uncertainties, unmodeled friction and external disturbances) and matched actuator dynamics (i.e., pressure and flow characteristic uncertainties) broadly exist in hydraulic actuation systems (HASs),which can hinder the achievement of high-precision motion axis control.To surmount the practical issue, an observer-based control framework with a simple structure and low computation is developed for HASs.First, a simple observer is utilized to estimate mismatched and matched unknown dynamics for feedforward compensation.Then combining the backstepping design and adaptive control, an appropriate observer-based composite controller is provided, in which nonlinear feedback terms with updated gains are adopted to further improve the tracking accuracy.Moreover,a smooth nonlinear filter is introduced to shun the ‘‘explosion of complexity” and attenuate the impact of sensor noise on control performance.As a result,this synthesized controller is more suitable for practical use.Stability analysis uncovers that the developed controller assures the asymptotic convergence of the tracking error.The merits of the proposed approach are validated via comparative experiment results applied in an HAS with an inertial load as well.

    1.Introduction

    Hydraulic actuation systems(HASs)are broadly utilized in the aerospace industry and other fields.1-6This reason is that HASs have prominent merits of large force/torque output capability, small size-to-power ratio and high response.Nonetheless, given the highly nonlinear dynamics and unknown dynamics including mismatched mechanical dynamics (i.e., parametric uncertainties, unmodeled friction and external disturbances) and matched actuator dynamics (i.e.,pressure and flow characteristic uncertainties) existing in HASs, the attainment of high-performance motion axis control is hindered.Therefore, to figure out this practical issue,it is essential to investigate advanced control strategies.

    To date, plentiful efficient control approaches have been proposed to achieve high-precision tracking performance for HASs.Typically, feedback linearization control7was adopted to dispose of dynamic nonlinearities in a feedforward compensation way.To address parametric uncertainties,adaptive control was presented8, but could not restrain unmodeled dynamics9.Adaptive robust control9could dispose of both unmodeled dynamics and parametric uncertainties simultaneously by integrating the backstepping design and adaptive control,thus it is widely performed in the literature.10–12However,theoretical analysis of the control method8–12validates that only bounded convergence was pledged while time-variant uncertainties exist.Via combining an integral sliding mode control13and adaptive control, a composite adaptive position tracking controller was proposed for HASs,14,15where the asymptotic stability of the tracking error was attained while smooth enough disturbances exist.Moreover, owing to its strong robustness and simple structure, sliding mode control could be adopted to restrain strong disturbances and gain the improvement of tracking accuracy for hydraulic servomechanisms.16Unfortunately, as unknown dynamics increase heavily in HASs, a high-gain feedback way13–16will be utilized to assure the achievable tracking performance,which might arise high-frequency dynamics and let the system become unstable.

    To relieve the influence of both mismatched and matched unknown dynamics on control performance and avoid the high-gain feedback, lots of disturbance observers have been presented for HASs.In the literature,17an active disturbance rejection adaptive controller was investigated for hydraulic actuators, in which an extended state observer (ESO) was utilized to estimate mismatched and matched disturbances for feedforward compensation.Subsequently, a lot of ESO-based robust controllers18–21of hydraulic systems were presented.However, the asymptotic convergence performance of the ESO-based controllers was destroyed while time-variant disturbances exist.A novel sliding mode observer (SMO)22was recently utilized to cope with force dynamics and pressure dynamics in hydraulic systems.The asymptotic tracking performance could be attained.Nonetheless, the SMO22needed to assume that the first-order derivatives of disturbances are bounded.This assumption is a little strong and limits the applied range of SMO.Also, the neural network was taken as an estimator23–26to achieve the estimations and compensation of unknown dynamics in servo systems.Whereas, to obtain accurate estimations of unknown dynamics,lots of neural network nodes and training data were needed,which results in a long online learning time and high computation.As a result, how to effectively deal with unknown dynamics by using a simple structure and obtain the high-accuracy asymptotic convergence performance for HASs is still challenging.

    In this article,an observer-based robust tracking controller is developed for the motion axis of HASs with mechanical dynamics and actuator dynamics.Firstly, an observer with a simple structure is adopted to estimate mismatched and matched unknown dynamics for feedforward compensation.Then combining the backstepping design and unknown dynamics observers, a composite control framework is proposed, where nonlinear feedback terms with updated gains are utilized to further improve the tracking accuracy.Moreover, a smooth nonlinear filter is introduced to shun the ‘‘explosion of complexity” and attenuate the impact of sensor noise on control performance.Based on the stability analysis,the boundedness of all signals in the closed-loop system can be ensured and the tracking error can converge asymptotically.Contrastive experimental results of an HAS with an inertial load validate the preponderance of the proposed method.The main contributions of this article are summarized as: (1)An observer-based tracking control framework with a simple structure and low computation, is developed for HASs, which is more suitable for practical implementation.(2) Both the boundedness of all signals in the closed-loop system and asymptotic convergence of the tracking errors can be attained with the developed controller.(3) Compared to most existing approaches focusing on HASs, the presented observer does not need any prior assumption on unknown dynamics.This makes the applied range of the developed controller broadened considerably.

    2.System description and modeling

    The sketch of the considered hydraulic actuation system(HAS) is presented in Fig.1, in which a servo-valvecontrolled hydraulic cylinder actuates a load to move.Our objective is to design a controller to let the load well track the reference motion trajectory.

    As shown in Fig.1, by using Newton’s second law, the dynamics of the load are depicted as.17,18,27

    where m and y stand for the mass and displacement of the load;P1and P2stand for the pressure values of the two chambers; A stands for the effective piston area; B denotes the viscous friction coefficient; AfSfstands for the approximated Coulomb friction, where Afstands for the amplitude of Coulomb friction and Sfstands for a known function; f(t) stands for unknown mechanical dynamics containing parametric uncertainties, unmodeled friction and disturbances.

    The pressure dynamics of the actuator are depicted as.17,18,27

    where V1=V01+Ay and V2=V02-Ay represent volumes of two chambers,where V01and V02are the initial volumes of the two chambers; βestands for the oil bulk modulus; Ctdenotes internal leakage coefficient; q1is the supplied flow rate and q2is the return flow rate;⊿1and ⊿2denote unmodeled uncertainties caused by pressure and flow characteristics.

    Fig.1 Sketch of considered HAS.

    The impact of servo-valve dynamics on control performance has been investigated.21,23Whereas, an additional sensor is needed to gain the spool position, and only the minor precision enhancement is ensured for position tracking.Also,the valve dynamics can augment the system order and make the designed controller more complicated.As a result, the servo-valve dynamics can be ignored in lots of existing studies.1–12,14–20,22,24–26Hence,the control input u can be supposed to be linear with the spool displacement xv, thus q1and q2are reconstructed by17,18,27.

    where kvrepresents the flow gain; Psdenotes the supply pressure and Prdenotes the return pressure; sign(*) is defined by.

    Defining x =[x1;x2;x3]=[y; ˙y;A(P1-P2)/m], one has.

    where

    Remark 1.Indeed, the nominal parameter values of the HAS that are able to be gained by off-line identification, are employed in the subsequent designed observer and controller.The discrepancy between the identified and real values can be regarded as the unknown dynamics D1(t) and D2(t).The mismatched dynamics D1(t) and matched dynamics D2(t) are then observed and compensated with the aid of the developed unknown dynamics observer.

    Some assumptions below are provided.

    Assumption 1.The mismatched and matched unknown dynamics in Eq.(5) are bounded and satisfy.

    with D-1and D-2being unknown positive constants.

    Assumption 2.The desired trajectory xd(t) and its derivatives ˙xd(t) and ¨xd(t) are bounded.

    Remark 2.It is noteworthy that Assumption 1 is more reasonable and relaxed for practical HASs when compared to the previous results.17–22Assumption 1 ensures the presented observer does not need any precondition on the unknown dynamics D1(t) and D2(t) while the existing SMO22and ESO17–21need to assume that their first-order derivatives are bounded.In addition, Assumption 2 indicates that only the first-order and second-order derivatives of xdare necessitated,which breaks down many limitations in comparison with lots of previous control methods8–26needing higher-order derivatives of xd.These make the use range of the presented controller broadened significantly.

    3.Controller development

    3.1.Observer design for system unknown dynamics

    To estimate mismatched and matched unknown dynamics existing in the HAS, a set of auxiliary variables xai(i=2,3)are firstly constructed by.

    and

    where xri=xai-xiare known since xaiand xiare known; βidenote non-negative adjustable constants for i=2,3.

    The estimations of xriare designed as.

    where ˙xristand for the numerical differentiation of the known xri;^?stands for the estimation of the variable ?throughout this paper.

    Then two unknown dynamics observers for D1(t)and D2(t)are depicted by.

    and

    Thus, the error dynamics of observers can be exhibited as.

    and

    in which ?~=^?-? stands for the estimation error of the variable.

    Given the previous analysis, the following Theorem 1 holds.

    Theorem 1.With the observer updated laws Eqs.(11)and(12),by selecting positive constant values β2and β3,it is inferred that the estimation errors D~iof the unknown dynamics Di(t) can achieve the asymptotic convergence.

    Proof: Take a Lyapunov function as.

    According to Eq.(13),the derivative of Vocan be presented by.

    Hence,the asymptotic convergence of the estimation errors D~iis proved, which leads to Theorem 1.

    Remark 3.It is obtained from Eq.(17) that the estimation errors for both mismatched and matched unknown dynamics can asymptotically converge, while most existing extended state observers17–21only assured the ultimate boundness of estimation errors.Moreover, from Eq.(17), the faster estimation rate of the developed observers can be acquired by choosing larger parameters β2and β3.

    3.2.Observer-based controller design

    The backstepping method28is a classic tool to dispose of unknown dynamics existing in the HAS.Nonetheless, considering that the order of the system in Eq.(5) is third-order, the traditional backstepping technique28brings the problem named ‘‘explosion of complexity” on account of the high computational burden resulting from the repeated derivatives of virtual controls.To overcome the problem, a modified backstepping design with nonlinear filters will be provided here.

    Before accomplishing the controller design, define the following variables.

    where e1stands for the tracking error;αi-1stand for the virtual controls at the ith step; α(i-1)fstand for the filtered signals of αi-1for i=2,3.

    Notably, to get the filtered signals of α1and α2, a set of smooth nonlinear filters are designed by.

    Step 1: Considering Eq.(5) and differentiating e1in Eq.(18), one has.

    Design α1as.

    where k1denotes a non-negative feedback gain.

    Substituting Eqs.(21) into (20) results in.

    Taking a Lyapunov function asyields.

    Step 2: Differentiating e2in Eq.(18), it has.

    Step 3: The derivative of e3in Eq.(18) is expressed by.

    From Eq.(28), the control input u can be depicted by.

    3.3.Stability analysis

    Before demonstrating the main result, define.

    Fig.2 Block diagram of developed controller.

    with

    Theorem 2.With the observer updated laws in Eqs.(11)-(12)and the control law in Eq.(29), by choosing appropriate controller parameters k1,k2,k3,β2,β3,l1,l2,τ1and τ2such that the matrix Λ defined in Eq.(33) is positive definite, then it is inferred that all signals in the closed-loop system are bounded.Furthermore,the tracking error e1can asymptotically converge.

    Proof: Firstly, a new Lyapunov function by integrating tracking errors, observer errors and filter errors is constructed as.

    Combining Eqs.(16), (19) and (32), one has.

    Therefore,V ?L∞,Φ ?L2, and the boundness of all signals is attained on Ω1×Ω2.As a result,Φ is uniformly continuous.Via adopting the Barbalat’s lemma,29Φ →0 as t →∞on Ω1×Ω2.Hence,the output error e1is able to converge to zero asymptotically.Thus, Theorem 2 holds.

    Remark 4.The objective of designing observer parameters β2and β3is to attain a faster estimation rate for mismatched and matched unknown dynamics.The nonlinear filter parameters l1,l2,τ1and τ2are used to get the filtered signals for the virtual control α1and α2, and further attenuate the effects of the sensor noise on tracking accuracy.Meanwhile,the objective of using k1,k2,k3, γ1and γ2is to realize better control performance.Moreover, the efforts of arbitrarily increasing k1,k2,k3,β2,β3,l1,l2,τ1,τ2,γ1and γ2can be performed to achieve better tracking accuracy.Whereas, from Eqs.(19), (21), (25)and (29), the increase of the above control parameters may result in the augmentation of the control input and even destabilize the system.Consequently, a tradeoff between the tracking accuracy and the control input is worth considering.

    4.Experiment setup and results

    To uncover the availability of the developed controller, a hydraulic actuation system (HAS) with an inertial load is set up, as shown in Fig.3.The components of the HAS are collected in Table 1.The sample time is 0.5 ms.

    Five controllers can be done to validate the merits of the developed controller.

    1) UDOC: This controller with two unknown dynamics observes(UDOC)is described in this paper.In the HAS,some system parameters are provided as:A=9?05×10-4m2,V01=V02=3?98×10-5m3.By off-line friction identification,the corresponding parameters are provided as B=4000N ?s/m,Af=200N,Sf=2 arctan(900x2)/π.Meanwhile the feedback gains are set as k1=1600,k2=350,k3=150, the nonlinear filter parameters are provided by τ1=τ2=1000,l1=l2=1, and the observer parameters are set as β2=100,β3=15000.The parameter adaption rates are set as γ1=0?1 and γ2=1.

    2) FLC: This is a feedback linearization controller (FLC),which is the same as UDOC but without unknown dynamics compensation, i.e., β2=β3=0.The other control parameters are the same as UDOC.

    Fig.3 HAS.

    Table 1 Components of HAS.

    3) PI: This is a proportional-integral controller (PI).The parameters are set as kP=10000 and kI=500, which stand for the P-gain and I-gain, respectively.

    4) VPI: This is a velocity feedforward-based proportionalintegral controller (VPI).The parameters are set as kP=10000, kI=500 and kve=0?0281V ?s/mm, which stands for the open-loop velocity feedforward gain, respectively.

    5) AESO: This adaptive robust controller with extended state observers(AESO)is presented.17The corresponding control gains are set as k1=1600, k2=350 and k3=150.The other parameters and initial values can be seen17.

    To validate the merits of these controllers, three indices including maximum(Max),average(Ave)and standard deviation (Std) of e1are provided:

    1) Max stands for.

    where n is on behalf of the number of the recorded points.

    2) Ave stands for.

    3) Std stands for.

    Three experiment cases are done.Case 1.First a common signal xd=10 arctan(sin(πt))[1-e-t]/0?7854 mm is carried out.The corresponding results are depicted in Figs.4-6 and Table 2, respectively.As shown,all the performance indices in Table 2 indicate that the proposed UDOC achieves better tracking performance than the other controllers, since two unknown dynamics observers and nonlinear filters are introduced into the designed controller.Concretely,the index Max of C1 is 0.0209 mm(i.e.,the accuracy at 0.5 Hz is 0.209 %), which decreases by about 98%,91%,59%and 42%when compared to those of FLC,PI, VPI and AESO severally.Though FLC utilizes the same model-based approach like UDOC,its control accuracy is still inequitable to that of UDOC for lack of the unknown dynamics compensation.This indicates the validity of the unknown dynamics compensation method presented in this paper, which can decrease the time-variant disturbances and further gain the attainment of high-precision tracking.From performance indices in Table 2,FLC and PI only have a bit of robustness against uncertainties and their tracking performance is worse than the other three controllers.Moreover,it is easy to find that the tracking error of PI is larger than that of FLC,which uncovers that feedback gains in UDOC,FLC and AESO are weaker than those of PI and VPI.Even though,UDOC and AESO can attain better control performance than PI.This verifies the merit of the uncertainty compensationbased controller design of UDOC and AESO.Furthermore,it is observed that the performance of VPI is superior to that of FLC and PI, which is mainly owing to both large feedback gains and velocity feedforward compensation in VPI to restrain parametric uncertainties and disturbances.Thus, the augmentation of control performance of VPI is attained.Nonetheless, VPI gains a worse control performance than UDOC.

    Fig.4 Tracking errors in Case 1.

    Fig.5 Control input of UDOC.

    Fig.6 Tracking errors in Case 2.

    Table 2 Performance indexes in Case 1.

    Also, AESO17obtains a better control performance than FLC,PI and VPI.This reason is that parametric uncertainties and external disturbances can be disposed of by adaptive laws and the ESO technique severally in AESO.Whereas,considering that only ultimately bounded-error tracking performance is obtained in AESO,its performance indices are still inequitable to those of UDOC.As a result, the developed UDOC adopts the weakest feedback gains but attains the best control performance by virtue of actively compensating unknown disturbances.In addition, the control input of UDOC is seen from Fig.5.

    Case 2.A slow trajectory xd=10 arctan(sin(0?4πt))[1-e-t]/0?7854 mm is performed to further attest to the merit of the developed approach.The control errors and indices of all the controllers can be thus found from Fig.6 and Table 3,respectively.

    As shown,the index Max of C1 is 0.0074 mm(i.e.,the accuracy at 0.2 Hz is 0.074 %), which decreases by about 98 %,94 %, 75 % and 66 % when compared to those of FLC, PI,VPI and AESO severally.This uncovers that the control precision of the proposed UDOC is superior to those of FLC, PI,VPI and AESO once again.

    Case 3.Finally, an input disturbance experiment is done by using the same reference trajectory xd=10 arctan(sin(0?4πt))[1-e-t]/0?7854 mm, where a similar technique17can be adopted to insert the input disturbance.The inserted disturbance signal 0?2 arctan(sin(0?4πt))[1-e-t]/0?7854 V is added to the control input directly.According to the Eq.(5), the disturbance D2(t) can be increased greatly, and the HAS willwork under such strong disturbance.As a result, the learning capability of the developed method can be verified.The tracking errors and indices of UDOC, FLC, PI, VPI and AESO are presented in Fig.7 and Table 4.It is easy to find that the control performance of the three controllers increases when compared to the former case.Nevertheless,in view of the merit of compensating for unknown disturbances,the tracking performance of the developed UDOC still surpasses those of FLC, PI, VPI and AESO as well.

    Table 3 Performance indexes in Case 2.

    Fig.7 Tracking errors in Case 3.

    Table 4 Performance indexes in Case 3.

    5.Conclusions

    In this article, an observer-based backstepping tracking controller is developed for the motion axis of hydraulic actuation systems.Firstly,an observer with a simple structure is adopted to estimate mismatched and matched unknown dynamics for feedforward compensation.Then combining the backstepping design and unknown dynamics observers, a composite robust axis control framework is proposed,where nonlinear feedback terms with updated gains are utilized to further improve the tracking precision.Moreover,a smooth nonlinear filter is introduced into the control development process to shun the ‘‘explosion of complexity” and attenuate the impact of sensor noise on control performance.Furthermore,the control framework makes the assumptions on both unknown dynamics and the reference trajectory much relaxed.As a result, this makes the applied range of the developed control method extended.Based on the Lyapunov function, both the boundness of all signals in the closed-loop system and asymptotic convergence of the tracking errors can be attained.The results of the three experiment cases performed in a hydraulic actuation system with an inertial load validate the merits of the presented method.As our future work, it is worth studying how to attain the development of an output feedback-based controller for hydraulic actuation systems.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work was supported in part by the National Key R&D Program of China (No.2021YFB2011300), the National Natural Science Foundation of China (No.52075262, 51905271,52275062), the Fok Ying-Tong Education Foundation of China(No.171044)and the Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX22_0471).

    2021天堂中文幕一二区在线观| 村上凉子中文字幕在线| 神马国产精品三级电影在线观看| 五月玫瑰六月丁香| 国产亚洲av嫩草精品影院| 99久久人妻综合| 搞女人的毛片| av国产免费在线观看| 狂野欧美激情性xxxx在线观看| 99在线视频只有这里精品首页| 中出人妻视频一区二区| 国产免费男女视频| 国产不卡一卡二| 青春草亚洲视频在线观看| 乱系列少妇在线播放| 国产在线精品亚洲第一网站| 国产熟女欧美一区二区| 亚洲国产欧美在线一区| 久久久久网色| 99热精品在线国产| 亚洲激情五月婷婷啪啪| 亚洲最大成人av| 可以在线观看的亚洲视频| 日韩欧美国产在线观看| 国产极品精品免费视频能看的| 国产蜜桃级精品一区二区三区| 乱人视频在线观看| 91精品国产九色| 国产伦在线观看视频一区| 久久欧美精品欧美久久欧美| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 成人欧美大片| 蜜臀久久99精品久久宅男| 97在线视频观看| 国产精品久久久久久精品电影小说 | 极品教师在线视频| 婷婷亚洲欧美| 亚洲av男天堂| 99久国产av精品国产电影| 国产综合懂色| 欧美精品一区二区大全| 中文字幕熟女人妻在线| 夜夜夜夜夜久久久久| 亚洲精华国产精华液的使用体验 | 99久国产av精品| 国产免费男女视频| 黄片wwwwww| 日本爱情动作片www.在线观看| 国产精品一二三区在线看| 人人妻人人看人人澡| 国产高潮美女av| 一边亲一边摸免费视频| 一进一出抽搐动态| 国产成人一区二区在线| av在线观看视频网站免费| 激情 狠狠 欧美| 在线免费十八禁| 欧美潮喷喷水| 欧美日本亚洲视频在线播放| 久久综合国产亚洲精品| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看| 亚洲av.av天堂| 亚洲精品久久国产高清桃花| 观看免费一级毛片| 欧美三级亚洲精品| 久久久精品94久久精品| 欧美3d第一页| 国产精品国产高清国产av| eeuss影院久久| 99国产精品一区二区蜜桃av| 国产久久久一区二区三区| 黄色日韩在线| 亚洲自偷自拍三级| 中文字幕精品亚洲无线码一区| 午夜免费男女啪啪视频观看| 哪个播放器可以免费观看大片| 日韩成人av中文字幕在线观看| 又爽又黄无遮挡网站| 搞女人的毛片| 亚洲av.av天堂| 99久国产av精品国产电影| 免费观看精品视频网站| 亚洲精品乱码久久久久久按摩| 97在线视频观看| 欧美色欧美亚洲另类二区| 伦精品一区二区三区| 伦理电影大哥的女人| 国产高清激情床上av| 好男人视频免费观看在线| 国产av一区在线观看免费| 人体艺术视频欧美日本| 有码 亚洲区| 51国产日韩欧美| 日韩在线高清观看一区二区三区| 精品人妻视频免费看| 国产高清有码在线观看视频| 亚洲av电影不卡..在线观看| 免费无遮挡裸体视频| 久久婷婷人人爽人人干人人爱| 天天躁日日操中文字幕| 国产成人a区在线观看| 国产女主播在线喷水免费视频网站 | 亚洲最大成人中文| www.色视频.com| 美女cb高潮喷水在线观看| 欧美最黄视频在线播放免费| 中文欧美无线码| av视频在线观看入口| 久久精品国产鲁丝片午夜精品| 99视频精品全部免费 在线| 看非洲黑人一级黄片| 毛片一级片免费看久久久久| 又黄又爽又刺激的免费视频.| 1000部很黄的大片| 在线观看美女被高潮喷水网站| 欧美成人精品欧美一级黄| www.av在线官网国产| 久久人人精品亚洲av| 久久久久久久久久黄片| 欧美+日韩+精品| 国产老妇女一区| 欧美日韩综合久久久久久| 亚洲国产高清在线一区二区三| 全区人妻精品视频| 亚洲精品456在线播放app| 麻豆精品久久久久久蜜桃| 免费人成视频x8x8入口观看| 亚洲精品影视一区二区三区av| 男女做爰动态图高潮gif福利片| 中文字幕熟女人妻在线| 亚洲精品国产av成人精品| 亚洲aⅴ乱码一区二区在线播放| 99久久精品国产国产毛片| av女优亚洲男人天堂| 精品国内亚洲2022精品成人| 波多野结衣巨乳人妻| 色哟哟哟哟哟哟| 亚洲国产欧美在线一区| 亚洲国产精品成人久久小说 | 国产成人aa在线观看| 国产一区二区亚洲精品在线观看| 亚洲人成网站在线播放欧美日韩| 色综合色国产| 精品少妇黑人巨大在线播放 | 亚洲第一电影网av| 欧美高清性xxxxhd video| 欧美成人一区二区免费高清观看| 日韩欧美精品免费久久| 天天躁日日操中文字幕| 一区二区三区免费毛片| 狂野欧美白嫩少妇大欣赏| 久久精品久久久久久久性| 一级毛片我不卡| 久久午夜亚洲精品久久| 一个人观看的视频www高清免费观看| 91久久精品国产一区二区成人| 一本久久精品| 久久久国产成人免费| 国产黄色视频一区二区在线观看 | 日韩欧美在线乱码| 久久99热这里只有精品18| 国产亚洲av嫩草精品影院| 成人午夜精彩视频在线观看| 婷婷六月久久综合丁香| 男人和女人高潮做爰伦理| 日韩欧美在线乱码| 免费电影在线观看免费观看| 国产精品一区www在线观看| 日韩欧美在线乱码| 国产精品,欧美在线| 亚洲人与动物交配视频| 波野结衣二区三区在线| 国产一区二区三区在线臀色熟女| 一本精品99久久精品77| 中文欧美无线码| 精品久久久久久久末码| 国产成人午夜福利电影在线观看| 丰满的人妻完整版| 亚洲人与动物交配视频| 九九在线视频观看精品| 免费观看人在逋| 亚洲第一电影网av| 在线观看av片永久免费下载| 亚洲一级一片aⅴ在线观看| 日韩中字成人| 又黄又爽又刺激的免费视频.| 国产成人a区在线观看| 亚洲,欧美,日韩| 91久久精品电影网| 哪个播放器可以免费观看大片| 亚洲综合色惰| 亚洲内射少妇av| 有码 亚洲区| 嫩草影院精品99| 91久久精品国产一区二区成人| 1024手机看黄色片| 91精品国产九色| 免费人成在线观看视频色| 97超碰精品成人国产| 看十八女毛片水多多多| 国产女主播在线喷水免费视频网站 | 只有这里有精品99| 男插女下体视频免费在线播放| 小蜜桃在线观看免费完整版高清| 国产精品一及| 久久草成人影院| av.在线天堂| 激情 狠狠 欧美| 亚洲第一电影网av| 国产 一区精品| 午夜免费激情av| 国产精品不卡视频一区二区| 亚洲18禁久久av| 性欧美人与动物交配| 美女脱内裤让男人舔精品视频 | 成人美女网站在线观看视频| 美女大奶头视频| 午夜福利视频1000在线观看| 九草在线视频观看| 国产视频首页在线观看| 亚洲在线自拍视频| 搡女人真爽免费视频火全软件| 久久午夜亚洲精品久久| 国产精品一区二区在线观看99 | 欧美最黄视频在线播放免费| 啦啦啦韩国在线观看视频| 欧美+日韩+精品| 国产私拍福利视频在线观看| 极品教师在线视频| 神马国产精品三级电影在线观看| 精品欧美国产一区二区三| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品综合一区二区三区| 国产大屁股一区二区在线视频| av在线观看视频网站免费| 春色校园在线视频观看| 少妇高潮的动态图| 青青草视频在线视频观看| 国产色爽女视频免费观看| av在线观看视频网站免费| 春色校园在线视频观看| 黄色日韩在线| 天美传媒精品一区二区| 日韩在线高清观看一区二区三区| 亚洲内射少妇av| 亚洲不卡免费看| 亚洲精品日韩在线中文字幕 | 91久久精品电影网| 午夜福利视频1000在线观看| 看十八女毛片水多多多| 最近中文字幕高清免费大全6| 天堂网av新在线| av免费观看日本| 可以在线观看的亚洲视频| 三级男女做爰猛烈吃奶摸视频| 欧美性猛交╳xxx乱大交人| 亚洲天堂国产精品一区在线| 国语自产精品视频在线第100页| 2022亚洲国产成人精品| 1024手机看黄色片| 成人特级黄色片久久久久久久| 中国国产av一级| 午夜激情福利司机影院| 在线播放无遮挡| 精品久久久久久久久亚洲| 18禁在线无遮挡免费观看视频| 校园春色视频在线观看| 国产成人freesex在线| av国产免费在线观看| а√天堂www在线а√下载| 亚洲精品456在线播放app| 白带黄色成豆腐渣| av在线观看视频网站免费| 91久久精品国产一区二区三区| 日韩中字成人| 一边摸一边抽搐一进一小说| 亚洲美女搞黄在线观看| 网址你懂的国产日韩在线| 国产精品久久久久久精品电影| 亚洲va在线va天堂va国产| 最近最新中文字幕大全电影3| av在线蜜桃| av在线天堂中文字幕| 中文字幕制服av| 伦理电影大哥的女人| 26uuu在线亚洲综合色| 69av精品久久久久久| 高清毛片免费看| 亚洲av二区三区四区| 亚洲国产精品sss在线观看| 久久久精品94久久精品| 亚洲高清免费不卡视频| 午夜福利成人在线免费观看| 久久久欧美国产精品| 男的添女的下面高潮视频| 少妇的逼好多水| 欧美成人精品欧美一级黄| 亚洲精品亚洲一区二区| 能在线免费观看的黄片| 三级国产精品欧美在线观看| 高清毛片免费观看视频网站| .国产精品久久| 观看美女的网站| 日韩欧美在线乱码| a级毛片a级免费在线| 国产成人精品一,二区 | 青春草视频在线免费观看| 九九久久精品国产亚洲av麻豆| 国产69精品久久久久777片| ponron亚洲| 午夜免费激情av| 免费看光身美女| 色综合站精品国产| 日韩视频在线欧美| 长腿黑丝高跟| 高清在线视频一区二区三区 | 免费av毛片视频| 如何舔出高潮| 看非洲黑人一级黄片| 麻豆精品久久久久久蜜桃| 天天躁夜夜躁狠狠久久av| 久久九九热精品免费| 在线观看免费视频日本深夜| 国产精品久久视频播放| 国产黄片美女视频| 丝袜美腿在线中文| 国产精品一区二区三区四区免费观看| 成人午夜高清在线视频| 黄色配什么色好看| 欧美激情在线99| 久久久久久久久久成人| 免费观看人在逋| 欧美日本视频| 深爱激情五月婷婷| 麻豆成人av视频| 淫秽高清视频在线观看| 亚洲人成网站在线观看播放| 97在线视频观看| 亚洲欧美日韩高清在线视频| 亚洲熟妇中文字幕五十中出| 国产在线精品亚洲第一网站| 深夜精品福利| 精品国内亚洲2022精品成人| 亚洲国产欧美人成| 在线国产一区二区在线| 中文字幕熟女人妻在线| 亚洲性久久影院| 国产黄a三级三级三级人| 国产成人精品一,二区 | 搞女人的毛片| 超碰av人人做人人爽久久| 天堂网av新在线| av免费在线看不卡| 日本一本二区三区精品| 国产精品一区二区三区四区久久| 精品久久久久久久久久免费视频| 亚洲国产欧美在线一区| 美女被艹到高潮喷水动态| 久久精品国产清高在天天线| 国产大屁股一区二区在线视频| 久久精品夜夜夜夜夜久久蜜豆| 如何舔出高潮| 热99在线观看视频| 级片在线观看| 精品午夜福利在线看| 国产成人a区在线观看| 日韩三级伦理在线观看| 国产日韩欧美在线精品| 中文精品一卡2卡3卡4更新| 久久久久久久亚洲中文字幕| 国产亚洲91精品色在线| 麻豆一二三区av精品| 丰满人妻一区二区三区视频av| 国产精品蜜桃在线观看 | 国产淫片久久久久久久久| 午夜福利在线观看免费完整高清在 | 国产在线男女| 男女边吃奶边做爰视频| kizo精华| 日本爱情动作片www.在线观看| 成人特级黄色片久久久久久久| 国产男人的电影天堂91| 美女内射精品一级片tv| 国产精品蜜桃在线观看 | 国产成年人精品一区二区| 日本黄色片子视频| 国产精品一区二区性色av| 丝袜美腿在线中文| 午夜免费男女啪啪视频观看| 丰满的人妻完整版| 免费看av在线观看网站| 日本-黄色视频高清免费观看| 少妇裸体淫交视频免费看高清| 亚洲天堂国产精品一区在线| 国产一区二区三区av在线 | av在线蜜桃| videossex国产| 成人亚洲欧美一区二区av| 一本久久中文字幕| 欧美一区二区精品小视频在线| 狂野欧美白嫩少妇大欣赏| 国产亚洲5aaaaa淫片| 欧美丝袜亚洲另类| 男女啪啪激烈高潮av片| 国产视频内射| 午夜a级毛片| 高清在线视频一区二区三区 | 舔av片在线| 亚洲性久久影院| av在线播放精品| 大香蕉久久网| 美女cb高潮喷水在线观看| 身体一侧抽搐| 国产麻豆成人av免费视频| 日本五十路高清| 蜜桃亚洲精品一区二区三区| avwww免费| 色尼玛亚洲综合影院| 色吧在线观看| 色播亚洲综合网| 黄色配什么色好看| a级毛片a级免费在线| 欧美一级a爱片免费观看看| 99久久精品热视频| 51国产日韩欧美| 不卡一级毛片| 插阴视频在线观看视频| 大香蕉久久网| 最近中文字幕高清免费大全6| 中文资源天堂在线| 久久久久久久午夜电影| 亚洲在线观看片| 国产私拍福利视频在线观看| 亚洲美女搞黄在线观看| av国产免费在线观看| 青春草国产在线视频 | 97超视频在线观看视频| 男人狂女人下面高潮的视频| 99久久久亚洲精品蜜臀av| 一区二区三区免费毛片| 搞女人的毛片| 中文字幕熟女人妻在线| 青春草视频在线免费观看| 五月玫瑰六月丁香| 成人综合一区亚洲| 国产精品,欧美在线| 内地一区二区视频在线| 亚洲乱码一区二区免费版| 亚洲av免费高清在线观看| 伦理电影大哥的女人| 波多野结衣高清作品| 午夜福利成人在线免费观看| 国产三级在线视频| 久99久视频精品免费| 国产精品久久久久久久电影| 欧美zozozo另类| 欧美高清成人免费视频www| 国国产精品蜜臀av免费| 国产成人a区在线观看| 亚洲综合色惰| 久久精品国产亚洲av天美| 国产精品无大码| 韩国av在线不卡| 亚洲精品自拍成人| 麻豆成人午夜福利视频| av.在线天堂| 最近手机中文字幕大全| 亚洲av二区三区四区| 99国产精品一区二区蜜桃av| 看免费成人av毛片| 日本av手机在线免费观看| 成人永久免费在线观看视频| 欧美性感艳星| 国产精品一区二区三区四区免费观看| 久久九九热精品免费| 午夜福利在线在线| 成年av动漫网址| 亚洲自偷自拍三级| 色5月婷婷丁香| 久久韩国三级中文字幕| 亚洲一区二区三区色噜噜| 99热6这里只有精品| 国产一区二区在线观看日韩| 亚洲欧美日韩高清在线视频| 在线观看美女被高潮喷水网站| 成年版毛片免费区| 简卡轻食公司| 黄片wwwwww| 国产日韩欧美在线精品| 亚洲av一区综合| 国产高清不卡午夜福利| 午夜激情欧美在线| 草草在线视频免费看| 成人一区二区视频在线观看| 日本免费a在线| 三级男女做爰猛烈吃奶摸视频| 午夜爱爱视频在线播放| 91av网一区二区| 国产色爽女视频免费观看| 噜噜噜噜噜久久久久久91| 国产黄片美女视频| 国产成人aa在线观看| 久久精品国产自在天天线| 午夜精品一区二区三区免费看| 听说在线观看完整版免费高清| 三级经典国产精品| 国产黄色视频一区二区在线观看 | 一个人免费在线观看电影| 在线a可以看的网站| 三级毛片av免费| 国内揄拍国产精品人妻在线| 国产av麻豆久久久久久久| 亚洲七黄色美女视频| 永久网站在线| 欧美丝袜亚洲另类| 我的女老师完整版在线观看| 日韩成人伦理影院| 97热精品久久久久久| 久久精品人妻少妇| 成年av动漫网址| 精品久久国产蜜桃| 三级经典国产精品| 51国产日韩欧美| 热99在线观看视频| 看黄色毛片网站| 国产精品久久视频播放| 日日啪夜夜撸| 国产综合懂色| 少妇裸体淫交视频免费看高清| 久久精品91蜜桃| 日本黄色片子视频| 国产一区亚洲一区在线观看| 伦精品一区二区三区| 免费观看的影片在线观看| 亚洲成人精品中文字幕电影| 最近最新中文字幕大全电影3| 深爱激情五月婷婷| 午夜福利在线观看免费完整高清在 | 国产精品久久久久久久电影| 成年免费大片在线观看| 日韩三级伦理在线观看| 免费看光身美女| 久久久国产成人免费| 少妇丰满av| 一级毛片aaaaaa免费看小| 色播亚洲综合网| 男女啪啪激烈高潮av片| 尤物成人国产欧美一区二区三区| 日韩强制内射视频| 亚洲中文字幕日韩| 亚洲精品456在线播放app| 亚洲av成人av| 国产精品国产高清国产av| 国产精品美女特级片免费视频播放器| 在线观看一区二区三区| 99久久精品一区二区三区| 毛片一级片免费看久久久久| 国产三级中文精品| 精品人妻一区二区三区麻豆| 深爱激情五月婷婷| 国产精品一区二区性色av| 校园春色视频在线观看| 亚洲无线在线观看| 一级黄色大片毛片| 夜夜夜夜夜久久久久| 国产精品免费一区二区三区在线| 国产伦理片在线播放av一区 | .国产精品久久| 欧美色欧美亚洲另类二区| 免费电影在线观看免费观看| 麻豆一二三区av精品| 在线观看美女被高潮喷水网站| 国产精品国产高清国产av| 在线观看午夜福利视频| 欧美区成人在线视频| 春色校园在线视频观看| 边亲边吃奶的免费视频| 国产真实乱freesex| 国产极品天堂在线| 又爽又黄无遮挡网站| 亚洲欧美成人综合另类久久久 | 少妇的逼水好多| 日本爱情动作片www.在线观看| 人人妻人人澡人人爽人人夜夜 | 网址你懂的国产日韩在线| 午夜福利视频1000在线观看| 大型黄色视频在线免费观看| 久久久国产成人精品二区| 男人舔女人下体高潮全视频| 又黄又爽又刺激的免费视频.| 成年女人永久免费观看视频| 久久亚洲国产成人精品v| 欧美zozozo另类| 免费观看在线日韩| 国产中年淑女户外野战色| 黄片wwwwww| 十八禁国产超污无遮挡网站| 国国产精品蜜臀av免费| 亚洲性久久影院| 国产精品嫩草影院av在线观看| 亚洲欧美成人综合另类久久久 | 深夜a级毛片| a级一级毛片免费在线观看| 久久久久九九精品影院| 哪个播放器可以免费观看大片| 欧美潮喷喷水| 性色avwww在线观看| eeuss影院久久| 亚洲人成网站在线观看播放| 国产亚洲精品久久久com| 日韩精品有码人妻一区| 亚洲无线观看免费| 人妻少妇偷人精品九色|