• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The ChatGPT After: Building Knowledge Factories for Knowledge Workers with Knowledge Automation

    2023-10-21 03:10:02ByYutongWangXiaoWangSeniorXingxiaWangJingYangOliverKwanLingxiLiSeniorFeiYueWang
    IEEE/CAA Journal of Automatica Sinica 2023年11期

    By Yutong Wang ,,, Xiao Wang , Senior,, Xingxia Wang , Jing Yang ,Oliver Kwan , Lingxi Li , Senior,, Fei-Yue Wang ,,

    Introduction

    The big hit of ChatGPT makes it imperative to contemplate the practical applications of big or foundation models [1]—[5].However, as compared to conventional models, there is now an increasingly urgent need for foundation intelligence of foundation models for real-world industrial applications.To this end, here we would like to address the issues related to building knowledge factories with knowledge machines for knowledge workers by knowledge automation, that would effectively integrate the advanced foundation models, scenarios engineering, and human-oriented operating systems (HOOS)technologies for managing digital, robotic, and biological knowledge workers, and enabling decision-making, resource coordination, and task execution through three operational modes of autonomous, parallel, and expert/emergency, to achieve intelligent production meeting the goal of “6S”:Safety,Security,Sustainability,Sensitivity,Service,and Smartness [6]—[10].

    Being a generative AI language model, ChatGPT [11]—[14]adheres to the “Big Problems, Big Models” paradigm [5].Its training data consists of Common Crawl, a vast collection of textual data from web pages,books,articles,and other publicly available resources, which makes it proficient in addressing general queries.While ChatGPT is trained on a vast array of topics, its depth of knowledge on highly specialized subjects might not match that of dedicated experts in a specific field.It does not have the capability to analyze real-time data or trends either.In view of this, we must advocate a “Small Problems,Big Models”paradigm,training big models[2]with multimodal data from extremely specific subjects.In this way,widely applying these big models in factories for workers during production and other crucial scenarios, we could solve domain-specific queries, and enable real-time analysis of data with continuous learning ability.

    Nonetheless, given that small problems should and have traditionally been resolved with small models, why are large models needed? If so, do we have sufficient data to train big models for small problems? In reality, and especially in the current trend, a small problem must be solved together with many surrounding other small problems.Therefore,today we have to address those small problems deeply in vertical and widely in horizontal, thus the need for domain-specific foundation models and the source of big data for their training.Those special big models offer the capacity to holistically evaluate and generate effective and comprehensive solutions for small problems.

    Furthermore, we need to structure and organize a new ecosystem to coordinate biological workers, robotic workers,and digital workers for future smart production [15], [16], specifically by building knowledge factories with knowledge machines for knowledge automation.We also need to design corresponding operational processes and assign proper roles for those three types of knowledge workers, so they can work together synergistically and efficiently.Let us address those important issues in the following sections.

    Essential Elements of Knowledge Factories

    Aiming at knowledge automation [17], the essential elements for knowledge factories include business big models,scenarios engineering, and HOOS.The schematic diagram of the collaboration of these elements in knowledge factories is shown in Fig.1.

    ? Business big models.Knowledge factories [1], [4]—[7]would involve three types of workers: digital workers,robotic workers, and biological workers, as described in the next section.Business big models are the key technology that assists biological workers and drives digital and robotic workers to execute operational tasks more efficiently and intelligently.They are the cognitive knowledge bases storing domain knowledge and skills for production.Essentially, a knowledge worker itself is a foundation model for special functions in a knowledge factory, and interaction among knowledge workers with business big models is an important issue to be addressed.Note that the theory and method of parallel cognition[18]should be useful in constructing business big models by facilitating the design of efficient Q&A sessions among various knowledge workers and business big models.

    Fig.1.The collaboration of essential elements for knowledge factories.

    ? Scenarios engineering.Traditional feature engineeringbased deep learning has achieved the state-of-the-art(SOTA) performance.However, these algorithms are implemented without the in-depth consideration of interpretability, security, and sustainability.Thus, it is impossible to apply these SOTA algorithms to real-world factories directly.In knowledge factories, scenarios engineering [19] can be seen as the integration of industrial scenarios and operations within a certain temporal and spatial range, where a trustworthy aritificial intelligence model could be established by intelligence&index(I&I),calibration & certification (C&C), and verification &validation(V&V).Through the effective use of scenarios engineering,knowledge factories should achieve the goal of “6S” [20], [21].

    ? HOOS.The primary function of HOOS[22],which is an upgraded version of management and computer operating systems, is to set up task priority, allocate human resources,and make interruptions.With the help of HOOS,workers in the knowledge factories could communicate and cooperate more efficiently, thus greatly reducing the laborious and tedious works and related physical and mental loads to biological workers.Many research on conventional and smart operating systems can be used in HOOS design and implementation [23]—[25].

    The Knowledge Workforce:Digital, Robotic, and Biological Workers

    Knowledge workforce in knowledge factories is categorized into three primary classes: digital workers, robotic workers,and biological workers.The interplay of these worker types in knowledge factories is illustrated in Fig.2.Biological workers are real humans, while robotic workers [26] are designed to aid biological humans in performing complex physical-world tasks, and digital workers are introduced to serve as virtual representations of both biological and robotic workers.The role and function of digital workers encompass facilitating human-machine interactions, coordinating tasks, conducting computational experiments, and other activities that broaden the scopes of both biological and robotic workers [27].

    The advancements in foundation model technologies,exemplified by tools like ChatGPT,should accelerate the integration of digital workers in knowledge factories [12], [28].Digital,robotic,and biological workers interact,align,and collaborate under the DAOs (Decentralized Autonomous Organizations and Decentralized Autonomous Operations) framework [17],[29].The various elements of physical, social, and cyber spaces interact with each other through digital workers to ensure the completion of required tasks under distributed,decentralized, autonomous, automated, organized, and orderly working environments.

    In knowledge factories, digital workers should be the primary source of workforce, facilitating the synergy between biological and robotic workers by automating task distribution and process creation.In our current design, at least 80% of the total workforce should consist of digital workers.Robotic workers,responsible mainly for physical tasks,should make up no more than 15% of the workforce.Biological workers are responsible for decision-making and emergency intervention and should be less than 5%of the total workforce.Knowledge factory utilizes HOOS to achieve interaction and collaboration among three types of knowledge workers.By leveraging the majority of digital and robotic workers, knowledge factories boost efficiency, lessen the strain on biological workers, save resources, and promote sustainable production.

    Fig.2.The knowledge workforce in knowledge factories.

    The Process for Knowledge Automation: APeM

    The process for knowledge automation involves three distinct working modes: autonomous modes (AM), parallel modes (PM), and expert/emergency modes (EM), collectively known as APeM.These modes play various roles in the workflow of knowledge factories, as described in Fig.3.AM represents the ultimate concept of unmanned factories.AM should be the primary mode of operations, accounting for over 80% of the production process, requiring mainly the involvement of digital and robotic workers.PM should be activated in fewer than 15% of cases, providing remote access for human experts to resolve any unforeseen issues or failures that arise during production.If an issue persists even after PM deployment, the corresponding production process switches to EM, which accounts for less than 5% of the time,where experts or emergency teams are dispatched to the site to resolve the problem directly.Once the issue is rectified, the production process reverts to PM, monitored remotely for a set duration, and then transitioned back to AM.

    Fig.3.The process for knowledge automation: APeM.

    In general, PM should address unpredictable and rare longtail issues in most of production processes.These issues might involve unexpected defects in a production chain or an equipment malfunction.Using this mode, experts can manipulate robotic workers and identify problematic areas through anomaly detection and diagnosis during remote access operations.Nonetheless, some production challenges elude solutions via PM, especially if the data is not accessible by industrial sensors or robotic workers, or if robotic workers cannot emulate specific human actions.In such cases,the data in actual factories should be collected and labeled,and related scenarios need to be recalibrated.Big models undergo iterative retraining as new data is introduced, and perform verification and validation to ensure the revised models are up to par.Knowledge acquisition and refinement will then be achieved as modes are toggled.

    Conclusion Remarks

    This article presents the framework of building knowledge factories with knowledge machines for knowledge automation by knowledge workers.Equipped with domain-specific big models, digital and robotic workers would assist biological workers to perform decision-making, resource coordination,and task execution.Through knowledge processing under AM,PM,and EM,big models are iteratively optimized and verified through scenarios engineering and acquire new knowledge and refine its knowledge base.

    Current big models lack the ability to defend against malicious attacks, as well as the capability to reason about complex problems.In the future, for trustworthy and explainable knowledge factories, it is essential to incorporate federated intelligence and smart contracts technologies in constructing and training big models to ensure their safety, security, sustainability, privacy, and reliability.

    ACKNOWLEDGMENT

    This work was partially supported by the Science and Technology Development Fund of Macau SAR (0050/2020/A1).

    日韩人妻精品一区2区三区| 久久久久九九精品影院| 制服诱惑二区| 热99re8久久精品国产| 国产麻豆69| 女人被狂操c到高潮| 久久久国产成人精品二区 | 曰老女人黄片| 午夜激情av网站| 少妇粗大呻吟视频| 神马国产精品三级电影在线观看 | 丁香六月欧美| 女性被躁到高潮视频| 欧美日韩av久久| 日韩免费av在线播放| 精品一区二区三卡| 亚洲激情在线av| 日本黄色日本黄色录像| 亚洲黑人精品在线| 亚洲人成电影免费在线| 久久人妻av系列| 搡老熟女国产l中国老女人| 国产视频一区二区在线看| 亚洲中文字幕日韩| 亚洲国产精品999在线| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕大全免费视频| 午夜老司机福利片| 精品久久久久久久久久免费视频 | 欧美在线黄色| 亚洲久久久国产精品| 国内毛片毛片毛片毛片毛片| 午夜精品久久久久久毛片777| 久久久久国产一级毛片高清牌| 中文欧美无线码| 99热国产这里只有精品6| 一级片'在线观看视频| svipshipincom国产片| 黄色a级毛片大全视频| 香蕉久久夜色| 妹子高潮喷水视频| 日本 av在线| 亚洲av电影在线进入| 中国美女看黄片| 久久久国产成人免费| 久久久久国产一级毛片高清牌| 亚洲情色 制服丝袜| 在线观看舔阴道视频| 黑人巨大精品欧美一区二区mp4| ponron亚洲| 成人av一区二区三区在线看| 亚洲av美国av| 天天添夜夜摸| tocl精华| 精品久久蜜臀av无| 好看av亚洲va欧美ⅴa在| 欧美成人午夜精品| 精品一品国产午夜福利视频| videosex国产| 久久性视频一级片| 久久99一区二区三区| 亚洲av第一区精品v没综合| 超色免费av| 女人被狂操c到高潮| 淫秽高清视频在线观看| 亚洲成人国产一区在线观看| 波多野结衣av一区二区av| 午夜两性在线视频| 亚洲视频免费观看视频| 国产精品爽爽va在线观看网站 | 亚洲国产欧美日韩在线播放| 亚洲成人免费av在线播放| 免费在线观看影片大全网站| 亚洲 国产 在线| 神马国产精品三级电影在线观看 | 女警被强在线播放| 夜夜躁狠狠躁天天躁| 热re99久久国产66热| 日韩精品中文字幕看吧| 亚洲国产精品合色在线| 国产99白浆流出| 啦啦啦免费观看视频1| 午夜福利在线免费观看网站| 美女 人体艺术 gogo| 免费av中文字幕在线| 国产精品 欧美亚洲| 无限看片的www在线观看| 999久久久国产精品视频| 亚洲第一青青草原| 在线观看免费日韩欧美大片| 久久伊人香网站| 免费av中文字幕在线| 国产亚洲精品一区二区www| 757午夜福利合集在线观看| 黑人巨大精品欧美一区二区mp4| 日韩国内少妇激情av| 狠狠狠狠99中文字幕| 90打野战视频偷拍视频| 精品国产乱码久久久久久男人| 国产精华一区二区三区| 日本一区二区免费在线视频| 夜夜夜夜夜久久久久| 黄色视频不卡| 精品国产一区二区三区四区第35| 男女做爰动态图高潮gif福利片 | 91精品三级在线观看| 日韩三级视频一区二区三区| 日本精品一区二区三区蜜桃| 国产男靠女视频免费网站| 国产av一区在线观看免费| 国产区一区二久久| 高清毛片免费观看视频网站 | 他把我摸到了高潮在线观看| 国产一区在线观看成人免费| 亚洲 国产 在线| 亚洲熟女毛片儿| 国产精品1区2区在线观看.| 亚洲三区欧美一区| 身体一侧抽搐| 丰满饥渴人妻一区二区三| 国产真人三级小视频在线观看| 深夜精品福利| 久久精品亚洲av国产电影网| 欧美成人免费av一区二区三区| 成年女人毛片免费观看观看9| 99国产精品99久久久久| 夜夜看夜夜爽夜夜摸 | 国产精品免费一区二区三区在线| 成人手机av| 黄色丝袜av网址大全| 午夜激情av网站| av在线播放免费不卡| 日本免费a在线| 国产亚洲欧美98| 精品国内亚洲2022精品成人| 99久久久亚洲精品蜜臀av| av视频免费观看在线观看| 啦啦啦 在线观看视频| 大香蕉久久成人网| 窝窝影院91人妻| 动漫黄色视频在线观看| 亚洲一区中文字幕在线| netflix在线观看网站| 成人av一区二区三区在线看| 国产一区二区激情短视频| 国产av又大| 欧美久久黑人一区二区| 国产乱人伦免费视频| 欧美在线黄色| 香蕉丝袜av| 在线av久久热| 国产精品久久久久成人av| 久久精品亚洲精品国产色婷小说| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产欧美日韩av| 欧美成人性av电影在线观看| 精品久久久久久成人av| 黑人巨大精品欧美一区二区mp4| 亚洲视频免费观看视频| 欧美日韩一级在线毛片| www国产在线视频色| 丰满迷人的少妇在线观看| 亚洲人成网站在线播放欧美日韩| 十八禁网站免费在线| 午夜福利免费观看在线| 亚洲九九香蕉| 大香蕉久久成人网| 精品国产乱子伦一区二区三区| 亚洲片人在线观看| 色精品久久人妻99蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 老司机深夜福利视频在线观看| 久久久国产欧美日韩av| 日韩欧美三级三区| 久99久视频精品免费| 色播在线永久视频| 国产xxxxx性猛交| 久久精品国产亚洲av香蕉五月| 狠狠狠狠99中文字幕| 亚洲成a人片在线一区二区| 国产精品一区二区免费欧美| 成人特级黄色片久久久久久久| 91成人精品电影| 免费av毛片视频| 色精品久久人妻99蜜桃| 国产精品一区二区免费欧美| 日本五十路高清| 欧美日韩乱码在线| 99久久综合精品五月天人人| 9热在线视频观看99| 两个人免费观看高清视频| 一级片免费观看大全| 国产精品久久电影中文字幕| 麻豆成人av在线观看| 嫩草影视91久久| 国产黄a三级三级三级人| 亚洲五月天丁香| 天堂中文最新版在线下载| 女人被狂操c到高潮| 色婷婷久久久亚洲欧美| 久久精品国产清高在天天线| 欧美人与性动交α欧美精品济南到| 免费在线观看日本一区| 久久人人精品亚洲av| 亚洲精品粉嫩美女一区| 老司机午夜福利在线观看视频| 高潮久久久久久久久久久不卡| 亚洲专区中文字幕在线| 亚洲欧美一区二区三区黑人| 免费久久久久久久精品成人欧美视频| 又紧又爽又黄一区二区| 女人被躁到高潮嗷嗷叫费观| 久久影院123| 九色亚洲精品在线播放| 日韩欧美三级三区| 麻豆国产av国片精品| 黄色片一级片一级黄色片| 国产激情欧美一区二区| 男女午夜视频在线观看| 国产成人影院久久av| 国内久久婷婷六月综合欲色啪| 亚洲精品成人av观看孕妇| 日韩欧美一区二区三区在线观看| 在线观看免费午夜福利视频| av天堂久久9| 成人特级黄色片久久久久久久| 啦啦啦 在线观看视频| 一进一出抽搐动态| 无限看片的www在线观看| 国产又色又爽无遮挡免费看| 中文欧美无线码| 国产精品久久电影中文字幕| 日韩免费av在线播放| 叶爱在线成人免费视频播放| 操出白浆在线播放| 国产成人影院久久av| 久久精品国产99精品国产亚洲性色 | 欧美激情高清一区二区三区| 欧美日韩福利视频一区二区| 成人永久免费在线观看视频| 一区福利在线观看| 欧美日韩一级在线毛片| 热99国产精品久久久久久7| 一进一出抽搐gif免费好疼 | 成人亚洲精品一区在线观看| 欧美人与性动交α欧美精品济南到| 91九色精品人成在线观看| 一a级毛片在线观看| 男人的好看免费观看在线视频 | 亚洲七黄色美女视频| 高清在线国产一区| 久久婷婷成人综合色麻豆| 99热只有精品国产| 成人手机av| 精品一区二区三区av网在线观看| 神马国产精品三级电影在线观看 | 精品久久久久久,| 亚洲黑人精品在线| 麻豆一二三区av精品| 亚洲欧美日韩高清在线视频| 国产精品免费视频内射| 日韩欧美国产一区二区入口| 日韩欧美一区二区三区在线观看| 成年女人毛片免费观看观看9| 亚洲人成网站在线播放欧美日韩| 19禁男女啪啪无遮挡网站| 国产亚洲欧美98| 国产精品免费视频内射| 国产精品爽爽va在线观看网站 | 国产真人三级小视频在线观看| 深夜精品福利| 国产黄色免费在线视频| 黄色毛片三级朝国网站| 日本免费一区二区三区高清不卡 | 日本a在线网址| av福利片在线| 人人澡人人妻人| 99国产精品99久久久久| 久久草成人影院| 手机成人av网站| 一级a爱视频在线免费观看| 国产91精品成人一区二区三区| 香蕉国产在线看| 午夜日韩欧美国产| 亚洲精品一卡2卡三卡4卡5卡| 97碰自拍视频| 中文字幕人妻丝袜制服| 色综合站精品国产| 亚洲国产欧美网| 久久人妻av系列| 午夜91福利影院| 精品少妇一区二区三区视频日本电影| 99国产极品粉嫩在线观看| 国产三级在线视频| 欧美+亚洲+日韩+国产| 丰满迷人的少妇在线观看| 午夜亚洲福利在线播放| 大型黄色视频在线免费观看| 久久久久亚洲av毛片大全| 国产真人三级小视频在线观看| 亚洲男人天堂网一区| 午夜视频精品福利| 91字幕亚洲| 国产精品98久久久久久宅男小说| 亚洲精品一区av在线观看| 亚洲熟妇熟女久久| 黄色视频,在线免费观看| 国产高清videossex| ponron亚洲| 久久99一区二区三区| xxxhd国产人妻xxx| 亚洲成人精品中文字幕电影 | 久久香蕉激情| 黄频高清免费视频| 麻豆av在线久日| a级毛片在线看网站| 久久国产精品人妻蜜桃| 国产精品乱码一区二三区的特点 | 99久久99久久久精品蜜桃| 12—13女人毛片做爰片一| 一夜夜www| 精品一区二区三区av网在线观看| 亚洲欧美日韩无卡精品| 国产午夜精品久久久久久| 亚洲国产精品一区二区三区在线| 后天国语完整版免费观看| 久久久国产成人精品二区 | av欧美777| а√天堂www在线а√下载| 黄色怎么调成土黄色| 久热爱精品视频在线9| 变态另类成人亚洲欧美熟女 | 亚洲成国产人片在线观看| av网站在线播放免费| 免费高清视频大片| 一区二区三区激情视频| 人妻丰满熟妇av一区二区三区| 淫妇啪啪啪对白视频| 无限看片的www在线观看| 欧美一级毛片孕妇| 99久久综合精品五月天人人| av网站免费在线观看视频| 操出白浆在线播放| 黄片播放在线免费| av天堂久久9| 这个男人来自地球电影免费观看| 麻豆国产av国片精品| 热99国产精品久久久久久7| 19禁男女啪啪无遮挡网站| 免费av中文字幕在线| 欧美不卡视频在线免费观看 | 一区二区三区国产精品乱码| 91麻豆精品激情在线观看国产 | av有码第一页| 久久人妻熟女aⅴ| 正在播放国产对白刺激| 日韩大尺度精品在线看网址 | 涩涩av久久男人的天堂| 久久久国产精品麻豆| 国产人伦9x9x在线观看| 老熟妇乱子伦视频在线观看| 国产精品二区激情视频| 国产精品久久视频播放| 嫁个100分男人电影在线观看| 国产精品电影一区二区三区| 成人精品一区二区免费| 欧美人与性动交α欧美软件| 免费在线观看日本一区| 国产精品免费视频内射| 久久精品aⅴ一区二区三区四区| 亚洲男人天堂网一区| 亚洲人成77777在线视频| 满18在线观看网站| 欧美成人午夜精品| 日本黄色日本黄色录像| 亚洲成av片中文字幕在线观看| 91字幕亚洲| 国产不卡一卡二| 欧美av亚洲av综合av国产av| 久久亚洲精品不卡| 久久中文字幕一级| 亚洲国产欧美一区二区综合| 黄色丝袜av网址大全| 国产无遮挡羞羞视频在线观看| av电影中文网址| 国产亚洲精品第一综合不卡| 国产精品免费一区二区三区在线| 国产一卡二卡三卡精品| 91国产中文字幕| 久久国产精品人妻蜜桃| 精品国产国语对白av| 亚洲自拍偷在线| 日韩欧美三级三区| 在线观看日韩欧美| 真人一进一出gif抽搐免费| 国产午夜精品久久久久久| 亚洲成人久久性| 国产精品国产av在线观看| 午夜免费观看网址| 天堂动漫精品| 久久久精品欧美日韩精品| 99re在线观看精品视频| 一区二区三区国产精品乱码| 中文字幕人妻熟女乱码| 18美女黄网站色大片免费观看| 黑人猛操日本美女一级片| 亚洲av五月六月丁香网| 热re99久久国产66热| 女人高潮潮喷娇喘18禁视频| 久久久国产欧美日韩av| videosex国产| 亚洲美女黄片视频| 中文字幕人妻丝袜一区二区| 国产三级在线视频| x7x7x7水蜜桃| 90打野战视频偷拍视频| 一二三四在线观看免费中文在| 九色亚洲精品在线播放| 一a级毛片在线观看| 欧美乱妇无乱码| 亚洲一区中文字幕在线| 亚洲人成77777在线视频| 国产精品一区二区在线不卡| 曰老女人黄片| 亚洲国产精品999在线| 欧美一区二区精品小视频在线| 少妇被粗大的猛进出69影院| 欧美激情极品国产一区二区三区| 天天添夜夜摸| 一级片'在线观看视频| 超色免费av| 99香蕉大伊视频| 久久中文字幕一级| 丁香欧美五月| 午夜视频精品福利| 久久久久亚洲av毛片大全| 久久人人精品亚洲av| 天天影视国产精品| 高清欧美精品videossex| 女同久久另类99精品国产91| 久久久久久人人人人人| 免费在线观看影片大全网站| 女同久久另类99精品国产91| 变态另类成人亚洲欧美熟女 | 国内毛片毛片毛片毛片毛片| 91麻豆av在线| 99国产精品一区二区三区| 丁香欧美五月| 亚洲国产欧美一区二区综合| 伦理电影免费视频| 好看av亚洲va欧美ⅴa在| 黄色怎么调成土黄色| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久免费高清国产稀缺| 日韩 欧美 亚洲 中文字幕| 亚洲精品久久成人aⅴ小说| 久久99一区二区三区| 日日夜夜操网爽| 国产成人av激情在线播放| 丰满的人妻完整版| 久久久久亚洲av毛片大全| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 日本三级黄在线观看| 好看av亚洲va欧美ⅴa在| 久久久久久免费高清国产稀缺| 成人国产一区最新在线观看| 露出奶头的视频| 91成年电影在线观看| 黄色视频,在线免费观看| 国产精华一区二区三区| 成人18禁在线播放| 嫩草影视91久久| 午夜亚洲福利在线播放| 人妻久久中文字幕网| 777久久人妻少妇嫩草av网站| 伊人久久大香线蕉亚洲五| 少妇裸体淫交视频免费看高清 | 好看av亚洲va欧美ⅴa在| 天天躁夜夜躁狠狠躁躁| 日日干狠狠操夜夜爽| 欧美黑人欧美精品刺激| 女警被强在线播放| 美女国产高潮福利片在线看| 1024香蕉在线观看| av网站免费在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 老司机亚洲免费影院| 欧美亚洲日本最大视频资源| 色综合婷婷激情| 色婷婷久久久亚洲欧美| 久久精品aⅴ一区二区三区四区| 女同久久另类99精品国产91| 国产在线观看jvid| www.自偷自拍.com| 日韩免费高清中文字幕av| 岛国在线观看网站| 亚洲国产毛片av蜜桃av| 黄频高清免费视频| 桃色一区二区三区在线观看| 欧美人与性动交α欧美软件| 精品国产超薄肉色丝袜足j| 91成年电影在线观看| 久久精品成人免费网站| 久久午夜亚洲精品久久| 精品午夜福利视频在线观看一区| 国产精品99久久99久久久不卡| 男女床上黄色一级片免费看| 人人妻人人澡人人看| 搡老乐熟女国产| ponron亚洲| 欧美黄色片欧美黄色片| 国产一区二区三区在线臀色熟女 | 啦啦啦 在线观看视频| 久久久国产成人免费| 亚洲情色 制服丝袜| 每晚都被弄得嗷嗷叫到高潮| 在线免费观看的www视频| 在线观看免费午夜福利视频| 国产乱人伦免费视频| 夜夜看夜夜爽夜夜摸 | 在线观看舔阴道视频| 一区二区日韩欧美中文字幕| 中国美女看黄片| 精品日产1卡2卡| 欧美精品啪啪一区二区三区| 国产一卡二卡三卡精品| 中文字幕色久视频| 精品国产超薄肉色丝袜足j| 香蕉丝袜av| 桃色一区二区三区在线观看| 一二三四在线观看免费中文在| 久久中文字幕人妻熟女| 天堂影院成人在线观看| 色在线成人网| 国产色视频综合| 99精品在免费线老司机午夜| 欧美激情 高清一区二区三区| 日韩高清综合在线| 久久午夜综合久久蜜桃| 侵犯人妻中文字幕一二三四区| 日韩三级视频一区二区三区| 亚洲avbb在线观看| www日本在线高清视频| 视频区欧美日本亚洲| 国产日韩一区二区三区精品不卡| 桃色一区二区三区在线观看| 不卡一级毛片| 一个人观看的视频www高清免费观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图av天堂| 国产免费av片在线观看野外av| 大码成人一级视频| 免费av毛片视频| 一级片'在线观看视频| 国产欧美日韩一区二区三| 制服人妻中文乱码| 啦啦啦 在线观看视频| 午夜精品在线福利| 亚洲av五月六月丁香网| 久久久精品欧美日韩精品| 亚洲免费av在线视频| 欧美中文日本在线观看视频| 久久人妻av系列| 精品福利观看| 午夜亚洲福利在线播放| 久久精品国产综合久久久| 在线观看免费视频网站a站| 男人操女人黄网站| 激情在线观看视频在线高清| 亚洲成人久久性| 亚洲熟妇熟女久久| 国产精品一区二区在线不卡| 久久欧美精品欧美久久欧美| 麻豆一二三区av精品| 国产欧美日韩一区二区三区在线| 99国产精品一区二区蜜桃av| 美女福利国产在线| www.999成人在线观看| 久久人妻av系列| 久久婷婷成人综合色麻豆| 99热国产这里只有精品6| 成人特级黄色片久久久久久久| 国产成人精品久久二区二区91| 国产精品久久久久成人av| 五月开心婷婷网| 亚洲五月色婷婷综合| 欧美人与性动交α欧美精品济南到| 精品一品国产午夜福利视频| 久久热在线av| 久久久国产精品麻豆| 欧美成人午夜精品| 黄色片一级片一级黄色片| 久久精品国产清高在天天线| 麻豆一二三区av精品| 久久精品aⅴ一区二区三区四区| 国产激情欧美一区二区| 性色av乱码一区二区三区2| 欧美日韩精品网址| tocl精华| 妹子高潮喷水视频| 久久久久久久精品吃奶| 国产亚洲av高清不卡| 一级片免费观看大全| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情高清一区二区三区| 一级片免费观看大全| 免费一级毛片在线播放高清视频 | 人成视频在线观看免费观看| 在线国产一区二区在线| 丝袜美腿诱惑在线| 亚洲午夜理论影院| 黄频高清免费视频| 搡老熟女国产l中国老女人| 久久久久久大精品|