• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氰基橋聯(lián)鐵鈷鏈狀配合物的結(jié)構(gòu)與磁性

    2023-10-19 11:47:06類延瑞朱海浪周仁和
    無機化學學報 2023年10期
    關(guān)鍵詞:鏈狀仁和大連理工大學

    類延瑞 朱海浪 黃 杰 周仁和 劉 濤

    (大連理工大學精細化工國家重點實驗室,智能材料化工前沿科學中心,大連 116024)

    0 Introduction

    Molecular magnetic bistability[1-2]refers to the phenomenon where a molecule can exist in two distinct spin states that can be interconverted by external stimuli such as light,heat,pressure,and magnetic or electric fields[3-9].This spin transition is generally mediated by metal-to-metal charge transfer (MMCT)between different metal sites or spin crossover (SCO) on a single metal site,which involves the redistribution ofd-electrons in response to appropriate crystal field environments[4,9].As the two spin states can represent the binary states of 0 and 1,the magnetic bistable molecular materials offer significant potential for the realization of high-density information devices at the molecular level[10].In addition,they also hold promise in molecular switching devices and sensors,which could lead to the development of spintronic devices[11]and quantum computing,offering improved performance and a wider range of functionalities[12].

    As one of the well-known magnetic bistable systems,a considerable number of charge transfer coupled spin transition (CTCST) compounds have been documented.Among them,the building block strategy of cyanide-bridged metals has been demonstrated to be effective in fabricating CTCST compounds[4,13-16].One of the most typical systems of such compounds is the Prussian blue analogue (PBA)[17],which has a general formula of AnM1p[M2(CN)6]q·xH2O (A is a monovalent cation;M1and M2are redox-active metal ions with variable valence states).In 1996,Hashimoto and Sato et al.[1]initially reported the phenomenon of light - induced charge transfer in Co-Fe PBA systems,which stimulated extensive research on PBA analogues.In the early stages,the research focused on 3D grid structures,exploring the charge transfer behavior between metals by regulating vacancies and the number of alkali ions in the structures[18-20].Subsequently,researchers became interested in low-dimensional cyanide-bridged compounds[21-23]since these systems can precisely regulate the coordination environment of metal ions via ligands,thereby promoting complete charge transfer behaviors and increasing solubility,thus facilitating investigations of their structures and physicochemical properties.Notably,the tricyanoferrate (Ⅲ) building blocks can coordinate with metal ions to form lowdimensional compounds due to their unique conical structure.When appropriate ancillary ligands were applied,the redox potential of metal ions can be tuned to allow the occurrence of intermetallic charge transfer[18,24-25].The reported low-dimensional MMCT compounds using tricyanoferrate(Ⅲ)building blocks [Fe(Tp)(CN)3]-(Tp=tris(pyrazolyl)borate)have generated significant interest for MMCT-switched magnetism and other properties.For example,the 1D Fe—Co chain assembled by [Fe(Tp)(CN)3]-and a chiral ligand Pabn[26]showed the light-induced MMCT and conductivity conversion.The combination of asymmetric ancillary ligand and [Fe(Tp)(CN)3]-resulted in a light-induced single-chain magnet with large coercivity values[27-29].One can note that these functional cyanide-bridged MMCT systems usually contain solvent molecules and counterions.And the guest molecules and anions can influence charge transfer behavior[30-34]and the corresponding properties above-mentioned.For example,recently reported trinuclear {FeⅢ2FeⅡ} complexes[35]exhibit solvent-induced spin transition behavior and wide thermal hysteresis.The tetranuclear {FeⅢ2CoⅡ2}complexes[14]composed of [Fe(PzTp) (CN)3]-(PzTp=tetrakis(pyrazolyl)borate) revealed how different anions play a significant role in MMCT behavior by controlling intermolecular interactions.Therefore,understanding the roles of solvent and counterion effects on the MMCT behavior is crucial in manipulating the charge transfer more accurately and switching the physical properties more effectively.In light of this concern,we designed and synthesized two complexes (Scheme 1)composed of the asymmetric ligand Bzi and the tricyanoferrate (Ⅲ) building block [Fe(PzTp) (CN)3]-,namely [Fe(PzTp)(CN)3]2[Co(Bzi)4]2(ClO4)2·H2O (1) and[Fe(PzTp)(CN)3]2[Co(Bzi)2]·CH3OH (2).The effects of counterions and crystallizing solvents on the structures and properties of the complexes were studied.

    Scheme 1 Self-assembly processes of complexes 1 and 2

    1 Experimental

    1.1 Materials

    All chemical reagents were obtained from commercial suppliers and used without further purification.Tricyanoferrate (Ⅲ) building blocks (Bu4N) [Fe(PzTp)(CN)3],(Bu4N=tetrabutylammonium) and asymmetric ligand Bzi were synthesized according to the literature procedures[36-37].The physical measurements and detailed crystallographic data can be found in the Supporting information(Table S1-S6,Fig.S1-S17).

    1.2 Synthesis of complex 1

    Single crystals of 1 were synthesized by the liquid diffusion method.An aqueous solution containing Co(ClO4)2·xH2O (0.005 mmol,1.273 mg) was placed at the bottom of a clean test tube.Then a mixed solvent of methanol and water (1∶1,V/V,2.5 mL) was layered as the middle buffer.Finally,the methanol solution containing tricyanoferrate (Ⅲ) building blocks (Bu4N)[Fe(PzTp)(CN)3] (0.005 mmol,3.275 mg) and Bzi (0.02 mmol,3.4 mg) was placed on the top of the tube.The top of the tube was sealed and left for two months to obtain dark green block crystals.The yield based on Co(ClO4)2·xH2O was about 61%.Elemental analysis calculated for C118H106B2Cl2Co2Fe2N38O9(%): C 56.19,H 4.23,N 21.10;Found(%):C 56.05,H 4.26,N 20.17.

    1.3 Synthesis of complex 2

    The synthesis of 2 was similar to that of 1 by use of Co(NO3)2·xH2O instead of Co(ClO4)2·xH2O.Crimson long strips of crystals were obtained after about six weeks.The yield based on Co(NO3)2·xH2O was about 51%.Elemental analysis calculated for C53H48B2CoFe2N26O(%): C 50.63,H 3.85,N 28.96; Found(%): C 51.12,H 3.41,N 28.74.

    CCDC: 2247684,1-120K; 2247683,2-120K;2247682,2-190K; 2247686,2-225K; 2247685,2-desolvated.

    2 Results and discussion

    2.1 Structure characterization

    2.1.1 Crystal structure of 1

    The coordination polymer 1 was synthesized by the reaction of (Bu4N) [Fe(PzTp) (CN)3],Bzi,and Co(ClO4)2·xH2O in a methanol-water mixture.The single crystals were obtained after staying solution in the dark for a few weeks.Due to the instability,attempts to collect X-ray diffraction data at higher temperatures were not performed.The dark green 1 crystallizes in a triclinic space groupat 120 K.The phase purity was confirmed by powder X-ray diffraction (PXRD)(Fig.S4) measurements.As shown in Fig.1,the cobalt center is located in a distorted octahedral environment.It can be verified by continuous symmetry measurements using the SHAPE program,which is similar to previously reported results.Cobalt ions are connected by tricyanoferrate building blocks,forming square -wave type chains along thec-axis.As shown in Fig.S1c,the stacking between chains is tight,but there are no obvious intra-chain or inter-chainπ…πinteractions.It should be noted that two free ClO4-ions are located in the lattice void,which plays a role in balancing the positive charges of the chain.In addition,hydrogen - bonding interactions between the solvent molecule and the free terminal cyanide groups are also observed,which may play a role in mediating the MMCT behavior.The asymmetric unit contains three crystallographically independent Co (Co1,Co2,and Co3)ions and two Fe(Fe1 and Fe2)ions(Fig.1a).Complex 1 comprises cyanide-bridged alternating Fe-Co square-wave type chains along thec-axis (Fig.S1b).Within the chain,two of the three cyanide groups in the [Fe(PzTp)(CN)3]-unit bridge two Co ions to form an alternating zigzag chain [Co1—NC—Fe1—CN—Co2—NC—Fe2—CN—Co3].In 1,the Co ions adopt a distorted octahedral coordination geometry with four nitrogen atoms from four Bzi and two nitrogen atoms from tricyanoferrate.At 120 K,the average Co1—N,Co2—N,and Co3—N bond lengths are 0.192 8,0.192 2,and 0.192 3 nm,respectively.All of them are typical of lowspin (LS) Co (Ⅲ)ions.The iron ion also locates in a distorted octahedral coordination environment that is composed of three nitrogen atoms from the PzTp ligand and three cyanide carbon atoms.Fe1—C and Fe1—N bond lengths are 0.187 6(4)and 0.200 9(3)nm,respectively,and the Fe2—C and Fe2—N bond lengths are 0.186 1(4) and 0.201 1(3) nm,respectively,which are in the range of character of the LS FeⅡspecies.

    Fig.1 (a)Asymmetric unit of complex 1;(b)Square-wave type chain structure of 1

    2.1.2 Crystal structure of 2

    To investigate how solvent molecules and anions affect the crystal structure and magnetic properties.Complex 2 was synthesized in different solvents by changing the metal salts of Co(NO3)2·xH2O.Singlecrystal X-ray diffraction data for 2 was collected at 120 K.The phase purity was confirmed by PXRD (Fig.S5)measurement.2 crystallizes in the triclinic space groupP1.The cobalt center is located in an octahedral environment and is interconnected by tricyanoferrate to form a double zigzag chain skeleton [Co1—NC—Fe1—CN—Co2—NC—Fe2] along thea-axis (Fig.2b).2 shows a double zigzag chain structure.From thea-axis direction,all the cobalt ions fall in a straight line,and the iron ions in the building block form two planes located on both sides of the cobalt sites (Fig.2c),which is different from the structure of 1.In addition,lattice voids between the adjacent chains adopt a small amount of methanol solvent molecules.Thermogravimetric (TG) analysis shows that there exists one methanol molecule in the symmetric unit (Fig.S3).As shown in Fig.2a,the asymmetric unit contains two crystallographically independent Fe (Fe1 and Fe2)ions and two crystallographically independent Co (Co1 and Co2)ions.Each cobalt ion center is linked to four tricyanoferrate building blocks at the equatorial position,and the rest coordinating sites are coordinated with two Bzi ligands to form octahedral coordination.In contrast,each cobalt center in the asymmetric unit of complex 1 is linked to four Bzi ligands at the equatorial position and then connected to two building blocks.In complex 2,the average Co1—N and Co2—N bond lengths are 0.190 7 and 0.190 6 nm at 120 K,respectively.They are both typical for the LS Co(Ⅲ)ions.The Fe1—C and Fe1—N bond lengths are 0.189 7(4) and 0.198 7(3)nm,respectively,and the Fe2—C and Fe2—N bond lengths are 0.191 1(3) and 0.197 7(3) nm at 120 K,respectively,which are in the typical range for the LS FeⅡspecies.Single-crystal X-ray diffraction data for 2 at 190 and 225 K were also collected to investigate the effect of crystalline solvents on the structure and magnetic properties.The average Co1—N and Co2—N bond lengths are 0.211 7 and 0.211 2 nm at 190 K,0.212 0 and 0.211 6 nm at 225 K,respectively.Detailed crystallographic data are listed in Table S1.

    Fig.2 (a)Asymmetric unit of complex 2;(b)Double zigzag chain structure of 2;(c)Packing diagram viewed along the a-axis of 2;(d)Packing diagram viewed along the c-axis of 2

    2.2 Magnetic property

    Temperature-variable magnetic susceptibility measurements were performed to probe the charge transfer behaviors in these complexes.As shown in Fig.3,for complex 1,theχMTvalue remained around 0.10 cm3·mol-1·K from 2 to 350 K,corresponding to diamagnetic FeⅡLS—CN—CoⅢLSlinkages.When further heated,theχMTvalue rapidly increased to 3.34 cm3·mol-1·K at 368 K and reached 6.29 cm3·mol-1·K at 371 K (T1/2↑=368 K).TheχMTvalue at 400 K was 6.27 cm3·mol-1·K,which was close to the value of 6.67 cm3·mol-1·K expected for magnetically isolated two FeⅢLS(S=1/2) and two CoⅡHS(S=3/2) ions.It suggests that about 94% of {FeⅡLS—CN—CoⅢLS} units underwent intermetallic charge transfer at this stage.Upon decreasing temperature,theχMTvalue decreased rapidly to 3.47 cm3·mol-1·K at 357 K.Then it reached a plateau value of about 0.11 cm3·mol-1·K with an 11 K-wide thermal hysteresis loop upon cooling.In addition,the isothermal field-dependent magnetization data for 1 was collected in a direct current (dc) field up to 5 T at 2 K (Fig.S9).The isothermal magnetization curve at 2 K increased slowly to 0.032Nβat 50 kOe,confirming the diamagnetic character of the {FeⅡLS—CN—CoⅢLS} unit.Differential scanning calorimetry (DSC)was performed under an N2atmosphere to verify the driving force of MMCT.As shown in Fig.S6,the DSC curves exhibited an endothermic peak in the heating mode,with the onset and maximum temperatures ofTon=362.5 K andTmax=368.0 K,respectively.TheTmaxwas consistent withT1/2↑=368 K,accompanied by enthalpy and entropy changes of ΔHm=90.33(3) kJ·mol-1and ΔSm=250.91(6) J·mol-1·K-1,respectively.In addition,an exothermic peak was recorded in the cooling mode,withTon=364.9 K,Tmax=360 K,ΔHm=91.23(3)kJ·mol-1and ΔSm=253.42(6)J·mol-1·K-1.Peak temperature was also close toT1/2↓=357 K.The distinct endothermic/exothermic peaks and the 8 K-width thermal hysteresis indicated a first-order phase transition and significant entropy changes suggested that MMCT is an entropy-driven process.

    Fig.3 Temperature dependence observed for the χMT values of 1(a)and 2(b)under a dc field of 5 000 Oe(1)and 1 000 Oe(2)

    Complex 2 exhibited an interesting two-step spin transition.The purple curve in Fig.3b showed that theχMTvalue below 100 K was about 1.39 cm3·mol-1·K,while the theoreticalχMTvalue of 2 in a low spin state was about 0.58 cm3·mol-1·K,suggesting the existence of high-spin(HS)Co(Ⅱ)ions.Upon heating,theχMTvalue increased to 1.91 cm3·mol-1·K at 180 K.The theoreticalχMTvalue of the {FeⅢLS—CN—CoⅡHS—NC—FeⅢLS}state of complex 2 was 4.32 cm3·mol-1·K.Based on the changes inχMTvalue,about 44% {FeⅡLS—CN—CoⅢLS—NC—FeⅢLS} units underwent the intermetallic charge transfer at this stage.When the temperature continued to increase to 210 K,theχMTvalue rapidly reached 4.12 cm3·mol-1·K,which was close to the theoretical value of 4.32 cm3·mol-1·K,indicating that about 95.4% {FeⅡLS—CN—CoⅢLS—NC—FeⅢLS} units underwent the intermetallic charge transfer and transformed into the {FeⅢLS—CN—CoⅡHS—NC—FeⅢLS}state.During the cooling process,theχMTvalue decreased rapidly to 2.06 cm3·mol-1·K at 190 K.A thermal hysteresis of 12 K was produced.Subsequently,the value ofχMTdecreased to 1.58 cm3·mol-1·K at 150 K.Further decreasing the temperature resulted in the decrease ofχMTvalue to 1.3 cm3·mol-1·K and produced a thermal hysteresis of about 30 K.2 exhibited a rare two-step charge transfer behavior.In the first step,the transition temperatures wereT1/2↑=183 K,T1/2↓=154 K; in the second step,the transition temperatures wereT1/2↑=204 K,T1/2↓=192 K.Remarkably,we observed the first step of spin transition behavior disappeared when 2 continued to be heated to 300 K (green curve in Fig.3b),possibly due to the loss of some solvents during the heating process.In addition,the TG curve of 2 (Fig.S3) showed a loss of solvents at 305 K,with a mass loss of 3.87%.Therefore,we collected the temperature-variable magnetic susceptibility for 2-desolvated.As shown in the blue curve in Fig.3b,theχMTvalues of 3.42 cm3·mol-1·K remained nearly constant from 30 to 150 K,then slowly increased to 4.12 cm3·mol-1·K at 198 K and reached a plateau value of 4.25 cm3·mol-1·K at 203 K.Corresponding to highspin {FeⅢLS—CN—CoⅡHS—NC—FeⅢLS} states.It indicates that the solvent molecules can greatly influence the charge transfer behavior of 2.It is noted that 2 exhibited higherχMTvalues below 10 K,which can be attributed to the intramolecular ferromagnetic coupling between the remaining FeⅢLSand CoⅡHSions.

    Variable-temperature infrared spectra were collected to probe the charge transfer behavior.For complex 1,twoνCNabsorption bands at around 2 117 and 2 154 cm-1were observed at 400 K (Fig.4a).The band at 2 117 cm-1can be ascribed toνCNmodes for the nonbridging cyanide groups of [FeⅢ(PzTp)(CN)3]-,and the other is attributed toνCNmodes for the bridging cyanide groups of FeⅢLS—C≡N—CoⅡHSlinkages.As the temperature decreased,two new bands appeared,corresponding to the non-bridgingνCNmodes of [FeⅡ(PzTp)(CN)3]2-(2 064 cm-1) and the bridgingνCNmodes of FeⅡLS—C≡N—CoⅢLS(2 102 cm-1) linkages.Meanwhile,as the temperature was lowered,intensities of the non-bridgingνCNmodes of [FeⅢ(PzTp)(CN)3]-and the bridgingνCNmodes of the FeⅢLS—C≡N—CoⅡHSlinkages were reduced to disappear.These results established the MMCT behavior in 1.For complex 2,twoνCNabsorption bands at around 2 122 and 2 160 cm-1were also observed at 250 K (Fig.4b).It can be ascribed toνCNmodes for the non-bridging cyanide groups of [FeⅢ(PzTp)(CN)3]-and the bridging cyanide groups of FeⅢLS—C≡N—CoⅡHSlinkages,respectively.At the cooling process,threeνCNabsorption bands at around 2 064,2 101,and 2 199 cm-1were enhanced gradually,which can be ascribed toνCNmodes for the non-bridging cyanide groups of [FeⅡ(PzTp)(CN)3]2-and the bridging cyanide groups of FeⅢLS—C≡N—CoⅢLSand FeⅡLS—C≡N—CoⅢLSlinkages.These also probed the MMCT behavior in 2.

    Fig.4 Variable-temperature solid-state infrared spectroscopy of 1(a)and 2(b)at the near transition temperature

    Light-monitored magnetic susceptibility measurements were conducted to further explore the possible photo-responsive MMCT in complexes 1 and 2.Between 300 and 400 K,solid UV-Vis-NIR absorption spectra were recorded for 1.Spectral changes were observed at the bands approximately 500 and 800 nm(Fig.S12),which correspond to the {FeⅡLS—CN—CoⅢLS} and {FeⅢLS—CN—CoⅡHS} states,respectively.Based on the UV-Vis-NIR absorption spectra results,we chose 532 and 808 nm diode lasers to examine the photo-responsive characteristics of 1.Meanwhile,808 nm was selected based on the UV-Vis-NIR absorption spectra results of 2 (Fig.S13).As shown in Fig.5b,when 1 was irradiated with an 808 nm laser,theχMTvalue increased rapidly and reached a saturation value of 7.2 cm3·mol-1·K.The increase of magnetization demonstrated the occurrence of light-induced MMCT,corresponding to the transformation from low-spin{FeⅡLS—CN—CoⅢLS} to the metastable high-spin{FeⅢLS—CN—CoⅡHS} state.When the laser wavelength was changed to 532 nm,theχMTvalue of 1 experienced a gradual decrease from 7.2 to 1.3 cm3·mol-1·K after 175 min.The incomplete phase transition may be attributed to the partial overlap between the green light and the FeⅡ→CoⅢIVCT (intervalence charge transfer)band.It is noted that the interconversion between{FeⅢLS—CN—CoⅡHS} and {FeⅡLS—CN—CoⅢLS} spin states can be well repeated by alternating light irradiations of 808 and 532 nm,confirming the reversible light-induced MMCT.When 2 was irradiated with an 808 nm laser (Fig.S8),theχMTvalue increased slowly to 4.35 cm3·mol-1·K after 150 min.It also showed the light-induced MMCT behavior in 2.But it cannot be excited back to the initial state by other laser wavelengths for 2,which is consistent with its change in the UV-visible absorption spectrum.

    Fig.5 (a)Plots of χMT vs temperature of 1 and 2 irradiated at 808 and 532 nm at 5 000 Oe(1)and 1 000 Oe(2);(b)Plots of χMT vs time during cycles of successive irradiation at 808 nm(orange)and 532 nm(green)at 10 K of 1

    After the irradiation with 808 nm laser at 10 K for 2 h,complexes 1 and 2 were cooled down to the base temperature of 2 K.TheχMTvalues rapidly increased to 28.1 cm3·mol-1·K for 1 (orange curve in Fig.5a).After being irradiated by the 532 nm laser,only theχMTvalues of 1 increased to 1.8 cm3·mol-1·K at 2 K.During the heating process,theχMTvalues rapidly dropped to 5.8 cm3·mol-1·K at 17 K for 1,and finally returned to the thermodynamically stable {FeⅡLS—CN—CoⅢLS} state at 75 K.TheχMTvalues rapidly increased to 11.5 cm3·mol-1·K at 2 K and dropped to 5.3 cm3·mol-1·K for 2 at 11 K (blue curve in Fig.5a),then returned to {FeⅡLS—CN—CoⅢLS—NC—FeⅢLS}state at 150 K.The photomagnetic results confirmed that MMCT behavior could be excited by light irradiation and returned with thermal treatment.

    The disparate magnetic properties of complexes 1 and 2 should lie in their structures,which may arise from their different intermolecular interactions and crystal packings.For 1,there are significant hydrogen bonding interactions between solvent molecules and the free terminal cyanide groups.No significant hydrogen bonding interactions are observed in 2.This could affect the crystal field experienced by the iron center,as well as the redox potential of the iron center.This explains why 1 and 2 have different transition temperatures.Furthermore,the different charge transfer behaviors of 1 and 2 prior to light irradiation stem primarily from distinct coordination environments and intra -chain structures for 1 and 2.

    To further explore the influence of solvents on their charge transfer behavior,we collected X - ray diffraction data for 2 at temperatures ranging from 120 to 225 K.Detailed crystallographic data are presented in Table S1,and the structures of multiple temperatures for 2 were overlapped together to probe the trend of bond length and angle changes with temperature(Fig.6).The Co1—N and Co2—N bond lengths increase by 0.019 7 and 0.019 4 nm from 120 to 225 K,respectively.Meanwhile,the ∠N2—Co1—N3 decreases 1.21° and the ∠N5—Co2—N6 increases 1.31°.As for the Co—N≡C bond angles,the ∠C5—N2—Co1,∠C4—N5—Co2,and ∠C2—N6—Co2 decrease 2.9°,3.6°,and 3.5°,respectively.It indicates that the coordination environment of the cobalt center has changed.It is noted that the distortion degree of the octahedral field in the cobalt center is increased upon the heating process.The cobalt octahedron with a large distortion degree favors the high spin {FeⅢLS—CN—CoⅡHS—NC—FeⅢLS} state.This is consistent with the reported literature[14].In general,the parameter CShMMand∑M(M=Co,Fe) both can be used to evaluate the geometry deviation from the standard octahedron of the metal center (CShMMis analyzed by SHAPE software).For the Fe/Co charge-transfer systems,a smaller CShMMvalue favors the {FeⅡLS—CN—CoⅢLS—NC—FeⅢLS} state.From Table 1,the values of CShMCo1and CShMCo2increase by 0.029 and 0.018 from 120 to 225 K,respectively.And the values of∑Co1and∑Co2increase by 7.88 and 7.06,respectively.Based on these results,we think that the changes in the interaction between solvents and intra-chain molecules can modulate the degree of distortion of the[CoN6]octahedral and ligand fields around cobalt ions,resulting in different MMCT behaviors.

    Table 1 Main structural parameters for 2 at different temperaturesa

    Fig.6 Overlap diagrams of the structures of 2 at different temperatures centered on Co2

    3 Conclusions

    In this study,we report the synthesis of two chain complexes,denoted as 1 and 2,using anionic substitution in the methanol-water system.Detailed investigations of the structural and magnetic properties revealed that complex 1 exhibited thermal and light-induced charge transfer behavior,while complex 2 exhibited thermal and solvent-induced two-step spin transition behavior.Structural studies suggest that the different photomagnetic properties of 1 and 2 may be attributed to hydrogen bonding interactions between the solvent molecules and free terminal cyanide groups.Our findings demonstrate that the guest solvent molecules can also significantly modulate the metal-to-metal charge transfer (MMCT) through intermolecular interactions.Moreover,uncoordinated anions can modulate the molecular structure and MMCT by affecting the crystallographic environment of the complexes.These results provide valuable insights into the precise modulation of charge transfer.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    鏈狀仁和大連理工大學
    小學之花春浪漫 仁和文化育桃李
    小學時代(2020年23期)2020-12-13 10:34:22
    大腸桿菌對鏈狀彎殼藻生長特性的影響
    再議仁和拒付退單案
    中國外匯(2019年16期)2019-11-16 09:27:46
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    天下仁和初露直銷鋒芒
    偽隨機碼掩蔽的擴頻信息隱藏
    鏈狀卡塔型苯圖的反強迫數(shù)
    一維鏈狀均苯三酸Co(Ⅱ)配合物的水熱合成及晶體結(jié)構(gòu)研究
    應用化工(2014年1期)2014-08-16 13:34:08
    苯并三氮唑-1-氧基乙酸、4,4′-聯(lián)吡啶構(gòu)筑的一維鏈狀銅配合物的水熱合成及晶體結(jié)構(gòu)
    中泰化學與大連理工大學簽署戰(zhàn)略合作框架協(xié)議
    中國氯堿(2014年11期)2014-02-28 01:05:06
    久久久久精品国产欧美久久久| 在线观看66精品国产| 国产精品久久久久久久电影 | 国产亚洲精品综合一区在线观看 | av国产免费在线观看| av国产免费在线观看| 久久精品影院6| 国产精品爽爽va在线观看网站| 午夜福利免费观看在线| 黄色视频,在线免费观看| 十八禁网站免费在线| 精品久久久久久久毛片微露脸| 免费搜索国产男女视频| 午夜精品久久久久久毛片777| 美女 人体艺术 gogo| 精品欧美一区二区三区在线| 久久久精品大字幕| 一本综合久久免费| 国产伦一二天堂av在线观看| 又黄又粗又硬又大视频| 窝窝影院91人妻| 欧美国产日韩亚洲一区| 首页视频小说图片口味搜索| 日日夜夜操网爽| 国产亚洲精品一区二区www| 老司机在亚洲福利影院| 男人舔女人的私密视频| 丁香欧美五月| 亚洲av电影在线进入| 免费搜索国产男女视频| 身体一侧抽搐| av在线播放免费不卡| 亚洲精品色激情综合| 叶爱在线成人免费视频播放| 亚洲七黄色美女视频| 禁无遮挡网站| 精品午夜福利视频在线观看一区| 国产探花在线观看一区二区| 亚洲色图av天堂| 一区二区三区高清视频在线| 少妇被粗大的猛进出69影院| 91av网站免费观看| 欧美日韩福利视频一区二区| 午夜久久久久精精品| 一级毛片高清免费大全| 久久香蕉精品热| 男女午夜视频在线观看| 亚洲av成人av| 国产精品久久视频播放| e午夜精品久久久久久久| 亚洲avbb在线观看| 久久精品国产综合久久久| av福利片在线观看| 亚洲乱码一区二区免费版| 国产精品久久久人人做人人爽| 国产精品日韩av在线免费观看| 亚洲欧美一区二区三区黑人| 成人av在线播放网站| 久久精品国产99精品国产亚洲性色| 级片在线观看| 日韩欧美在线二视频| 波多野结衣巨乳人妻| 激情在线观看视频在线高清| 人人妻人人澡欧美一区二区| 老汉色av国产亚洲站长工具| 久久久久久久午夜电影| 日本 欧美在线| 久99久视频精品免费| 亚洲avbb在线观看| 日本熟妇午夜| 婷婷精品国产亚洲av在线| 久久精品国产亚洲av香蕉五月| av欧美777| 欧美日韩中文字幕国产精品一区二区三区| 毛片女人毛片| 成人18禁在线播放| 超碰成人久久| 亚洲乱码一区二区免费版| 亚洲熟妇中文字幕五十中出| 亚洲性夜色夜夜综合| 亚洲精品久久国产高清桃花| 最新在线观看一区二区三区| 99热这里只有是精品50| 变态另类成人亚洲欧美熟女| 亚洲国产看品久久| 免费看美女性在线毛片视频| 精品无人区乱码1区二区| 最近最新中文字幕大全电影3| 搞女人的毛片| 亚洲精品在线观看二区| 免费在线观看完整版高清| 成在线人永久免费视频| 青草久久国产| 国产久久久一区二区三区| 看黄色毛片网站| 国内精品一区二区在线观看| 国产亚洲精品第一综合不卡| av在线播放免费不卡| 在线观看美女被高潮喷水网站 | 国产亚洲精品久久久久久毛片| 波多野结衣高清无吗| 色综合亚洲欧美另类图片| 国产精品精品国产色婷婷| 久久久国产成人免费| 日韩欧美在线二视频| 精品少妇一区二区三区视频日本电影| 亚洲成人国产一区在线观看| 香蕉国产在线看| 看免费av毛片| 啦啦啦免费观看视频1| 最近最新免费中文字幕在线| 看免费av毛片| 精品人妻1区二区| 少妇裸体淫交视频免费看高清 | 久久久国产成人精品二区| 精品久久久久久久久久免费视频| 午夜两性在线视频| 中文字幕人成人乱码亚洲影| 两个人视频免费观看高清| 国产成人av教育| 淫妇啪啪啪对白视频| 久久久久国产精品人妻aⅴ院| 好男人电影高清在线观看| 久久婷婷人人爽人人干人人爱| 最近最新中文字幕大全免费视频| 成年免费大片在线观看| 日日夜夜操网爽| 一区二区三区激情视频| 美女高潮喷水抽搐中文字幕| 亚洲精品中文字幕一二三四区| 女警被强在线播放| 夜夜躁狠狠躁天天躁| 成年版毛片免费区| 日本 av在线| 精品免费久久久久久久清纯| 久久九九热精品免费| 真人一进一出gif抽搐免费| 又爽又黄无遮挡网站| 国产亚洲精品综合一区在线观看 | 国产精品久久久久久人妻精品电影| 国产成人av教育| 91大片在线观看| 欧美激情久久久久久爽电影| 亚洲乱码一区二区免费版| 国产一区二区在线av高清观看| 亚洲黑人精品在线| 淫妇啪啪啪对白视频| 亚洲欧美精品综合一区二区三区| 一进一出抽搐gif免费好疼| 三级国产精品欧美在线观看 | 精品一区二区三区av网在线观看| 久久精品国产综合久久久| 一进一出抽搐gif免费好疼| 88av欧美| 最近最新免费中文字幕在线| 国产麻豆成人av免费视频| 正在播放国产对白刺激| 国产精品一区二区精品视频观看| 欧美黑人精品巨大| 91av网站免费观看| 1024手机看黄色片| 夜夜躁狠狠躁天天躁| 女同久久另类99精品国产91| 国内揄拍国产精品人妻在线| 一夜夜www| 麻豆国产av国片精品| 热99re8久久精品国产| 国产又黄又爽又无遮挡在线| 91九色精品人成在线观看| 国产一区二区三区视频了| 99久久精品热视频| 一个人免费在线观看电影 | 99久久无色码亚洲精品果冻| 老司机午夜福利在线观看视频| 色综合婷婷激情| 麻豆久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 欧美zozozo另类| 久久久久性生活片| 亚洲av片天天在线观看| 神马国产精品三级电影在线观看 | 久久这里只有精品19| 亚洲精品av麻豆狂野| 妹子高潮喷水视频| 国产黄a三级三级三级人| 一本一本综合久久| 国产激情偷乱视频一区二区| 成人国产一区最新在线观看| 99国产综合亚洲精品| 欧美色欧美亚洲另类二区| 国产激情久久老熟女| 成人高潮视频无遮挡免费网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲黑人精品在线| 国产又黄又爽又无遮挡在线| 国产99白浆流出| 亚洲18禁久久av| 久久久久九九精品影院| 99热这里只有是精品50| 日本免费一区二区三区高清不卡| 国产一区二区激情短视频| 午夜精品久久久久久毛片777| 亚洲在线自拍视频| 老熟妇仑乱视频hdxx| 国产精品,欧美在线| 桃红色精品国产亚洲av| 国产片内射在线| 老司机在亚洲福利影院| 午夜a级毛片| 18禁美女被吸乳视频| 国产亚洲欧美98| 法律面前人人平等表现在哪些方面| 国产精品国产高清国产av| 亚洲美女黄片视频| 国产高清有码在线观看视频 | 人妻久久中文字幕网| 久久久久久久久中文| 少妇粗大呻吟视频| 最近视频中文字幕2019在线8| 99热6这里只有精品| 精品久久久久久久人妻蜜臀av| 国产精品免费视频内射| 日韩精品免费视频一区二区三区| 国产伦人伦偷精品视频| 日韩欧美在线二视频| 亚洲色图av天堂| 巨乳人妻的诱惑在线观看| 午夜亚洲福利在线播放| 少妇的丰满在线观看| 日韩高清综合在线| 亚洲国产中文字幕在线视频| 午夜免费成人在线视频| 国产亚洲av嫩草精品影院| 欧美 亚洲 国产 日韩一| 亚洲18禁久久av| 狂野欧美激情性xxxx| 身体一侧抽搐| 99国产精品一区二区蜜桃av| 色尼玛亚洲综合影院| 国产精品综合久久久久久久免费| 亚洲一码二码三码区别大吗| 国产精品永久免费网站| 成人国产一区最新在线观看| 国产av又大| 欧美日韩瑟瑟在线播放| 九九热线精品视视频播放| 欧美国产日韩亚洲一区| 欧美在线黄色| x7x7x7水蜜桃| 日本免费一区二区三区高清不卡| 欧美乱妇无乱码| 欧美性长视频在线观看| 亚洲无线在线观看| 窝窝影院91人妻| 久久99热这里只有精品18| 非洲黑人性xxxx精品又粗又长| 精品不卡国产一区二区三区| 一个人观看的视频www高清免费观看 | 18美女黄网站色大片免费观看| 黑人操中国人逼视频| 在线免费观看的www视频| 女人被狂操c到高潮| 色哟哟哟哟哟哟| 亚洲av熟女| 精品久久久久久久人妻蜜臀av| 91麻豆精品激情在线观看国产| 最新在线观看一区二区三区| 午夜福利在线在线| 在线观看日韩欧美| 亚洲精品在线美女| 久久精品亚洲精品国产色婷小说| av有码第一页| 日韩大尺度精品在线看网址| 国产蜜桃级精品一区二区三区| 亚洲欧美激情综合另类| 亚洲专区中文字幕在线| 亚洲色图 男人天堂 中文字幕| 久久久久国产精品人妻aⅴ院| 淫秽高清视频在线观看| 亚洲 欧美一区二区三区| 精品国产美女av久久久久小说| 国产97色在线日韩免费| 久久欧美精品欧美久久欧美| 久久香蕉激情| 麻豆久久精品国产亚洲av| 麻豆av在线久日| 欧美乱色亚洲激情| 亚洲无线在线观看| 亚洲av中文字字幕乱码综合| 久久精品影院6| 正在播放国产对白刺激| 国产精品久久久人人做人人爽| 精品久久蜜臀av无| 亚洲 国产 在线| 99riav亚洲国产免费| 天天一区二区日本电影三级| 俄罗斯特黄特色一大片| 国产激情偷乱视频一区二区| 日本精品一区二区三区蜜桃| 国产精品久久电影中文字幕| 少妇人妻一区二区三区视频| x7x7x7水蜜桃| 波多野结衣高清无吗| 欧美色视频一区免费| av免费在线观看网站| 亚洲九九香蕉| 黄色毛片三级朝国网站| 88av欧美| 夜夜躁狠狠躁天天躁| 香蕉av资源在线| 桃色一区二区三区在线观看| 少妇粗大呻吟视频| 亚洲成av人片免费观看| 国产精品亚洲美女久久久| 久久久水蜜桃国产精品网| 国产av一区在线观看免费| 少妇人妻一区二区三区视频| 老司机午夜十八禁免费视频| 99久久久亚洲精品蜜臀av| 亚洲国产欧美一区二区综合| 欧美性长视频在线观看| 搡老妇女老女人老熟妇| 91九色精品人成在线观看| 久久精品综合一区二区三区| 亚洲精品av麻豆狂野| 日本精品一区二区三区蜜桃| 亚洲在线自拍视频| 亚洲国产欧洲综合997久久,| 91麻豆av在线| 日本黄大片高清| 丝袜美腿诱惑在线| 99热这里只有精品一区 | 一a级毛片在线观看| 69av精品久久久久久| 亚洲欧美日韩高清在线视频| 免费看a级黄色片| 国产精品久久视频播放| 午夜日韩欧美国产| 久久精品国产亚洲av香蕉五月| bbb黄色大片| 欧美乱色亚洲激情| www.999成人在线观看| 女人被狂操c到高潮| 亚洲中文字幕日韩| 亚洲国产欧美人成| 色av中文字幕| 每晚都被弄得嗷嗷叫到高潮| 99国产精品一区二区蜜桃av| 亚洲男人的天堂狠狠| 婷婷精品国产亚洲av| 岛国视频午夜一区免费看| 亚洲成a人片在线一区二区| 国产精品1区2区在线观看.| 久久久精品欧美日韩精品| 夜夜躁狠狠躁天天躁| 亚洲精品在线观看二区| 啪啪无遮挡十八禁网站| 高清在线国产一区| 亚洲 国产 在线| 国产成人精品无人区| 欧美大码av| 精品一区二区三区视频在线观看免费| АⅤ资源中文在线天堂| 三级毛片av免费| 日本成人三级电影网站| 黄色视频,在线免费观看| 久久草成人影院| 悠悠久久av| а√天堂www在线а√下载| 观看免费一级毛片| 日韩欧美精品v在线| 欧美性猛交╳xxx乱大交人| 一级毛片精品| av欧美777| 18禁黄网站禁片午夜丰满| 在线观看免费视频日本深夜| 国产av不卡久久| 午夜老司机福利片| 岛国在线观看网站| 久久久水蜜桃国产精品网| 国产精品 欧美亚洲| 动漫黄色视频在线观看| 十八禁网站免费在线| 伦理电影免费视频| 国产精品综合久久久久久久免费| 免费搜索国产男女视频| 免费一级毛片在线播放高清视频| 啦啦啦免费观看视频1| 可以在线观看的亚洲视频| 欧美乱色亚洲激情| 88av欧美| aaaaa片日本免费| 久久久久久人人人人人| 国产高清有码在线观看视频 | 老司机靠b影院| 国模一区二区三区四区视频 | 亚洲真实伦在线观看| 久久香蕉激情| 亚洲专区国产一区二区| 波多野结衣高清作品| 色尼玛亚洲综合影院| 久久精品人妻少妇| 欧美成人性av电影在线观看| 亚洲在线自拍视频| 免费看a级黄色片| 午夜精品久久久久久毛片777| 亚洲中文字幕日韩| 国内毛片毛片毛片毛片毛片| 欧美久久黑人一区二区| 国产主播在线观看一区二区| 久9热在线精品视频| 国产精品乱码一区二三区的特点| 一进一出好大好爽视频| 精品熟女少妇八av免费久了| 在线观看舔阴道视频| 国产私拍福利视频在线观看| 国产亚洲欧美98| 老熟妇仑乱视频hdxx| 亚洲黑人精品在线| 国产伦在线观看视频一区| 亚洲熟妇熟女久久| 欧美中文综合在线视频| 国产野战对白在线观看| 18禁裸乳无遮挡免费网站照片| 香蕉久久夜色| 欧美午夜高清在线| 免费在线观看亚洲国产| 国产精品一区二区精品视频观看| 日本黄大片高清| 十八禁人妻一区二区| 国内精品一区二区在线观看| 国产黄色小视频在线观看| 高潮久久久久久久久久久不卡| 日韩欧美精品v在线| 亚洲成人久久爱视频| av免费在线观看网站| 亚洲狠狠婷婷综合久久图片| 中出人妻视频一区二区| 亚洲美女黄片视频| 女警被强在线播放| 人妻夜夜爽99麻豆av| 91av网站免费观看| 午夜精品一区二区三区免费看| 国内揄拍国产精品人妻在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品亚洲一区二区| 一个人免费在线观看电影 | 男男h啪啪无遮挡| 午夜激情av网站| 亚洲美女视频黄频| 成人av在线播放网站| 国产探花在线观看一区二区| 国产精品影院久久| 在线观看免费日韩欧美大片| 看片在线看免费视频| 久久国产乱子伦精品免费另类| 中国美女看黄片| 欧美乱码精品一区二区三区| 一级a爱片免费观看的视频| 亚洲五月婷婷丁香| 中文资源天堂在线| 黄色视频,在线免费观看| 99久久99久久久精品蜜桃| 久久久久久久久久黄片| 99riav亚洲国产免费| 中文资源天堂在线| 宅男免费午夜| 天堂影院成人在线观看| 一a级毛片在线观看| 国产麻豆成人av免费视频| 在线十欧美十亚洲十日本专区| 成人三级黄色视频| 99热6这里只有精品| 久热爱精品视频在线9| 精品免费久久久久久久清纯| 免费在线观看日本一区| 国产三级中文精品| 欧美zozozo另类| 精品高清国产在线一区| 亚洲中文av在线| 最新美女视频免费是黄的| 女人高潮潮喷娇喘18禁视频| 久久久久性生活片| 男人舔女人的私密视频| 后天国语完整版免费观看| 变态另类成人亚洲欧美熟女| 大型av网站在线播放| 国产亚洲精品av在线| 欧美日韩乱码在线| 亚洲在线自拍视频| 哪里可以看免费的av片| 精品一区二区三区av网在线观看| 日本精品一区二区三区蜜桃| 在线播放国产精品三级| 久久精品国产亚洲av香蕉五月| 人妻久久中文字幕网| 大型黄色视频在线免费观看| 给我免费播放毛片高清在线观看| 亚洲 欧美 日韩 在线 免费| 免费看美女性在线毛片视频| 韩国av一区二区三区四区| 中文字幕熟女人妻在线| 亚洲av成人精品一区久久| 国产精品一及| 久9热在线精品视频| 久久国产精品影院| 欧美zozozo另类| 欧美精品亚洲一区二区| 久久精品国产亚洲av高清一级| 欧美日本视频| 深夜精品福利| 日韩欧美在线二视频| 99re在线观看精品视频| 亚洲第一电影网av| 国产一区二区在线观看日韩 | 亚洲成人久久性| 麻豆国产av国片精品| 成人国产一区最新在线观看| av福利片在线| 此物有八面人人有两片| 久99久视频精品免费| 此物有八面人人有两片| 国产成人aa在线观看| 人人妻,人人澡人人爽秒播| 日本撒尿小便嘘嘘汇集6| 亚洲真实伦在线观看| 女人被狂操c到高潮| 成人三级黄色视频| 精品午夜福利视频在线观看一区| 日韩精品免费视频一区二区三区| 美女扒开内裤让男人捅视频| 中文字幕人成人乱码亚洲影| 亚洲国产中文字幕在线视频| 1024香蕉在线观看| 一级毛片女人18水好多| 久久久久久大精品| 国产伦在线观看视频一区| 狠狠狠狠99中文字幕| 亚洲专区国产一区二区| 真人一进一出gif抽搐免费| 精品国产亚洲在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产爱豆传媒在线观看 | 12—13女人毛片做爰片一| 国产真实乱freesex| 又紧又爽又黄一区二区| 久久精品91无色码中文字幕| 亚洲中文字幕日韩| 欧美乱妇无乱码| ponron亚洲| 在线观看日韩欧美| 久久婷婷成人综合色麻豆| 午夜免费激情av| 亚洲熟女毛片儿| 最近最新中文字幕大全免费视频| 一级毛片女人18水好多| 99久久精品热视频| 黄色丝袜av网址大全| 久久精品国产清高在天天线| 最近最新中文字幕大全电影3| 欧美黄色片欧美黄色片| 99久久综合精品五月天人人| 人人妻人人澡欧美一区二区| 老司机午夜福利在线观看视频| 国产一区二区在线观看日韩 | 男人舔女人下体高潮全视频| 女警被强在线播放| av免费在线观看网站| 国产亚洲精品久久久久5区| 级片在线观看| 国产亚洲精品第一综合不卡| 国产成人影院久久av| 亚洲午夜理论影院| 午夜a级毛片| 免费在线观看黄色视频的| 天天一区二区日本电影三级| 国产精品日韩av在线免费观看| 婷婷丁香在线五月| 一区二区三区高清视频在线| 一本久久中文字幕| 日韩国内少妇激情av| 老司机福利观看| 亚洲精品中文字幕在线视频| 大型av网站在线播放| 亚洲精品av麻豆狂野| 亚洲成人国产一区在线观看| 最新在线观看一区二区三区| 三级国产精品欧美在线观看 | 国产91精品成人一区二区三区| 特大巨黑吊av在线直播| 999久久久国产精品视频| 日韩大码丰满熟妇| 国产精品免费视频内射| 久久久久久国产a免费观看| 欧美精品亚洲一区二区| 全区人妻精品视频| 18美女黄网站色大片免费观看| 熟女电影av网| 桃红色精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久久av美女十八| 亚洲天堂国产精品一区在线| 久久精品影院6| 国产亚洲精品一区二区www| 免费看美女性在线毛片视频| 亚洲自偷自拍图片 自拍| 国产三级黄色录像| 亚洲av成人一区二区三| 欧美zozozo另类| 成人特级黄色片久久久久久久| 欧美zozozo另类| 全区人妻精品视频| 在线观看免费午夜福利视频| 人人妻人人澡欧美一区二区| 国内久久婷婷六月综合欲色啪|