• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lyapunov functions for studying global asymptotic stability of two rumor spreading models

    2023-10-11 08:35:24ManhTuanHoang
    Communications in Theoretical Physics 2023年10期

    Manh Tuan Hoang

    Department of Mathematics,FPT University,Hoa Lac Hi-Tech Park,Km29 Thang Long Blvd,Hanoi,Vietnam

    Abstract In a previous work (2018,Commun.Theor.Phys.70,795–802),a new compartment model for the spreading of rumors was introduced and analyzed.However,only the local asymptotic stability of this model was discussed.In the present work,we first provide a rigorous mathematical analysis for the global asymptotic stability (GAS) of the above-mentioned rumor spreading model.By constructing suitable Lyapunov candidate functions,we obtain the GAS of a rumor-free (boundary) equilibrium point and a unique rumor-spreading (positive) equilibrium point.After that,we utilize the approach based on the Lyapunov candidate functions to study the GAS of another rumor spreading model with control strategies,which was proposed in (2022,Physica A 606,128157).As an important consequence,the GAS of the rumor spreading model with control strategies is determined fully without resorting to technical hypotheses used in the benchmark work.Lastly,the theoretical findings are supported by a set of illustrative numerical examples.The obtained results not only improve the ones constructed in the two abovementioned benchmark papers but also can be extended to study the global dynamics of other rumor propagation models in the context of both integer-order and fractional-order derivatives.

    Keywords: rumor propagation models,global asymptotic stability,Lyapunov stability theory,control strategies,social networks

    1.Introduction

    It is well-known that controlling rumors is an important social issue,especially in the context of the rapidly evolving Internet and social media sites and platforms For this reason,many mathematicians and engineers have studied a broad range of mathematical models based on basic principles of compartment epidemiological models for describing the transmission of rumors (see,for example,[1–12]).These models have various useful applications in real-world situations and can suggest effective and suitable strategies to control the spreading of rumors.It is important to note that rumors are often spread in community and social networks;hence,there is a high similarity between the spreading of rumors and the transmission of infectious diseases (see,for instance,[13–15]).

    In a previous work[1],Dong and Huang proposed a new rumor spreading model,which is based on characteristics of the transmission of rumors in online social networks and can be considered as a modification of the well-known SIS epidemic models.In this model,the total population N is divided into two compartments according to their statuses with respect to rumors,namely the susceptible(health)class S that contains network users who are not under the influence of some rumor message at some time and the infected (transmission) class I containing network users who are in the influence of some rumor message at some time so that they involve in the message propagation.Then,the following model was formulated by using basic ideas of mathematical epidemiology and suitable technical hypotheses

    Here,all the parameters are assumed to be positive due to biological and epidemiological reasons.It is important to remark that the changing total user number N(t)in the online social networks was assumed to satisfy the logistic differential equation dN/dt=bN(1-N) since the network population grows but definitely has the global human population as its upper ceiling,where b is the net growth rate of users and is determined by the difference of the registration rate of new users and deactivation rate of users.We refer the readers to[1] for more details of the model (5) and its derivation.

    It was proved in [1] that the model (1) always has a rumor-free equilibrium point F0=(1,0)for all the values of the parameters and a unique (positive) rumor-spreading equilibrium point,which is given byF*=(S*,I*)=exists if β>b+σ.It should be emphasized that in [1] only local asymptotic stability of F* was established but numerical examples suggested that this equilibrium point may be not only locally asymptotically stable but also globally asymptotically stable (see section 4 in [1]).It is worth noting that the analysis of global asymptotic stability (GAS) of dynamical systems governed by differential equations is an important and prominent problem with many applications in both theory and practice [16–19].

    Motivated by the above reason,in the first part of this work,we provide a rigorous mathematical analysis for the GAS of the compartment model (1).By using suitable Lyapunov functions,we obtain the GAS of the rumor-free and rumor-spreading equilibrium points of the model (1).The obtained results improve the stability analysis performed in [1].

    After establishing the complete GAS of the model(1),we consider another rumor spreading model with discontinuous control strategies introduced in [12].This model is a combination of the model(1)with control strategies and is given by

    where φ(I) is called a control function and satisfies the following properties

    (i)φ:R+→R+and has a limited number of jump discontinuities in every compact interval;

    (ii) φ and is non-decreasing and φ(x)?[0,1] for all x ?[0,1].

    The derivation and practical meanings of the control function φ(I) were explained in [12].

    In[12],stability analysis of equilibrium points and global convergence in finite time of the model (2) were studied.In particular,it was shown that a rumor-free equilibrium E0=(1,0)always exists and it is globally asymptotically stable if σ0,then at least one rumor-spreading (positive)equilibrium point E*=(S*,I*) exists (see theorem 3.1 in [12])and it is globally asymptotically stable whenever (see theorem 4.2 in [12])

    Although the conditions (3) and (4) may be not difficult to be verified,they make the parameter space limited;moreover,stability analysis of many epidemic models suggested that positive equilibrium points are often globally asymptotically stable provided they exist (see,for instance,[20–22]).Therefore,it is reasonable to predict that conditions(3)and(4)may be technical hypotheses and can be released.

    By the above reason,in the second part of this work,we utilize the approach based on the Lyapunov functions,which was used to analyze the GAS of the model(1),to investigate the GAS of the equilibrium points of the model (2).As expected,we obtain the complete GAS of the model (2)without resorting to the technical hypotheses (3) and (4).Hence,the stability analysis in [12] is improved.

    As we mentioned above,the GAS analysis of dynamical systems is an essential problem with many useful applications in real-world situations but it is not a trivial task in general.It is well-known that the Lyapunov stability theory has been considered as one of the most successful approaches to this problem [16–19].However,an indispensable requirement of this approach is the construction of suitable Lyapunov function candidates but there is no general technique for constructing such Lyapunov functions.In the present work,by transforming the model(1)to the new system(5)and utilizing well-known Lyapunov functions suggested in previous works,namely linear Lyapunov functions and Voltera–Lyapunov functions (see,e.g.[23–27]),we construct appropriate Lyapunov functions to establish the GAS of the rumor spreading models (1)and also (2).Moreover,the constructed Lyapunov functions can be utilized to study the stability properties of extensions of the rumor spreading models in the context of fractional-order models.This is an important advantage of the used Lyapunov functions.

    Lastly,in the third part of this work,we report a set of illustrative numerical examples to support the theoretical findings.The obtained results indicate that the numerical examples are consistent with the theoretical assertions.

    The plan of this work is as follows:

    In section 2,we analyze the complete GAS of the model(1).The GAS analysis of the model (2) is performed in section 3.Section 4 reports a set of illustrative numerical examples.Some conclusions and discussions are presented in the last section.

    2.Stability analysis of the model (1)

    In this section,we analyze the GAS of the model (1).First,let us denote by N the total population,that is,N(t)=S(t)+I(t) for t ≥0.Then,the model (1) can be represented in the from

    Here,a feasible region of the model (5) is given by

    Lemma 1 (Local asymptotic stability).

    (i) The equilibrium pointE1=(0,0)is always unstable.

    (ii) The rumor-free equilibrium pointE0=(1,0)is locally asymptotically stable ifσ+b>βand is unstable ifσ+b<β.

    (iii) The rumor-spreading equilibrium pointE* is locally asymptotically stable if it exists,i.e.whenσ+b<β.

    Proof.The Jacobian matrix of the system (5) is given by

    Hence,J(N,I) evaluating at E1is

    The matrixJ(E1) has two eigenvalues,which areλ1=b>0 andλ2=-σ.Hence,E1is unstable.

    Similarly,the Jacobian matrix evaluating at E0is given by

    Therefore,ifβ<σ+bthenJ(E0) has two negative eigenvalues,which implies that E0is locally asymptotically stable.Ifβ>σ+b,thenJ(E0) has one positive eigenvalueλ2=β-σ-b,which implies that E0is unstable.

    Lastly,the Jacobian matrix evaluating at E* is given by

    Remark 1.By transforming the model(1)to the form(5),the local stability analysis in the proof of lemma 1 is simpler than the analysis presented in [1].

    We now establish the GAS of E0and E* by using the Lyapunov stability theory [16–19].Note that if (N(0),I(0))=(0,0),then (N(t),I(t))=(0,0) for all t ≥0 and if I(0)=0,then I(t)=0 for t ≥0.On the other hand,if N(0)>0 and I(0)>0,then it follows from (5) that

    which implies that the set

    is a positively invariant set of the model (5).

    Theorem 1 (Global asymptotic stability analysis).

    (i) The rumor-free equilibrium point E0is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω - {(0,0)}whenσ+b>β.

    (ii) The rumor-spreading equilibrium point E* is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω*defined in(7)if it exists.

    Proof.Proof of Part (i) Consider a Lyapunov function candidateV0:Ω -{(0,0)}→R+given by

    where0τis a positive real number that will be chosen later.The time derivative of the function V0along solutions of the model (5) satisfies

    We deduce fromβ<σ+bandI≤ 1that

    Combining (9) and (10),we obtain

    Proof of Part (ii) Consider a Lyapunov function candidateV*: Ω*→R+defined by

    whereτ* is any positive real number satisfying

    Since(N*,I*) is the unique positive equilibrium point,the model (5) can be rewritten in the form

    This implies that the derivative of V*along trajectories of(5)satisfies

    Thus,we deduce from (13) and (14) that the function V*satisfies the Lyapunov stability theorem,which implies the GAS of E*.The proof of this part is complete. ?

    3.Stability analysis of the model (2)

    In this section,we examine the GAS of the rumor model with control strategies (2).

    3.1.Stability of the model with smooth control functions

    For the sake of convenience,we first consider the case when the control function φ is a smooth function.This makes the stability analysis of the equilibria of the model easier.In the case when φ is a function having a limited number of jump discontinuities in every compact interval,the analysis will be studied in a similar way.

    Assume that the control function φ is a smooth function,non-decreasing and φ(x)?[0,1] for all x ?[0,1].Let us denote by N(t)=S(t)+I(t) for t ≥0.Then,we obtain a new system from the system (2)

    The model (15) also admits the set Ω defined in (6) as a feasible region and positively invariant set.Then,it is easily seen that the model (15) always has two rumor-free equilibrium points,which are ?0=(N0,I0)=(1,0)and?1=(N1,I1)=(0,0).In the following lemma,we show that the model (15) can possess a unique (positive) rumorspreading equilibrium point.

    Lemma 2.Ifqφ(0)+a+b<σ,then the model(15)has?*=(N*,I*)=(1,I*),where I* is a unique solution of a unique (positive) rumor-spreading equilibrium point the equation

    Otherwise,ifφ(0)+a+b≥σthen the model has no rumor-spreading equilibrium points.

    Proof.To determine possible positive equilibrium points,we consider the following system of algebraic equations

    Hence,we obtain N=1 and

    It is easy to see that

    Therefore,the equationf(I)=0 has a unique solutionI?(0,1).Consequently,the existence of the unique rumorspreading equilibrium point is shown.The proof is completed.

    We first analyze the LAS of the model (15).

    Theorem 2 (Local asymptotic stability).

    (i) The equilibrium point ?1=(0,0)is always unstable.

    (ii) The rumor-free equilibrium point ?0=(1,0)is locally asymptotically stable ifa+b+qφ(0)>σand is unstable ifa+b+qφ(0)<σ.

    (iii) The rumor-spreading equilibrium point?* is locally asymptotically stable if it exists.

    Proof.The Jacobian matrix of the system (15) is given by

    which implies that1? is unstable.

    Similarly,we have

    Therefore,ifa+b+qφ(0)>σthenJ(?0)has two negative eigenvalues and hence,E0is locally asymptotically stable.Ifa+b+qφ(0)<σ,thenJ(E0) has two eigenvalues of opposite sign,which implies that ?0is unstable.

    Lastly,the Jacobian matrix evaluating at?* is given by

    Hence,J(?*) has two eigenvalues,which areμ1=-a<0 and

    This implies that E* is locally asymptotically stable.

    In the following two theorems,the GAS of the model(15) is examined.

    Theorem 3 (GAS of the free-rumor equilibrium point).Ifa+b+qφ(0)>σ,then the rumor-free equilibrium point?0=(1,0)is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω -{?1}.

    Proof.We consider a Lyapunov function candidateL0:Ω -{ ?1}→R+given by

    where w0is a real number satisfying

    Note that N0=1.Then,the derivative of L0along solutions of (15) satisfies

    Note thatφ(I)≥φ(0)≥0andI≥I2forI?[0,1]andσ-(a+b+qφ(0))<0.Consequently,we have the following estimate for

    Thus,we deduce from (18) and (19) that the function L0satisfies the Lyapunov stability theorem and hence,the GAS of ?0is shown.The proof is complete.

    Theorem 4 (GAS of the rumor-spreading equilibrium point).The rumor-spreading equilibrium point?*is not only locally asymptotically stable but also globally asymptotically stable with respect to the set Ω* given in (7) provided that it exists.

    Proof.We consider a Lyapunov candidate functionL*: Ω*→R+defined by

    where w* is a real number satisfying

    Since(N*,I*) is a unique positive equilibrium point,the model (15) can be represented in the form

    From (20) and (22) and due to the fact that φ is nondecreasing,the time derivative of the function L* along solutions of (15) satisfies:

    Hence,we deduce form (21) and (23) that the function L*satisfies the Lyapunov stability theorem and thus,the GAS of?* is obtained.The proof is complete.

    3.2.A note on stability analysis of the model with discontinuous control functions

    In[12],Zhu et al performed a complex and rigorous analysis of the global dynamics of the model(2)in the case the control function φ(I) is not necessarily smooth but has a limited number of jump discontinuities in every compact interval.It was proved that if σ-a-b-q>0,then the model (2) has at least one positive equilibrium E*=(S*,I*)(see theorem 3.1 in [12]).It is important to note that the condition σ-a-b-q>0 implies that σ-a-b-qφ(0)>0 since φ(0)≤φ(1)≤1.On the other hand,the GAS of the unique positive equilibrium point was established by using a Lyapunov function given by

    and β is a positive parameter.By using the Lyapunov function given in (24)–(25),it was proved in [12],theorem 3.2 that the positive equilibrium point is globally asymptotically stable if the conditions (3) and (4) hold.

    Fig. 1.Global dynamics of the model (5) in Case 1 of Example 1.

    Now,by using the approach used in section 3.1 with the help of the Lyapunov candidate function given by (20) and the arguments in the proof of theorem 4,we can conclude that the positive equilibrium point of the model (2) is globally asymptotically stable provided that it exists.As an important consequence,the conditions (3) and (4) are released.This provides an important improvement of theorem 3.2 in [12].

    4.Numerical examples

    In this section,we report some numerical examples to support the theoretical findings constructed before.In all numerical examples performed below,we will use the classical fourth stage Runge-Kutta (RK4) method (see [28]) using a small step size Δt,namely,Δt=10-5,to numerically simulate the models (5) and (15) over the time interval [0,100].

    Example 1 (Global dynamics of the model (5)).In this example,we investigate global dynamics of the model (5).For this purpose,consider the model (5) with the following set of the parameters

    In table 1,the term ‘GAS’ stands for the globally asymptotically stable equilibrium point.Figures 1 and 2 depict solutions of the model (5) generated by the RK4 method.In these figures,each blue curve is a trajectory corresponding to a specific initial data,the yellow arrowsshow the evolution of the model and the red circles indicate the position of the globally asymptotically stable equilibrium points.It is clear that the numerical results are strong evidence supporting the validity of the theoretical findings presented in section 2.

    Table 1.The set of the parameters used in Example 1.

    Example 2 (Global dynamics of the model (15)).In this example,we consider the model (15) with a smooth control function given byφ(I)=1-e-IforI≥0and the parameters given in Table 2.

    Figures 3 and 4 sketch phase planes corresponding to specific initial data of the model(15).It is clear that the GAS of the equilibrium points is confirmed.Hence,the assertions in section 3 are supported.

    5.Conclusions and discussions

    Fig. 2.Global dynamics of the model (5) in Case 2 of Example 1.

    Table 2.The set of the parameters used in Example 2.

    As the first and also the main conclusion of this work,we have provided a rigorous mathematical analysis for the GAS of the compartment models for the spreading of rumors (1)and (2).By using the Lyapunov candidate functions constructed in sections 2 and 3,the complete GAS of the two rumor spreading models has been determined fully.The obtained results in this work improve the ones constructed in[1] and [12].

    The GAS analysis of the two rumor spreading models implies that there are only two scenarios of the spreading of the rumors,the first one corresponding to the GAS of the rumor-free equilibrium point means that the rumors will be receded and extinguished and the second one corresponding to the GAS of the rumor-spreading equilibrium point implies that the rumors always appear.Hence,we are able to control the spreading of the rumors by adjusting the parameters in the models.This may be useful in real-world situations.

    In recent years,mathematical models described by fractional-order differential equations have been strongly developed and widely used to study complex systems arising in real-world applications,in which the stability problems of fractional-order systems is very important and prominent.The Lyapunov stability theory for fractional-order dynamical systems can be considered as one of the most successful approaches to this problem [26,29–32].Hence,it is reasonable to assume that the Lyapunov functions proposed in the present work can be utilized to analyze the global dynamics of the rumor spreading models (1) and (2) in the context of fractional-order derivatives.For example,we can consider the Lyapunov candidate functions in sections 2 and 3 with the help of the fractional-order Lyapunov theory in[26,29–32]to study stability properties of the following fractional-order versions

    Fig. 3.Global dynamics of the model with control strategies (15) in Case 1 of Example 2.

    The proposed Lyapunov functions in the present work may be only suitable with the two rumor spreading models under consideration.Hence,it is necessary to propose new Lyapunov function candidates or different approaches to study the stability properties of other rumor spreading models that are more complex in form or structure.This issue will be considered in future studies.

    In the near future,we will study stability properties and practical applications of the rumor spreading models (1) and(2) in the context of fractional-order derivative operators.Also,reliable numerical methods for solving the models (1)and (2) as well as their fractional-order versions will be considered.

    Acknowledgments

    We would like to thank the editor and anonymous referees for useful and valuable comments that led to a great improvement of the paper.

    Ethical approval

    Not applicable.

    Availability of supporting data

    The data supporting the findings of this study are available within the article [and/or] its supplementary materials.

    Conflicts of interest

    We have no conflicts of interest to disclose.

    Funding information

    Not available.

    Authors’ contributions

    Manh Tuan Hoang: Conceptualization,Methodology,Software,Formal analysis,Writing-Original draft preparation,Methodology,Writing—Review and Editing,Supervision.

    女人被狂操c到高潮| 我要搜黄色片| 男人和女人高潮做爰伦理| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩瑟瑟在线播放| 村上凉子中文字幕在线| 欧美性猛交黑人性爽| 国产欧美日韩一区二区精品| 亚洲欧美日韩高清在线视频| 国产午夜福利久久久久久| 日本 av在线| 亚洲狠狠婷婷综合久久图片| 久久九九热精品免费| 亚洲男人的天堂狠狠| 成人永久免费在线观看视频| 99国产精品一区二区三区| 亚洲第一欧美日韩一区二区三区| 欧美不卡视频在线免费观看| 真人做人爱边吃奶动态| 国产 一区 欧美 日韩| 国产精品一区二区免费欧美| 波多野结衣巨乳人妻| 日韩欧美在线乱码| 小说图片视频综合网站| 日韩精品青青久久久久久| 日本 av在线| 国内揄拍国产精品人妻在线| 久久婷婷人人爽人人干人人爱| 精华霜和精华液先用哪个| 我的老师免费观看完整版| 村上凉子中文字幕在线| 亚洲精品成人久久久久久| 国产白丝娇喘喷水9色精品| 午夜福利在线观看免费完整高清在 | 久久草成人影院| 久久午夜福利片| 亚洲成av人片免费观看| 淫秽高清视频在线观看| 国产一区二区在线观看日韩| 黄色日韩在线| 美女免费视频网站| 美女黄网站色视频| 国内精品美女久久久久久| 美女免费视频网站| netflix在线观看网站| 在线观看舔阴道视频| 久久热精品热| 琪琪午夜伦伦电影理论片6080| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| ponron亚洲| 九色成人免费人妻av| 好男人在线观看高清免费视频| 国产在线精品亚洲第一网站| 嫩草影视91久久| 色哟哟·www| 男插女下体视频免费在线播放| 欧美成人免费av一区二区三区| 欧美一级a爱片免费观看看| 午夜视频国产福利| 一个人看的www免费观看视频| 亚洲精品在线美女| 丰满的人妻完整版| 一区二区三区免费毛片| 欧美最黄视频在线播放免费| 婷婷精品国产亚洲av在线| 综合色av麻豆| 99久久精品国产亚洲精品| 日日摸夜夜添夜夜添av毛片 | 亚洲自偷自拍三级| 中国美女看黄片| 美女cb高潮喷水在线观看| 国产亚洲av嫩草精品影院| 别揉我奶头~嗯~啊~动态视频| 99热这里只有是精品在线观看 | av天堂在线播放| 乱人视频在线观看| 99久国产av精品| 人妻制服诱惑在线中文字幕| 他把我摸到了高潮在线观看| 国产人妻一区二区三区在| 国产av麻豆久久久久久久| 国产爱豆传媒在线观看| 一个人免费在线观看的高清视频| 亚洲欧美精品综合久久99| 成人永久免费在线观看视频| 国产aⅴ精品一区二区三区波| 小说图片视频综合网站| 国产成人福利小说| 欧美黄色淫秽网站| 亚洲精品一卡2卡三卡4卡5卡| av国产免费在线观看| 欧美午夜高清在线| av欧美777| 欧美性猛交╳xxx乱大交人| 毛片一级片免费看久久久久 | 69av精品久久久久久| 校园春色视频在线观看| 国语自产精品视频在线第100页| 亚洲片人在线观看| 亚洲av免费高清在线观看| 脱女人内裤的视频| 成人国产一区最新在线观看| 69av精品久久久久久| 高清在线国产一区| ponron亚洲| 亚洲最大成人av| 欧美丝袜亚洲另类 | 久久人人精品亚洲av| 日韩欧美免费精品| 中文字幕人妻熟人妻熟丝袜美| 国产精品久久久久久久电影| 少妇的逼好多水| 国产成人av教育| 在线播放无遮挡| 精华霜和精华液先用哪个| 亚洲精品影视一区二区三区av| 一本精品99久久精品77| 成人av一区二区三区在线看| 51午夜福利影视在线观看| 蜜桃久久精品国产亚洲av| 麻豆成人av在线观看| 香蕉av资源在线| 成年人黄色毛片网站| 99久久精品一区二区三区| 亚洲精品在线观看二区| 精品免费久久久久久久清纯| aaaaa片日本免费| 欧美国产日韩亚洲一区| 成人一区二区视频在线观看| 99国产精品一区二区三区| 在线观看av片永久免费下载| 我要看日韩黄色一级片| 免费黄网站久久成人精品 | bbb黄色大片| 色5月婷婷丁香| 少妇丰满av| 高清毛片免费观看视频网站| 午夜视频国产福利| 亚洲成人中文字幕在线播放| 男女视频在线观看网站免费| 窝窝影院91人妻| 国产男靠女视频免费网站| 日日干狠狠操夜夜爽| 乱码一卡2卡4卡精品| 麻豆久久精品国产亚洲av| 久久久久久大精品| 国产精品亚洲av一区麻豆| 在线观看舔阴道视频| 日韩欧美国产一区二区入口| 中文字幕熟女人妻在线| 亚洲国产欧洲综合997久久,| 国产精品女同一区二区软件 | 一个人免费在线观看电影| 在线看三级毛片| 别揉我奶头 嗯啊视频| 免费人成在线观看视频色| 日韩人妻高清精品专区| 久久亚洲真实| 在线国产一区二区在线| 欧美午夜高清在线| 国产精品亚洲av一区麻豆| 国产精品98久久久久久宅男小说| 最近视频中文字幕2019在线8| 欧美高清性xxxxhd video| 亚洲中文字幕日韩| 亚洲最大成人av| 蜜桃久久精品国产亚洲av| av在线蜜桃| 小说图片视频综合网站| 亚洲国产欧美人成| 一进一出抽搐动态| 国产精品伦人一区二区| 日韩欧美国产在线观看| 赤兔流量卡办理| 国产免费男女视频| 亚洲精品在线美女| 日本五十路高清| 天天躁日日操中文字幕| 国产亚洲精品av在线| 午夜福利欧美成人| 欧美日韩福利视频一区二区| 久久国产精品影院| 俄罗斯特黄特色一大片| 在线播放国产精品三级| 欧美日本亚洲视频在线播放| 给我免费播放毛片高清在线观看| 久久久久久久久久成人| 免费高清视频大片| 国产精品久久久久久久久免 | 亚洲七黄色美女视频| 国产aⅴ精品一区二区三区波| 神马国产精品三级电影在线观看| 桃红色精品国产亚洲av| 亚洲国产精品合色在线| 国产一区二区三区在线臀色熟女| 久久国产精品人妻蜜桃| 国产av在哪里看| 嫩草影院入口| 国产伦在线观看视频一区| 久久婷婷人人爽人人干人人爱| 欧美日韩福利视频一区二区| 午夜两性在线视频| 岛国在线免费视频观看| 国产精品不卡视频一区二区 | 国产精品电影一区二区三区| 国产精品av视频在线免费观看| 男人和女人高潮做爰伦理| 熟妇人妻久久中文字幕3abv| 亚洲国产欧洲综合997久久,| 直男gayav资源| 欧美又色又爽又黄视频| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 国产一区二区亚洲精品在线观看| 天堂影院成人在线观看| 又粗又爽又猛毛片免费看| 丝袜美腿在线中文| 国产精品不卡视频一区二区 | 日韩欧美在线乱码| 色吧在线观看| xxxwww97欧美| 91久久精品电影网| 一个人观看的视频www高清免费观看| 国产av麻豆久久久久久久| 在线观看一区二区三区| xxxwww97欧美| 亚洲专区中文字幕在线| 俺也久久电影网| 欧美日本视频| 波多野结衣高清作品| 国产精品伦人一区二区| 亚洲av成人不卡在线观看播放网| 久久九九热精品免费| 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区久久| 亚洲精品乱码久久久v下载方式| 亚洲精品亚洲一区二区| 亚洲最大成人手机在线| 激情在线观看视频在线高清| av在线天堂中文字幕| 久久人妻av系列| 深夜a级毛片| 午夜精品在线福利| 又紧又爽又黄一区二区| 我要搜黄色片| 亚洲午夜理论影院| 99在线人妻在线中文字幕| 蜜桃久久精品国产亚洲av| 97碰自拍视频| 日韩亚洲欧美综合| 全区人妻精品视频| 欧美成人a在线观看| 久久久久久久久中文| 免费电影在线观看免费观看| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久,| 好男人在线观看高清免费视频| 婷婷亚洲欧美| 午夜亚洲福利在线播放| 国产精品不卡视频一区二区 | 国产伦一二天堂av在线观看| 久久人人爽人人爽人人片va | 久久国产乱子伦精品免费另类| 毛片女人毛片| 亚洲专区国产一区二区| 免费搜索国产男女视频| 日本熟妇午夜| 欧美一区二区亚洲| 波多野结衣巨乳人妻| 亚洲,欧美精品.| 中文字幕免费在线视频6| 大型黄色视频在线免费观看| 午夜免费激情av| 老司机深夜福利视频在线观看| 久久亚洲精品不卡| 亚洲av电影不卡..在线观看| 少妇人妻一区二区三区视频| 桃色一区二区三区在线观看| 麻豆久久精品国产亚洲av| 亚洲精华国产精华精| 中文字幕av在线有码专区| 美女免费视频网站| 精品国产亚洲在线| 人妻夜夜爽99麻豆av| 少妇被粗大猛烈的视频| 亚洲欧美日韩卡通动漫| 老司机午夜十八禁免费视频| 色5月婷婷丁香| av欧美777| 久久九九热精品免费| 99久久精品一区二区三区| 成人三级黄色视频| a在线观看视频网站| 别揉我奶头 嗯啊视频| 国产午夜精品久久久久久一区二区三区 | 国产大屁股一区二区在线视频| 国产午夜精品久久久久久一区二区三区 | av在线观看视频网站免费| 久久性视频一级片| 小说图片视频综合网站| 18美女黄网站色大片免费观看| 国产探花极品一区二区| 嫩草影院精品99| 亚洲丝袜综合中文字幕| 国产成人福利小说| 成人欧美大片| 亚洲内射少妇av| 亚洲人成网站高清观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久久人人人人人人| 卡戴珊不雅视频在线播放| 小蜜桃在线观看免费完整版高清| 久久精品综合一区二区三区| 秋霞伦理黄片| 夫妻午夜视频| 小蜜桃在线观看免费完整版高清| 丰满乱子伦码专区| 80岁老熟妇乱子伦牲交| 欧美国产精品一级二级三级 | 亚洲精品乱码久久久v下载方式| 免费看a级黄色片| av卡一久久| 久久精品国产亚洲av涩爱| 九色成人免费人妻av| 一级爰片在线观看| 亚洲精品色激情综合| av在线app专区| 哪个播放器可以免费观看大片| 亚洲欧美日韩另类电影网站 | 永久免费av网站大全| 一区二区三区乱码不卡18| 99久久九九国产精品国产免费| 观看美女的网站| 尾随美女入室| 一级毛片久久久久久久久女| 亚洲性久久影院| av一本久久久久| 可以在线观看毛片的网站| 亚州av有码| 精品亚洲乱码少妇综合久久| 久久久久久久久大av| 国产一级毛片在线| 麻豆久久精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放| 欧美丝袜亚洲另类| 女的被弄到高潮叫床怎么办| 青春草视频在线免费观看| 少妇丰满av| 国产精品伦人一区二区| 亚洲精品乱码久久久久久按摩| 2021少妇久久久久久久久久久| 国产精品一区二区在线观看99| 日本爱情动作片www.在线观看| 另类亚洲欧美激情| 99久久中文字幕三级久久日本| 久久人人爽人人片av| 一级毛片黄色毛片免费观看视频| 免费观看性生交大片5| 亚洲在线观看片| 最新中文字幕久久久久| 最近2019中文字幕mv第一页| 99视频精品全部免费 在线| 卡戴珊不雅视频在线播放| 亚洲欧美成人精品一区二区| 精品久久久久久久久av| 国产日韩欧美亚洲二区| 3wmmmm亚洲av在线观看| 亚洲精品成人av观看孕妇| 在线天堂最新版资源| 黄色怎么调成土黄色| av专区在线播放| 最新中文字幕久久久久| 欧美xxxx性猛交bbbb| 一级毛片黄色毛片免费观看视频| 久久久久久久午夜电影| 99热这里只有是精品在线观看| 在线看a的网站| 亚洲va在线va天堂va国产| 国产精品人妻久久久久久| 啦啦啦在线观看免费高清www| 亚洲精品456在线播放app| 亚洲av欧美aⅴ国产| 精品久久久久久久末码| 午夜免费观看性视频| .国产精品久久| 少妇的逼好多水| 18禁动态无遮挡网站| 寂寞人妻少妇视频99o| 久久综合国产亚洲精品| 国产高清三级在线| 久久99精品国语久久久| 能在线免费看毛片的网站| 日韩电影二区| av免费在线看不卡| 极品教师在线视频| 日日啪夜夜撸| 精品人妻熟女av久视频| 亚洲av二区三区四区| 国产综合精华液| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| 高清欧美精品videossex| 成人亚洲精品一区在线观看 | 欧美日韩在线观看h| 少妇人妻精品综合一区二区| av.在线天堂| 国产欧美另类精品又又久久亚洲欧美| 成人亚洲精品av一区二区| 国产乱人视频| 日韩欧美精品免费久久| 97超碰精品成人国产| 777米奇影视久久| 成人二区视频| 欧美三级亚洲精品| 国产av国产精品国产| 国产探花在线观看一区二区| 国产永久视频网站| 亚洲精品日韩在线中文字幕| 免费大片18禁| 午夜视频国产福利| 菩萨蛮人人尽说江南好唐韦庄| 国产精品嫩草影院av在线观看| 女人久久www免费人成看片| 少妇被粗大猛烈的视频| 国产美女午夜福利| 亚洲经典国产精华液单| 日韩成人av中文字幕在线观看| 99久久精品一区二区三区| 精品午夜福利在线看| 热re99久久精品国产66热6| 国内精品美女久久久久久| 69av精品久久久久久| 最近最新中文字幕大全电影3| 亚洲自拍偷在线| 亚洲成人久久爱视频| 亚洲欧美一区二区三区黑人 | 色视频在线一区二区三区| 国产色爽女视频免费观看| 一区二区三区精品91| 国产亚洲5aaaaa淫片| 69av精品久久久久久| 久久精品国产亚洲av涩爱| 久久影院123| 老女人水多毛片| 亚洲欧美成人综合另类久久久| 特大巨黑吊av在线直播| 日本午夜av视频| 亚洲国产成人一精品久久久| 亚洲在线观看片| 99久久精品热视频| 国产爽快片一区二区三区| 成人黄色视频免费在线看| 日本黄色片子视频| 汤姆久久久久久久影院中文字幕| 免费在线观看成人毛片| 亚洲av日韩在线播放| 99久久精品国产国产毛片| 大陆偷拍与自拍| videossex国产| 全区人妻精品视频| 日本欧美国产在线视频| 亚洲丝袜综合中文字幕| 乱码一卡2卡4卡精品| 日韩欧美 国产精品| 深爱激情五月婷婷| 国产又色又爽无遮挡免| 亚洲真实伦在线观看| 久久精品夜色国产| 久久99精品国语久久久| 少妇熟女欧美另类| 身体一侧抽搐| 国产精品熟女久久久久浪| 欧美xxⅹ黑人| 男人和女人高潮做爰伦理| 交换朋友夫妻互换小说| 婷婷色综合www| 三级经典国产精品| 在线观看免费高清a一片| 精品酒店卫生间| 综合色丁香网| 人妻制服诱惑在线中文字幕| 在线观看免费高清a一片| 久久久久久久久久人人人人人人| 日韩免费高清中文字幕av| 亚洲欧美精品自产自拍| 好男人在线观看高清免费视频| 在线a可以看的网站| 嫩草影院入口| 国产精品久久久久久久电影| 国产老妇伦熟女老妇高清| 1000部很黄的大片| 国产中年淑女户外野战色| 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 日本午夜av视频| 亚洲久久久久久中文字幕| 亚洲美女视频黄频| 最近最新中文字幕大全电影3| 亚洲av福利一区| 亚洲人成网站在线观看播放| 精品一区在线观看国产| 国产伦理片在线播放av一区| 九色成人免费人妻av| 亚洲精品一二三| 久久综合国产亚洲精品| 欧美激情国产日韩精品一区| 黄色怎么调成土黄色| 精品酒店卫生间| 亚洲婷婷狠狠爱综合网| 欧美区成人在线视频| 亚洲av免费高清在线观看| 国产免费一级a男人的天堂| 69av精品久久久久久| 少妇高潮的动态图| 国产精品久久久久久av不卡| 人体艺术视频欧美日本| 亚洲国产最新在线播放| 99视频精品全部免费 在线| 一本久久精品| av.在线天堂| 久久午夜福利片| 国产高清不卡午夜福利| 少妇裸体淫交视频免费看高清| 中文资源天堂在线| 色视频在线一区二区三区| 国产精品人妻久久久久久| 色哟哟·www| 国产又色又爽无遮挡免| 欧美性感艳星| 伊人久久精品亚洲午夜| 久久人人爽av亚洲精品天堂 | 欧美日韩综合久久久久久| 亚洲精品日本国产第一区| 亚洲精品日韩av片在线观看| 黄色欧美视频在线观看| 日韩成人av中文字幕在线观看| 免费观看在线日韩| 美女视频免费永久观看网站| 国产成人精品婷婷| www.av在线官网国产| 日韩亚洲欧美综合| 久久精品国产自在天天线| 精品视频人人做人人爽| 国产成人免费无遮挡视频| 午夜福利在线观看免费完整高清在| 婷婷色av中文字幕| 精品午夜福利在线看| 亚洲最大成人中文| 国产片特级美女逼逼视频| 97人妻精品一区二区三区麻豆| 成人综合一区亚洲| 69av精品久久久久久| 日韩人妻高清精品专区| 高清在线视频一区二区三区| 18禁在线播放成人免费| 制服丝袜香蕉在线| 如何舔出高潮| 国产亚洲午夜精品一区二区久久 | 日本欧美国产在线视频| av国产免费在线观看| 午夜精品一区二区三区免费看| 久久久久久久精品精品| 交换朋友夫妻互换小说| 99久久人妻综合| 中国国产av一级| 成年女人看的毛片在线观看| 欧美 日韩 精品 国产| 亚洲欧洲日产国产| 国产高清不卡午夜福利| 欧美3d第一页| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久久久按摩| 国产人妻一区二区三区在| 午夜日本视频在线| 国内精品宾馆在线| 男的添女的下面高潮视频| 亚洲欧美日韩另类电影网站 | 最近中文字幕2019免费版| 久久久久网色| 亚洲精品久久久久久婷婷小说| 一个人看视频在线观看www免费| 高清欧美精品videossex| 精华霜和精华液先用哪个| 午夜免费观看性视频| 一区二区三区免费毛片| 国产亚洲5aaaaa淫片| 亚洲在线观看片| 91久久精品国产一区二区成人| 婷婷色麻豆天堂久久| 国产高清三级在线| 欧美激情在线99| 天天躁夜夜躁狠狠久久av| 中文字幕人妻熟人妻熟丝袜美| 视频中文字幕在线观看| 1000部很黄的大片| 99久久人妻综合| 超碰av人人做人人爽久久| 两个人的视频大全免费| 九九爱精品视频在线观看| av在线天堂中文字幕| 成人毛片60女人毛片免费| 欧美丝袜亚洲另类| 免费播放大片免费观看视频在线观看| 国产亚洲av片在线观看秒播厂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲成人久久爱视频| 人妻一区二区av| 国产综合精华液| 三级男女做爰猛烈吃奶摸视频| 亚洲国产色片| 一区二区三区精品91| 伊人久久国产一区二区| 色哟哟·www| 精品少妇黑人巨大在线播放|