• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Silicon photomultiplier based scintillator thermal neutron detector for China Spallation Neutron Source(CSNS)

    2023-10-11 07:55:10XiuPingYue岳秀萍ZhiFuZhu朱志甫BinTang唐彬ChangHuang黃暢QianYu于潛ShaoJiaChen陳少佳XiuKuWang王修庫HongXu許虹ShiHuiZhou周詩慧XiaoJieCai蔡小杰HaoYang楊浩ZhiYongWan萬志勇ZhiJiaSun孫志嘉andYunTaoLiu劉云濤
    Chinese Physics B 2023年9期
    關鍵詞:楊浩

    Xiu-Ping Yue(岳秀萍), Zhi-Fu Zhu(朱志甫), Bin Tang(唐彬), Chang Huang(黃暢), Qian Yu(于潛),Shao-Jia Chen(陳少佳), Xiu-Ku Wang(王修庫), Hong Xu(許虹), Shi-Hui Zhou(周詩慧),Xiao-Jie Cai(蔡小杰), Hao Yang(楊浩), Zhi-Yong Wan(萬志勇),Zhi-Jia Sun(孫志嘉), and Yun-Tao Liu(劉云濤)

    1Engineering Research Center of Nuclear Technology Application,East China University of Technology,Ministry of Education,Nanchang 330013,China

    2Spallation Neutron Source Science Center,Dongguan 523803,China

    3Zhengzhou University of Technology,Zhengzhou 450044,China

    4Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    5Lanzhou University,Lanzhou 730000,China

    6Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China

    7Zhengzhou University,Zhengzhou 450001,China

    8Southwest University of Science and Technology,Mianyang 621002,China

    Keywords: neutron detector, silicon photomultipliers (SiPMs), 6LiF/ZnS(Ag), China Spallation Neutron Source(CSNS)

    1.Introduction

    Neutron scattering technology has been widely used in condensed matter physics, chemistry, life sciences, materials science, and other fields as an ideal probe for studying the structural and dynamic properties of matter.[1,2]The Chinese Spallation Neutron Source (CSNS) successfully produced its first neutron beam on August 28, 2017.It has been running steadily since March,2018.[3]According to the construction plan of neutron instruments, the energy-resolved imaging spectrometer (ERNI) will be installed in 2022.ERNI is a combined facility of neutron imaging and neutron diffraction that can provide strong penetration, high resolution, andin-situlossless imaging characterization.The instrument can be used to characterize and analyze the internal microstructure,defects,morphology,and stress of a device,as well as for online studies of the internal dynamic processes of materials and devices.In addition, it can also provide key data support for the simulation and modeling of practical applications and running systems,and time-of-flight(TOF)techniques can be used by ERNI for energy-selective imaging applications.The ERNI is based on Bragg-edge imaging,supplemented by conventional neutron imaging and neutron diffraction, with a neutron diffraction sensitivity area of larger than 4 m2and a sample-to-detector distance of 2 m.According to the physical design of the ERNI, the performance of the neutron detector must fulfill the parameters listed in Table 1.

    Table 1.Main parameters of the detector modules for ERNI.

    Owing to its high detection efficiency and steady performance, the3He tube is widely used in various neutron spectrometers.However, because of the shortage of3He gas, and consequently its high price,there is an urgent need to develop other types of neutron detectors to replace the3He tubes.[4,5]Scintillator neutron detectors have gradually replaced3He tubes in many neutron instruments because of their unique advantages including high detection efficiency, fast time response, goodn/γdiscrimination, and ease of fabrication in large areas, such as that of IMAT (ISIS),[6]TAKUMI (JPARC),[7]POWGEN(SNS),[8]and EMD(CSNS).

    Many scintillator detectors used in neutron spectrometers utilize multi-anode photomultiplier tubes(MA-PMT)for photoelectric conversion.And the signals from the PMT are processed by traditional discrete readout electronics with large volume and high power consumption.[9,10]The main detector of the general purpose powder diffractometer (GPPD) in CSNS is the self-developed large-area scintillation detector array with a position resolution of 4 mm×4 mm and a thermal neutron detection efficiency of more than 45%@2 ?A.[11]All indicators fulfill the requirements of the spectrometer.But this large-area scintillator detector array has poor detection efficiency uniformity.[3]Although the MA-PMT has stable performance and high gain, it has some problems, such as poor uniformity of the gain between each working unit,high working voltage, large volume, and poor resistance to magnetic field interference.In recent years, SiPMs have attracted increasing attention owing to their high single-photon resolution, ease of integration, and low operating voltage.[12–14]In this work, to achieve excellent detector performance such as low cost, small dead area, and good uniformity of detection efficiency,the SiPM is used instead of the MA-PMT for photoelectric conversion.A self-designed ASIC electronics has also been developed for the new detector system.

    In this study, we developed a detector prototype with a neutron sensitive area of 50 mm×200 mm using SiPMs for photoelectronic conversion and using ASIC electronics for signal process and readout.The performances of the detector,such as dark count rate, detection efficiency, position resolution, and maximum count rate, were tested in neutron beam 20#at the CSNS.

    2.Detector prototype structure

    2.1.Detector working principle

    6LiF/ZnS(Ag)is a commonly used neutron sensitive scintillator screen.The incident neutrons react with neutronsensitive materials6Li in the scintillation screen to produceαparticles and tritium nuclei.Secondary particles deposit energy and emit photons in the scintillation material.The ZnS scintillation material is a polycrystalline powder with a particle size of tens of microns, which has high luminous efficiency forαparticles,low sensitivity toγ,and a highn/γratio.According to our previous test of different6LiF/ZnS(Ag)screens and the manufacturer’s recommendation,[15]scintillator screens with the following characteristics are chosen: the ratio of the masses of6LiF to ZnS(Ag)is 1:2, and the screen thickness sets to 400 μm.[16,17]The luminescence spectrum is 400 nm–600 nm with its peak at 412 nm.Using transverse or longitudinal arrangements of light collecting fibers to reduce the number of readout electronics channels for the pixel type detector is a common practice for position-sensitive detector.The wavelength-shifting fiber (WLSF) array is designed here to reduce the number of readout electronics channels from tens of thousands down to a few hundred for 3 mm pixel size.Through the research of the detectors for the GPPD,the WLSF from kuraray with 1 mm diameter(Y-11(200)MS)is still suitable.[11,18]Considering that each end of two 1 mmdiameter WLSFs needs to be coupled to the SiPM entrance window,the effective working area of the SiPM device needs to be about 3 mm×3 mm.The MicroFC-30035 SiPM from Sensl is adopted.[19]

    After amplification,filtering,and shaping by the readout electronics,the optical signal detected by the SiPM is fed into the data acquisition system based on a field programmable gate array (FPGA).The data are analyzed by online and offline programs to obtain the position and time information of the incident neutrons.

    The detection efficiency of the scintillation screen depends on the energy deposition and photon emission probability of the neutrons in the scintillation screen.Because of the opaque of the6LiF/ZnS screen, the scintillator screens are designed to tilt to increase the path of incidence neutrons without increasing the emission path of the scintillating photons.This could improve the detection efficiency effectively.The simulation results are shown in Fig.1 by GEANT4 for different tilt angles of the6LiF/ZnS screen.With a decrease in the angle between the scintillation screen and the incident neutron, the detection efficiency of the scintillation screen gradually increases.At an incidence angle of 20°, the nuclear reaction conversion efficiency of the 400 μm thickness6LiF/ZnS screen can reach 78%at the neutron wavelength of 1 ?A.Therefore,we change the traditional vertical neutron incidence structure and design the detector as a tilt incidence structure.According to the physical design of ERNI,the sensitive area of the detector is 200 mm×50 mm, and the sensitive area will be equipped with 64 inclined6LiF/ZnS (Ag)scintillation screens.Considering the limits of the mechanical design when optimizing neutron absorption efficiency, minimum dead area and maximum light collection and the space needed for two 1 mm diameter WLSFs arrangement in each pixel, the tilt angle of the detector scintillation screen is determined to be 17°.This structure defines the 3 mm×50 mm pixel size and 64 pixel channels.A schematic design of the detector head part is shown in Fig.2.

    Fig.1.Neutron conversion efficiency of scintillation screens at various tilt angles at different wavelengths.

    Fig.2.Schematic design of the detector head part for the traditional vertical neutron incidence structure(left)and the tilt incidence structure(right).

    2.2.Detector prototype

    The detector prototype is a one-dimensional detector with the striped pixels (3 mm×5 mm).Two longitudinally distributed 1 mm-diameter WLSFs are placed on the surface of the scintillation screen to absorb the photons emitted by the scintillation screen in each pixel.In addition, each pixel is optically isolated by an aluminum film to prevent optical crosstalk between adjacent channels.And the four end faces of the two optical fibers are coupled to the sensitive surface of the SiPM by a specially designed couple base.The detector prototype has 64 pixels and 128 WLSFs.The structural diagram of the detector is shown in Fig.3.

    Fig.3.Design of the detector structure.

    The detector prototype picture is shown in Fig.4.The detector has 64 electronic channels, and two 32-array SiPMs with a unit sensitive area of 3 mm×3 mm are used for the photoelectric signal conversion.We have designed a fixture for coupling optical fiber with the SiPM.The couple base of the WLSFs and SiPMs has 32 holes with a diameter of 3 mm.After grinding, the two optical fibers of each pixel of the detector will be placed in the small hole of the fixture in order.Four fiber ends in each hole are directly coupled to the SiPM array.

    Fig.4.Detector prototype picture.

    3.ASIC electronics

    The electronic system of the detector collects the weak electrical signal output from the SiPMs, discriminates, amplifies, reshapes, and performs analog-to-digital conversion,data compression, and packaging.Finally, the neutron event data are transformed to the computer for analysis and calculation.The data acquisition system is divided into preamplification and data acquisition circuit systems.Figure 5 shows the block diagram of the electronics.The preamplifier circuit system includes an IHEP SiPM ASIC chip,circuit protection,power management,chip address configuration,DAC configuration,DAC scale,signal detection rectification,internal clock configuration modules, and an adaptation network.The ASIC chip is used to amplify, shape, filter, and discriminate the analog signal.The DAC configuration module can adjust the threshold value of the discriminator and also adjust the width limit value of the filter to reduce the dark noise from the SiPMs.The preamp circuit converts the analog signal to a digital signal and sends it to the data-acquisition system.The data acquisition system is primarily controlled by an FPGA.The FPGA controls the charge measurement,temperature sensing,analog-to-digital conversion,and finally uploads the data packet to the computer.Figure 6 shows the picture of the readout electronics board.

    Radiation source tests of the detector system in the laboratory were carried out to verify the performance of the readout electronics.A241Am alpha source was positioned on one pixel of the detector.The signal out from electronics was monitored by an oscilloscope.The test results are shown in Fig.7.After the pre-amplification circuit,the signal was quite smooth, which aided in the subsequent identification of the signals and noise.The width of the signal pulse was less than 3 μs and its rising time was less than 200 ns.It is quite easy to distinguish from the noise of the SiPM.

    Fig.5.Electronics block diagram.

    Fig.6.The picture of the readout electronics board.

    Fig.7.Oscilloscope observed alpha signal.

    4.Performance of the detector prototype

    4.1.Noise of the detector

    Most of the noise in the detector system comes from the SiPMs.Because the SiPM is a semiconductor-based photoelectric conversion device, it is very sensitive to temperature changes.In future engineering applications of the detector,the detector will work in a light-avoid space.The heat dissipation of the electronics board changes the space temperature.These changes will affect the performance of the SiPM,such as the gain and the dark count rate.With the increase of the temperature,the phonon vibration increases in the SiPM.The kinetic energy loss of avalanche carriers increases due to the increase in scattering collision,and the gain of the SiPM decreases with the increase in temperature.In contrast,the dark count rate of the SiPM increases with the increase of temperature.Because of the semiconductor characteristics, the carriers increase at higher temperatures.

    The change in the performance of the SiPMs will directly lead to the inaccuracy and unreliability of the neutron test.The curve of gain versus temperature and the curve of gain versus voltage of the SiPM were measured, which showed to guide the design of temperature drift compensation module.The temperature compensation coefficient of the SiPM was calculated to be 21.3 mV/°C, which is the same as the factory instruction.Using the temperature compensation coefficient,we developed an FPGA-based temperature compensation module.The working temperature of the SiPM was measured in real time using a temperature sensor welded on the SiPM and then fed back to the FPGA on the electronic board.The gain can be compensated by adjusting the working voltage of the SiPMs.

    Fig.8.SiPM noise counting at different temperatures.

    With the action of a temperature compensation module,we tested the noise count rate of the detector prototype at different temperatures, as shown in Fig.8.Although the gain of the SiPMs was stable, the dark noise counts still increase when the temperature rose.The dark noise counts were below 0.5 s-1·pixel-1in the temperature ranging from 20°C to 30°C,which means the working environment temperature should be maintained below 30°C.A cooling fan was installed in the light-avoid area to keep the temperature of the SiPM between 26°C–28°C.

    4.2.Detection efficiency

    A3He counting tube(20 atm)is used as the primary comparison tool for testing the detection efficiency of the detector.The neutron detection efficiency of the detector to be tested at different neutron wavelengths can be obtained by normalizing the counting of the detector prototype with that of the3He tube.The detection efficiency of the detector prototype can be calculated by

    whereNSDandN3Heare the total counts for the scintillator detector and standard3He tube neutrons,respectively.η3Heis the detection efficiency of a standard3He tube.Figure 9 shows a block diagram of the testing principle.Because the neutron wavelength distribution of BL20 is wide, a mica (0010)(008) monochromator is used to extract neutrons at specific wavelengths and reduce the neutron intensity.When the angle between the mica monochromator and the neutron beam is 45°,the neutrons of a specific wavelength can be extracted.A standard3He tube (252315, LND) with a pressure of 20 atm and a diameter of 1 inch is used to measure the incident neutron intensity from a shielded slit with a width of 1 mm.The standard3He tube is then removed, and the neutron intensity is measured using a prototype detector under the same conditions.

    Figure 10 shows the TOF spectra of the3He tube and the detector prototype.It can be clearly observed that the flight time interval of the characteristic peaks at different wavelengths in the TOF spectra of both the3He tube and the detector correspond to each other.The TOF-to-neutron wavelength conversion can be obtained from

    whereLandtare the distance of the detector from the center of the target station and the TOF time,respectively.The inset of Fig.10 shows the characteristic peaks of the3He tube and the detector at a neutron wavelength of 2.87 ?A.From Fig.10,we can observe that the characteristic peak of the detector is shifted to the right relative to that of the3He tube.As shown in Fig.9, the detector prototype is located behind the3He tube.So the distance from the center of the target station to the scintillator detector is longer.According to Eq.(2),under the same neutron wavelength, the distance is proportional to the time.Based on the difference in the peak value, we calculate that the distance between the3He tube and detector is 3 cm,which is consistent with the actual distance.In addition, it can be observed in the illustration that the pulse width of the characteristic peak of the3He tube is larger than that of the detector.This is because the diameter of the standard3He tube we adopted is 1 inch(25 mm),so the flight distance migration of neutrons in the3He tube is greater than that of neutrons in the scintillator detector (10 mm).Therefore, we can say that the wavelength resolution of the scintillator detector is higher than that of the3He tube.

    Fig.9.Schematic of the detection efficiency test principle.

    Fig.10.TOF spectrum of the 3He counter and detector.The inset shows the characteristic peak of the 3He tube and detector when the neutron wavelength is 2.87 ?A.

    We tested the detection efficiency at three different positions in the sensitive area of the detector prototype.The detection efficiency of the3He tube reached 100% at 2.87 ?A wavelength and 99.8% at 1.59 ?A.The detection efficiencies of three pixels of the scintillator detector at different neutron wavelengths were calculated, as shown in Fig.11.The highest detection efficiencies of the pixel are 63.3%at 1.59 ?A and 68%at 2.39 ?A.The detection efficiencies of each pixel are not exactly the same.This is caused by the small difference in the process of making the detector.There are some differences in each WLSF and in the flatness of each scintillator screen.The coupling between the WLSF and the SiPM is also slightly different.By simple nonlinear fitting, the detection efficiencies of the three pixels are found to be all higher than 40%at 1 ?A,which fulfill the requirements of the ERNI.In the following work, we will measure and optimize the detection efficiency and non-uniformity of the detector.By adjusting the readout electron threshold of each pixel, the neutron counting uniformity of each pixel is optimized to more than 90%.On this basis, the non-uniformity of detection efficiency has little influence on the stress test results of the sample.

    Fig.11.Detection efficiencies of different pixels at different neutron wavelengths.

    4.3.Max count rate

    The neutron signal measured by the scintillator detector based on ZnS/6LiF has long optical attenuation,and the pulse width of the signal is generally approximately 10 μs with slow luminescent component.The application of this type of scintillator detector is limited by its low count rate.Through the optimization by the self-designed readout electronics,the slow component of the neutron signal larger than 2 μs is eliminated.We tested the max count rate of the detector by adjusting the slit length which was placed in the neutron exit hole to control the neutron flux.The detector was placed in the straight direction of the beam line, and a boron-containing aluminum plate with different slit lengths were placed in front of the detector.The counting rate curve can be obtained when the slits changed,as shown in Fig.12.The counting rate of the detector increased linearly with increasing slit length.When the slit length larger than 20 mm,the counting rate of the detector increased in nonlinearity.When the slit length was greater than 80 mm, the counting rate reached 459 kHz which is nearly saturation.Through linearly fitting of the counting-rate vs.slit length,we obtained that the highest linear counting rate is about 247 kHz when the slit length is 20 mm.

    Fig.12.Counting rate test results.The inset shows the counting rate increases linearly with the slit length when the slit length is less than 20 mm.

    4.4.Spatial resolution

    According to the requirements of ERNI,the pixel size of the detector prototype was designed to be 3 mm×50 mm.A boron–aluminum plate with 1 mm wide slit was used to test the spatial resolution of the detector.The position resolution test results for the detector are shown in Fig.13.It can be seen that one irradiated peak is clearly resolved.The small neutron counts in the adjacent pixels were caused by the poor neutron collimation.Since each pixel is optically isolated,the spatial resolution corresponds to the detector pixel size.The minimum spatial resolution of the detector in the horizontal direction is 3 mm.

    Fig.13.Results of position resolution test.

    5.Preliminary engineering design of the detector for ERNI application

    Figure 14 shows the picture of two kinds of detector units which contains six and four small detector modules respectively.These units will be fixed on a mechanical support frame to form an arc structure with a radius of 2 m.All the units will be placed in the shell of a boron-containing aluminum plate to protect from light and neutron radiation.Each detector module in the unit consists of 64 pixels with a size of 3 mm×50 mm.All detector units are mounted on a bank bracket according to the laser positioning data.

    Fig.14.Preliminary engineering design of the detector for ERNI.

    6.Conclusion

    We developed a scintillator neutron detector prototype for the ERNI based on a6LiF/ZnS (Ag) scintillation screen and SiPM array.The neutron signal was processed by a selfdesigned electronics based on the ASIC chip and FPGA.The prototype of the detector was tested in neutron beam 20#of the CSNS.The test results showed that the position resolution of the detector was 3 mm,the max count rate was 247 kHz,and the detection efficiency was greater than 40% at 1 ?A neutron wavelength.The test results showed that the detector fulfilled the requirements of the ERNI.This detector prototype could be a good working unit for the array splicing structure for the ERNI.We will start the mass production of the nearly 400 detector units for future installation in the ERNI.AcknowledgmentsProject supported by the National Natural Science Foundation of China(Grant Nos.11875273,U1832111,61964001,and 12275049), the Science Foundation of Guangdong Province of China (Grant No.2020B1515120025), the Neutron Physics Laboratory Funding of China Academy of Engineering Physics (Grant No.2018BC03), the General Project of Jiangxi Province Key Research and Development Program (Grant No.20212BBG73012), the Key Scientific Research Projects of Henan Higher Education Institutions(Grant Nos.23A490002 and 24A490001), and the Engineering Research Center of Nuclear Technology Application (Grant No.HJSJYB2021-4).

    猜你喜歡
    楊浩
    南京信息工程大學藝術學院書法作品選登
    平凡人生 絢麗篇章
    ——記兵團勞動模范楊浩
    兵團工運(2019年9期)2019-12-13 00:08:28
    討債也犯罪嗎
    故事會(2019年5期)2019-03-05 04:51:34
    紀實
    河南電力(2017年9期)2017-11-29 14:06:15
    拼爸
    啄木鳥(2016年6期)2016-05-31 13:53:35
    以司法辦案的質效檢驗司法公信力——訪秦皇島市人民檢察院黨組書記、檢察長楊浩
    楊浩涌:創(chuàng)業(yè)者要學會造勢和借勢
    金色年華(2016年10期)2016-02-28 01:41:48
    銷售與市場·渠道版(2016年1期)2016-02-23 22:13:28
    楊浩涌談“如果”
    百億美金背后的命運——楊浩涌:百億美金背后的命運
    高清欧美精品videossex| 午夜免费观看性视频| av天堂久久9| 久久午夜综合久久蜜桃| 国产成人免费观看mmmm| 免费av不卡在线播放| tube8黄色片| 男人爽女人下面视频在线观看| 色哟哟·www| 两性夫妻黄色片 | 少妇被粗大的猛进出69影院 | 色哟哟·www| 久久精品人人爽人人爽视色| 99久久人妻综合| 午夜福利影视在线免费观看| 五月玫瑰六月丁香| 免费人妻精品一区二区三区视频| 看十八女毛片水多多多| 精品亚洲成a人片在线观看| 老司机影院成人| 久久ye,这里只有精品| 久久精品久久久久久噜噜老黄| 国产av码专区亚洲av| 午夜免费观看性视频| 纯流量卡能插随身wifi吗| 一区二区三区乱码不卡18| 亚洲国产欧美在线一区| 亚洲美女黄色视频免费看| 亚洲av电影在线进入| 夜夜爽夜夜爽视频| 麻豆乱淫一区二区| 一级黄片播放器| 日本爱情动作片www.在线观看| 国产成人免费观看mmmm| 成人毛片60女人毛片免费| 90打野战视频偷拍视频| 亚洲丝袜综合中文字幕| 国产精品麻豆人妻色哟哟久久| 巨乳人妻的诱惑在线观看| 韩国精品一区二区三区 | 成人毛片60女人毛片免费| 国产精品国产av在线观看| 高清毛片免费看| 麻豆精品久久久久久蜜桃| 99热这里只有是精品在线观看| 欧美 亚洲 国产 日韩一| 一二三四中文在线观看免费高清| 亚洲综合色网址| 亚洲一级一片aⅴ在线观看| 91午夜精品亚洲一区二区三区| 在线天堂中文资源库| 国产乱人偷精品视频| 少妇熟女欧美另类| 人妻人人澡人人爽人人| 一边亲一边摸免费视频| 久久精品国产自在天天线| 国产高清不卡午夜福利| 免费大片黄手机在线观看| 新久久久久国产一级毛片| 美女国产高潮福利片在线看| 9191精品国产免费久久| 色视频在线一区二区三区| 欧美少妇被猛烈插入视频| 男女国产视频网站| 女人精品久久久久毛片| 欧美日韩成人在线一区二区| 精品国产一区二区三区久久久樱花| 亚洲精品一二三| 在线观看人妻少妇| 蜜桃国产av成人99| 丰满少妇做爰视频| 一区二区三区四区激情视频| 欧美精品国产亚洲| 久久精品久久久久久噜噜老黄| 天天躁夜夜躁狠狠久久av| 亚洲成色77777| 久久毛片免费看一区二区三区| 成人二区视频| 亚洲国产精品成人久久小说| 卡戴珊不雅视频在线播放| 男女边吃奶边做爰视频| 久久这里只有精品19| 国产精品国产三级专区第一集| 波野结衣二区三区在线| 少妇被粗大的猛进出69影院 | 宅男免费午夜| 精品人妻在线不人妻| 精品亚洲成a人片在线观看| 午夜精品国产一区二区电影| 国产精品一区www在线观看| 99九九在线精品视频| 国产精品女同一区二区软件| 亚洲精品乱久久久久久| 少妇人妻 视频| 69精品国产乱码久久久| 欧美人与性动交α欧美精品济南到 | 女性生殖器流出的白浆| 久久亚洲国产成人精品v| 国产伦理片在线播放av一区| 久久人人97超碰香蕉20202| 另类精品久久| 99热这里只有是精品在线观看| 中文字幕制服av| 欧美xxxx性猛交bbbb| 成年人午夜在线观看视频| 亚洲欧美一区二区三区国产| 在线免费观看不下载黄p国产| 亚洲精品第二区| 国产精品久久久久久久久免| 国产一级毛片在线| 久久99热6这里只有精品| 韩国高清视频一区二区三区| 久久久精品区二区三区| 国产精品久久久久久精品古装| 蜜桃国产av成人99| 狠狠精品人妻久久久久久综合| 嫩草影院入口| 中文精品一卡2卡3卡4更新| 国产福利在线免费观看视频| 成人毛片a级毛片在线播放| 插逼视频在线观看| 久久国产精品大桥未久av| 国产白丝娇喘喷水9色精品| www.av在线官网国产| 精品少妇黑人巨大在线播放| 深夜精品福利| 在线观看免费视频网站a站| 国产色婷婷99| 天天影视国产精品| 在线观看免费视频网站a站| 精品国产一区二区三区四区第35| 免费黄频网站在线观看国产| 久久久久久人妻| 飞空精品影院首页| 美女视频免费永久观看网站| 最后的刺客免费高清国语| 在线观看三级黄色| 美女国产视频在线观看| 久久久亚洲精品成人影院| 久久鲁丝午夜福利片| 日韩制服丝袜自拍偷拍| 韩国av在线不卡| 水蜜桃什么品种好| 亚洲综合精品二区| 啦啦啦视频在线资源免费观看| 精品第一国产精品| 在线观看国产h片| 免费久久久久久久精品成人欧美视频 | 国产探花极品一区二区| 高清视频免费观看一区二区| 热99久久久久精品小说推荐| 久久久欧美国产精品| 久久精品aⅴ一区二区三区四区 | av国产精品久久久久影院| 久久影院123| 在线观看国产h片| 国产高清国产精品国产三级| 免费av中文字幕在线| 国产一区亚洲一区在线观看| 亚洲成国产人片在线观看| 色婷婷av一区二区三区视频| 精品一区二区免费观看| 国产精品人妻久久久影院| 国产成人av激情在线播放| 人人澡人人妻人| 日本av手机在线免费观看| 在线观看美女被高潮喷水网站| 黑人欧美特级aaaaaa片| 免费大片18禁| 美女xxoo啪啪120秒动态图| 美女xxoo啪啪120秒动态图| 国产av国产精品国产| 高清不卡的av网站| 国产免费一区二区三区四区乱码| 午夜福利视频精品| 欧美日韩综合久久久久久| 全区人妻精品视频| 最近最新中文字幕大全免费视频 | 国产午夜精品一二区理论片| h视频一区二区三区| 日韩视频在线欧美| 亚洲人成网站在线观看播放| 亚洲国产精品999| 伦精品一区二区三区| 在线天堂中文资源库| videosex国产| 一级毛片黄色毛片免费观看视频| 亚洲第一区二区三区不卡| 欧美精品一区二区大全| 欧美日韩成人在线一区二区| 亚洲熟女精品中文字幕| 精品一区二区三区四区五区乱码 | 免费大片黄手机在线观看| 看十八女毛片水多多多| 免费观看av网站的网址| 亚洲精品日韩在线中文字幕| 男人操女人黄网站| 国产精品秋霞免费鲁丝片| 最近最新中文字幕免费大全7| 爱豆传媒免费全集在线观看| 国产精品免费大片| 久久午夜综合久久蜜桃| 国精品久久久久久国模美| 好男人视频免费观看在线| 国产精品久久久久久精品电影小说| 久久人人爽人人片av| 国产成人欧美| 97在线人人人人妻| 免费黄频网站在线观看国产| 国产乱人偷精品视频| 日韩一区二区三区影片| 久久久久久久国产电影| 丝袜喷水一区| 日韩电影二区| a级片在线免费高清观看视频| 亚洲精品美女久久av网站| 成人亚洲精品一区在线观看| 大陆偷拍与自拍| 久久99一区二区三区| 亚洲精品久久久久久婷婷小说| 免费人妻精品一区二区三区视频| av福利片在线| 亚洲av福利一区| 亚洲av电影在线观看一区二区三区| av国产精品久久久久影院| 一本久久精品| 人妻系列 视频| av线在线观看网站| 成年女人在线观看亚洲视频| 18+在线观看网站| 女性生殖器流出的白浆| 午夜福利在线观看免费完整高清在| 国产永久视频网站| 69精品国产乱码久久久| 五月玫瑰六月丁香| 久久热在线av| 18禁在线无遮挡免费观看视频| 高清欧美精品videossex| 天堂俺去俺来也www色官网| 国产在线一区二区三区精| 亚洲欧美成人精品一区二区| 日韩熟女老妇一区二区性免费视频| 交换朋友夫妻互换小说| 日本色播在线视频| 亚洲一级一片aⅴ在线观看| 伦理电影免费视频| 精品少妇内射三级| a 毛片基地| 久久久久久人人人人人| 久久久久久久亚洲中文字幕| 亚洲国产精品999| 一级毛片黄色毛片免费观看视频| 18在线观看网站| 亚洲欧洲国产日韩| 夫妻午夜视频| 美女内射精品一级片tv| 熟女人妻精品中文字幕| 如何舔出高潮| 青春草视频在线免费观看| 老司机影院毛片| 日本与韩国留学比较| 黑人高潮一二区| 校园人妻丝袜中文字幕| 精品一区二区三区视频在线| 亚洲精品456在线播放app| 国产伦理片在线播放av一区| 日韩一本色道免费dvd| 精品午夜福利在线看| 青春草亚洲视频在线观看| 美国免费a级毛片| 飞空精品影院首页| 中国美白少妇内射xxxbb| 丝袜人妻中文字幕| 久久影院123| 亚洲欧美日韩另类电影网站| 国产精品国产av在线观看| 母亲3免费完整高清在线观看 | 国产xxxxx性猛交| 麻豆精品久久久久久蜜桃| 99久久人妻综合| 欧美人与善性xxx| 国产免费一级a男人的天堂| 我的女老师完整版在线观看| 校园人妻丝袜中文字幕| 国产精品99久久99久久久不卡 | 国产欧美日韩综合在线一区二区| 午夜久久久在线观看| 丰满少妇做爰视频| 18禁动态无遮挡网站| 久久久欧美国产精品| 国产免费福利视频在线观看| 亚洲国产av新网站| 人人妻人人添人人爽欧美一区卜| 一本久久精品| 久热久热在线精品观看| videos熟女内射| 国产在线视频一区二区| 最新的欧美精品一区二区| 在线观看三级黄色| 少妇猛男粗大的猛烈进出视频| 久久99热6这里只有精品| 男女无遮挡免费网站观看| 精品酒店卫生间| 欧美日韩成人在线一区二区| 精品久久蜜臀av无| 人人妻人人添人人爽欧美一区卜| 日韩 亚洲 欧美在线| 国产深夜福利视频在线观看| 亚洲欧美成人精品一区二区| 国产福利在线免费观看视频| 亚洲av男天堂| 啦啦啦中文免费视频观看日本| 在线 av 中文字幕| 高清在线视频一区二区三区| 91精品三级在线观看| 亚洲欧美精品自产自拍| www.色视频.com| 久久精品久久精品一区二区三区| 中文乱码字字幕精品一区二区三区| 18禁观看日本| 亚洲精品美女久久久久99蜜臀 | 久久鲁丝午夜福利片| 这个男人来自地球电影免费观看 | 99久久人妻综合| 亚洲经典国产精华液单| 国产一区二区三区av在线| 狂野欧美激情性xxxx在线观看| 丝袜脚勾引网站| 国产高清三级在线| 在线天堂中文资源库| 欧美日韩视频精品一区| 中文字幕最新亚洲高清| 侵犯人妻中文字幕一二三四区| 日韩视频在线欧美| 中文字幕人妻丝袜制服| 搡女人真爽免费视频火全软件| 黄色怎么调成土黄色| 亚洲成人一二三区av| 国产探花极品一区二区| 久久99蜜桃精品久久| 国产片内射在线| 在现免费观看毛片| 新久久久久国产一级毛片| 国产成人精品在线电影| 日本av免费视频播放| 国产亚洲最大av| 水蜜桃什么品种好| 秋霞伦理黄片| 1024视频免费在线观看| 国产日韩一区二区三区精品不卡| 下体分泌物呈黄色| 美女中出高潮动态图| 成人毛片a级毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 精品久久久精品久久久| 国产亚洲av片在线观看秒播厂| 免费高清在线观看日韩| 精品一区二区三区四区五区乱码 | 国产精品 国内视频| 男女边吃奶边做爰视频| 国产精品久久久久成人av| 少妇精品久久久久久久| 狠狠婷婷综合久久久久久88av| 最近最新中文字幕免费大全7| 咕卡用的链子| 国产亚洲精品第一综合不卡 | 黄片播放在线免费| 在线观看www视频免费| 亚洲性久久影院| 久久99精品国语久久久| 成人漫画全彩无遮挡| 久久99热6这里只有精品| 人人妻人人爽人人添夜夜欢视频| 国产精品成人在线| 免费观看无遮挡的男女| 高清在线视频一区二区三区| 99国产综合亚洲精品| 国产精品国产三级国产av玫瑰| 大香蕉97超碰在线| 午夜免费男女啪啪视频观看| 亚洲国产av影院在线观看| 国产成人免费无遮挡视频| 极品少妇高潮喷水抽搐| 在线天堂最新版资源| 国产男人的电影天堂91| 亚洲欧美日韩另类电影网站| a级片在线免费高清观看视频| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 欧美 日韩 精品 国产| 少妇高潮的动态图| 日本wwww免费看| 春色校园在线视频观看| 又黄又爽又刺激的免费视频.| 在线看a的网站| 一级片'在线观看视频| 国产成人精品福利久久| 欧美bdsm另类| 国产在视频线精品| 精品视频人人做人人爽| 亚洲av中文av极速乱| 综合色丁香网| 国产深夜福利视频在线观看| 国产熟女欧美一区二区| 日韩中文字幕视频在线看片| 五月天丁香电影| 另类亚洲欧美激情| 国产精品一国产av| 国产免费一区二区三区四区乱码| 日韩电影二区| 中文欧美无线码| 亚洲成人手机| 天天影视国产精品| 亚洲精品久久久久久婷婷小说| 天堂8中文在线网| av在线app专区| 日本与韩国留学比较| 国产精品熟女久久久久浪| 99re6热这里在线精品视频| 精品一区二区免费观看| 国产精品一区www在线观看| 宅男免费午夜| 免费播放大片免费观看视频在线观看| 五月天丁香电影| 一区二区日韩欧美中文字幕 | 亚洲欧洲日产国产| 欧美3d第一页| 全区人妻精品视频| 精品一区在线观看国产| 女的被弄到高潮叫床怎么办| 亚洲欧美一区二区三区黑人 | 国产欧美另类精品又又久久亚洲欧美| 久久久久国产精品人妻一区二区| 在线精品无人区一区二区三| 少妇人妻 视频| 色婷婷久久久亚洲欧美| 熟女av电影| 国产麻豆69| 9热在线视频观看99| 久久久久久久久久成人| 久久这里只有精品19| 九色亚洲精品在线播放| 性高湖久久久久久久久免费观看| 九色成人免费人妻av| 黄色 视频免费看| 亚洲成人av在线免费| 欧美国产精品一级二级三级| 亚洲内射少妇av| 成人国语在线视频| a级毛片黄视频| 午夜福利视频在线观看免费| 成人免费观看视频高清| 一本色道久久久久久精品综合| 亚洲精品久久午夜乱码| 久久久久久人人人人人| 中文字幕人妻丝袜制服| 伦理电影免费视频| 内地一区二区视频在线| 午夜福利在线观看免费完整高清在| 伦理电影免费视频| 欧美成人午夜免费资源| 国产女主播在线喷水免费视频网站| 国产日韩一区二区三区精品不卡| 高清毛片免费看| 亚洲av欧美aⅴ国产| 午夜免费鲁丝| videos熟女内射| 亚洲精品日韩在线中文字幕| 中文字幕精品免费在线观看视频 | 国产精品秋霞免费鲁丝片| 美女国产高潮福利片在线看| 人人妻人人爽人人添夜夜欢视频| 精品一区二区免费观看| 最近的中文字幕免费完整| 夫妻性生交免费视频一级片| √禁漫天堂资源中文www| 狠狠精品人妻久久久久久综合| 日本黄大片高清| 校园人妻丝袜中文字幕| 亚洲第一av免费看| 亚洲一区二区三区欧美精品| 久久午夜福利片| 久久精品熟女亚洲av麻豆精品| 日韩中字成人| 97人妻天天添夜夜摸| kizo精华| 亚洲av.av天堂| 热re99久久精品国产66热6| 老司机影院毛片| 中国国产av一级| av在线老鸭窝| 两性夫妻黄色片 | 国产无遮挡羞羞视频在线观看| 日本免费在线观看一区| 黄色怎么调成土黄色| 免费人成在线观看视频色| 日本wwww免费看| 亚洲成人一二三区av| 高清黄色对白视频在线免费看| 日本av手机在线免费观看| 国产日韩欧美在线精品| 五月伊人婷婷丁香| 秋霞在线观看毛片| 日韩av不卡免费在线播放| 亚洲欧美中文字幕日韩二区| 亚洲欧美一区二区三区黑人 | 有码 亚洲区| 狠狠精品人妻久久久久久综合| 男女啪啪激烈高潮av片| 又黄又粗又硬又大视频| 亚洲精品美女久久av网站| 青春草亚洲视频在线观看| 久久精品熟女亚洲av麻豆精品| 成人国产麻豆网| 国产乱来视频区| 亚洲一码二码三码区别大吗| 王馨瑶露胸无遮挡在线观看| 亚洲精品美女久久久久99蜜臀 | 国产在线一区二区三区精| 高清黄色对白视频在线免费看| 亚洲国产最新在线播放| 精品人妻熟女毛片av久久网站| 国国产精品蜜臀av免费| 亚洲国产精品国产精品| 亚洲熟女精品中文字幕| 亚洲欧美日韩另类电影网站| 制服丝袜香蕉在线| 91精品伊人久久大香线蕉| 午夜福利,免费看| 亚洲av福利一区| 日日啪夜夜爽| 日韩中字成人| 韩国av在线不卡| 纵有疾风起免费观看全集完整版| av电影中文网址| 成年人免费黄色播放视频| 精品一区在线观看国产| 国产高清三级在线| 日韩不卡一区二区三区视频在线| 韩国高清视频一区二区三区| 日韩av在线免费看完整版不卡| 成年人午夜在线观看视频| 最近最新中文字幕大全免费视频 | 午夜福利影视在线免费观看| 久久国产精品大桥未久av| 免费观看性生交大片5| 国产成人精品一,二区| 亚洲国产av新网站| 国产精品久久久久久久久免| 午夜日本视频在线| 男人爽女人下面视频在线观看| av.在线天堂| 日本欧美国产在线视频| 亚洲av电影在线进入| 亚洲高清免费不卡视频| 国产成人精品福利久久| 日本爱情动作片www.在线观看| 亚洲精华国产精华液的使用体验| 高清av免费在线| 午夜福利视频在线观看免费| 少妇人妻久久综合中文| 狠狠精品人妻久久久久久综合| 香蕉国产在线看| 欧美成人午夜精品| 亚洲精品乱码久久久久久按摩| 人妻少妇偷人精品九色| 制服丝袜香蕉在线| 欧美 亚洲 国产 日韩一| 99视频精品全部免费 在线| 少妇猛男粗大的猛烈进出视频| 精品人妻熟女毛片av久久网站| 在线观看国产h片| 精品一品国产午夜福利视频| 五月玫瑰六月丁香| videos熟女内射| 国产欧美日韩综合在线一区二区| 天堂俺去俺来也www色官网| 亚洲av中文av极速乱| 水蜜桃什么品种好| 精品福利永久在线观看| 女性被躁到高潮视频| 天堂中文最新版在线下载| 亚洲欧美清纯卡通| 国产av码专区亚洲av| 最后的刺客免费高清国语| 亚洲经典国产精华液单| 欧美性感艳星| 蜜桃在线观看..| 国产亚洲午夜精品一区二区久久| 日本91视频免费播放| 一级毛片 在线播放| 中文字幕亚洲精品专区| 香蕉国产在线看| 国产精品国产三级国产专区5o| 亚洲av国产av综合av卡| 一二三四在线观看免费中文在 | 在线观看免费日韩欧美大片| 黄网站色视频无遮挡免费观看| 日产精品乱码卡一卡2卡三| 麻豆乱淫一区二区| 久久99精品国语久久久| 成人二区视频| 波多野结衣一区麻豆| 亚洲国产欧美日韩在线播放| 日本午夜av视频| 国产欧美日韩一区二区三区在线| 26uuu在线亚洲综合色| 狠狠精品人妻久久久久久综合| 免费播放大片免费观看视频在线观看| 在线亚洲精品国产二区图片欧美| 最黄视频免费看| 丝瓜视频免费看黄片| 国产成人91sexporn| 国产高清三级在线| 在线观看三级黄色|