• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure

    2023-10-11 07:56:34BinghuiWang王冰輝YanhuiXing邢艷輝ShengyuanDong董晟園JiahaoLi李嘉豪JunHan韓軍HuayaoTu涂華垚TingLei雷挺WenxinHe賀雯馨BaoshunZhang張寶順andZhongmingZeng曾中明
    Chinese Physics B 2023年9期
    關(guān)鍵詞:韓軍

    Binghui Wang(王冰輝), Yanhui Xing(邢艷輝), Shengyuan Dong(董晟園), Jiahao Li(李嘉豪),Jun Han(韓軍), Huayao Tu(涂華垚), Ting Lei(雷挺), Wenxin He(賀雯馨),Baoshun Zhang(張寶順), and Zhongming Zeng(曾中明),?

    1Key Laboratory of Opto-electronics Technology,Ministry of Education,College of Microelectronics,Beijing University of Technology,Beijing 100124,China

    2Nanofabrication Facility,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China

    Keywords: two-dimensional material,ReS2,heterostructure,photodetector

    1.Introduction

    Transition metal dichalcogenides(TMDs)with the chemical formulaMX2(X=S, Se, Te andM=transition metal)are widely used in various fields due to their weak interlayer coupling, good optical transparency, and large bandgap,[1–3]such as gas sensors,[1]photodetectors,[4]inverters, and solar cells.Most of the previous researches on TMDs have focused on the Mo and W families, which summarized the material growth and device preparation of photodiodes and rectifiers.[5–9]However, the recently discovered ReS2possesses properties quite different from MoS2, which has aroused extensive researches.[10,11]First,due to the twisted 1T crystal structure of ReS2,it has a direct bandgap independent of thickness,[12,13]which makes the optical properties of bulk ReS2and single-layer ReS2similar,provides a good basis for mechanical exfoliation.In addition, ReS2has an ultra-high light absorption rate.It has been reported in the literature that the responsivity of multilayer ReS2photodetectors can reach 88600 A/W.[14]However,one of the most serious problems of ReS2photodetectors is the slow response speed,which reaches hundreds of seconds.[15]In order to solve this problem, researchers have adopted heterostructures.Two-dimensional heterojunctions materials are combined by van der Waals forces and not affected by lattice mismatch,and different materials can be freely matched, and the detectors with heterojunctions can exhibit various interesting properties.[15,16]For example, the ReS2/graphene/WSe2heterojunction photodetector prepared by Wanget al.has a response speed of 44 ms under 532-nm light.[17]The ReS2/ReSe2heterojunction photodetector prepared by Choet al.has a similar response time of 0.4 s under 400-nm and 550-nm light.[12]Although the response speed of the devices was been greatly improved, it is at the expense of the responsivity.The device responsivity of Wanget al.[17]is 430 mA/W,and that of Choet al.[12]is only 21.07 mA/W.

    In this paper, it is reported that the photodetector based on ReS2has ultra-high responsivity and response speed in seconds.We chose SnS2material as the light absorbing layer,and prepared a vertical structure ReS2/SnS2heterojunction photodetector.The detector has a responsivity of 4706 A/W under 365-nm light,which is higher than the previously reported detectors based on ReS2heterojunction,[15,18]and the response speed of the detector is only 1.4 seconds.In addition,our detector also had a high detectivity of 5.29×1012Jones and an ultra-high external quantum efficiency(EQE)of 1.602×106%.The study paved the way for improving responsivity and reducing response time of the ReS2-based heterostructures photodetector.

    2.Experimental details

    2.1.Device fabrication

    The ReS2/SnS2heterostructure device was fabricated on the SiO2/Si substrate using a dry transfer technique.The fewlayer flakes of ReS2and SnS2were mechanically exfoliated from commercially bulk crystal.First, the thin ReS2flakes were exfoliated on a highly p-doped Si substrate with a 300-nm-thick SiO2layer.Then,the same method was adopted for transferring several layers SnS2onto the ReS2under the optical microscope assisted by aligned transfer system.Finally,to fabricate the heterostructure device, the electrode patterns were produced by electron–beam lithography system (EBL,Raith eLINE Plus)and Ti/Au(10 nm/50 nm)metals were deposited by electron–beam evaporation (Ulvac Ei-5z) to form source and drain electrodes.

    2.2.Result and discussion

    Figure 1(a) shows the schematic diagram of the ReS2/SnS2heterojunction device.The mechanical exfoliation ReS2and SnS2were transferred to an SiO2/Si substrate sequentially.The electrodes are placed on the ReS2.In order to obtain the interface information of ReS2and SnS2layer of the device, the high-resolution transmission electron microscope (HRTEM) was used, as shown in Fig.1(b).The interfaces between SnS2and ReS2, ReS2and substrate are clear and flat.Figure 1(c) shows the energy dispersive x-ray spectroscopy (EDS) of the device.The distribution of each layer element was uniform, and these elements are corresponding to each layer material of HRTEM,indicating that no diffusion and impurity element were introduced in the process of device preparation.The thickness of ReS2(8 nm)and SnS2(14 nm)is shown by atomic force microscopy(AFM)in Fig.1(d),and the inset is the surface topography image of the heterojunction.Figure 1(e)is the Raman spectrum of the single ReS2and SnS2material and the ReS2/SnS2heterojunction.SnS2(the blue line)has a main peak A1gat 313.4 cm-1,which is consistent with the literature report.[19]Typical Raman characteristic peaks of ReS2(the red line) are also observed at 154 cm-1(E2g) and 215 cm-1(A1g).[20]The black line in Fig.1(e)shows the characteristic peaks of the ReS2/SnS2heterojunction.The above peaks are observed in overlapping areas, indicating the good quality of the heterojunction.Figure 1(f)is the scanning electron microscope image of the device after the preparation of the electrodes.The light absorption layer SnS2and the transmission layer ReS2could be clearly observed,and the electrodes are only connected on the ReS2,and the device is regular in shape and a clean surface.The above results show the good structure and successful fabrication of the ReS2/SnS2heterojunction device.

    Fig.1.Characterization of ReS2/SnS2 heterostructure.(a)Schematic diagram of the ReS2/SnS2 heterostructure.(b)HRTEM image.Scale bar:10 μm.(c)EDS of the corresponding elements of the photodetector.(d)Height profiles of corresponding ReS2 and SnS2 flakes in AFM.The inset shows a topographic AFM image of the ReS2/SnS2 device.(e)Raman spectrum of the isolated ReS2,isolated SnS2,and their overlapped regions.(f)The SEM image of the heterostructure,where the scale bar is 5 μm.

    The transport properties of the device under dark conditions were measured.Figure 2(a)shows the relationship of the source–drain current (Ids) and the source–drain voltage (Vds)when the gate voltage (Vg) varies from-80 V to 80 V.TheIds–Vdscurves are straight lines passing through the origin,indicating that ReS2forms a good ohmic contact with Ti/Au.AsVgincreases, the current increases accordingly, meaning that the device has obvious gate voltage control characteristic.Figure 2(b) shows theIds–Vgrelationship of the device whenVdschanges from-3 V to 3 V.WhenVgbelow-30 V(Vth),Idsapproaches 0 A,and whenVgover-30 V,Idsrises gradually.When theVgis negative, the direction of the external electric field is opposite to that of the built-in electric field.WhenVg<Vth(-30 V),the external electric field plays a major role,electrons flow from ReS2to SnS2and the carrier concentration decreased,resulting in the current approaches 0 A,whenVg>Vth(-30 V), the direction of the electric field pointed from ReS2to SnS2,and electrons entered ReS2under the action of the electric field, increasing the carrier concentration in the channel, thereby increasing the drain current.The device also switched from the insulating state to the conducting state,showing obvious n-type conductivity.Figure 2(c)shows the logarithmic curves ofIdsversusVg,which characterizes the on-off ratio of the device.The on-off ratio reaches 104, indicating that the device has a high current regulation capability.

    Fig.2.The I–V characteristics of the device based on ReS2/SnS2 heterostructure under non-illumination condition.(a) Ids–Vds output characteristics under various back gate voltages.(b) Ids–Vg transfer curves at various drain voltages.(c) The logarithmic curves of the transfer characteristic curves of the ReS2/SnS2 heterojunction.

    Fig.3.(a)Schematic diagram of the device measure setup.(b)Output characteristic curves under different incident power densities(Vg=0 V).(c)Transfer characteristic curves of the device under different incident power densities(Vds =1 V).(d)Photocurrent(Iph)as a function of Vg under different incident power densities(Vds=1 V).

    The optoelectrical properties of the device were tested under 365-nm light source.Figure 3(a) is a schematic diagram of the measurement setup,in which the gate voltage is applied on the backside of the heterojunction, and the source–drain voltage is applied on the ReS2.Figure 3(b)shows the output characteristic curves under different incident power intensities when the gate voltage is 0 V.Compared with theIdsunder dark conditions,theIdsis significantly improved under illumination.The light absorption layer SnS2was irradiated,a large number of photogenerated carriers were generated,and transported into ReS2under the action of the built-in electric field,resulting in increasing the drain current.WhenVdsis 1 V,the transfer characteristic curves of the device at different incident power densities are shown in Fig.3(c).Idsincreased with the increase of incident power densities.The gate voltage could effectively regulate the channel current,and a higher gate voltage induced and promoted more carriers to pass through the heterojunction,thereby increasing the photogenerated current.In order to characterize the change of photocurrent with gate voltage more intuitively, we plotted the photocurrent (Iph) as a function ofVg, as shown in Fig.3(d).At a certain optical power density and source–drain voltage (1 V), with the increase of the gate voltage, the photocurrent increased first and then decreased, and the peak value of each curve corresponds to a different gate voltage,and the gate voltage shifted to the right with the decrease of the optical power density.Because the photocurrent was modulated by the optical power density and the gate voltage.When the optical power density was high, SnS2can generate more photogenerated electrons and holes,the concentration of photogenerated electrons in the channel will be greater,so a smaller gate voltage is required to achieve saturation current.

    Then, we quantitatively characterized the detection performances of the ReS2/SnS2heterojunction at 365 nm,including responsivity(R),specific detectivity(D*),EQE,and noise equivalent power(NEP),which could be calculated by the following functions:

    wherePin,A,e,h,c,andλare the incident optical power density,effective illuminated area,electron charge,Planck’s constant,light speed,and incident light wavelength,respectively.

    Figure 4(a)shows the gate voltage dependence of responsivity under various incident power densities atVds= 1 V.The responsivity decreased with the increase of the optical power density.WhenPin=1.269 mW/cm2andVg=10 V,the detector reaches the highest responsivity of 4706 A/W,and the responsivity of the detector is much higher than other reported results.[15,18]In addition, the specific detectivity is also an important parameter to evaluate the performance of the detector, which represents the sensitivity of the detector.As shown in Fig.4(b), whenVg=0 V andVds=1 V,D*reduce with the increase of the incident power densities,and the maximum value 5.29×1012Jones is obtained at the minimum incident power densities.Figure 4(c) shows EQE as a function of incident power densities whenVg= 10 V andVds= 1 V.EQE reduces with the increase of the optical power density, and the maximum value is 1.602×106%whenPin=1.269 mW/cm2,which shows that our detector has an excellent photoelectric conversion capability.In addition,figure 4(d) shows NEP as a function of the incident power densities whenVg=0 V andVds=1 V, an ultra-low noise equivalent power of 1.2×10-16W/Hz1/2was obtained whenPin=1.269 mW/cm2.

    To further illustrate the reason for the high responsivity of the detector,we calculated the photoconductive gain and performed the energy band analysis.The photoconductive gainGis defined as the ratio of minority carrier lifetimeτlifeto transit timeτt, which can be obtained according to the following equations:

    whereWandLare the width and length of the detector channel,respectively,andCgis the capacitance of the gate insulator(CSiO2=1.033×10-8F/cm2).WhenVds=3 V,the field-effect mobilityμand the carrier transport timeτtof the device are calculated to be 22.386 cm2·V-1·s-1and 0.59 ns,respectively,and the photoconductive gainGis calculated to be about 1010,which provides a theoretical basis for producing high responsivity.Therefore,the high responsivity of our device is due to the built-in electric field formed by the heterojunction,resulting in an ultra-high photoconductive gain,and the high photoconductive gain allows high responsivity.

    Figure 5(a)shows the band arrangement structure of ReS2and SnS2.The minimum conduction band(Ec)and the maximum valence band(Ev)of SnS2[21](ReS2[22])are-5.14 eV(-4.68 eV) and-6.73 eV (-6.19 eV), respectively, which make the ReS2/SnS2heterojunction belong to a typical type-II band alignment structure.Electrons transition from SnS2the valence band to the conduction band under illumination,generating electron–hole pairs.Figure 5(b)is a schematic diagram of carrier transmission under light conditions.Under illumination conditions, photogenerated carriers in SnS2are collected into ReS2under the action of the built-in electric field, thus generating a higher photocurrent and greatly improving the photo responsivity of the ReS2/SnS2heterojunction.Figure 5(c) shows the dark current of the single ReS2and the ReS2/SnS2heterojunction as a function of the gate voltage.The dark current of the ReS2/SnS2heterojunction detector significantly reduced, because the electrons in ReS2flowed to SnS2with a low Fermi level under dark conditions,the carrier concentration in ReS2decreased,thereby reducing the dark current and improving the detectivity of the device for weak light.

    Response time is also one of the key parameters to characterize the detector.We compared the optical switching characteristics of the ReS2/SnS2heterojunction and a single ReS2detector under 365-nm light source.The response time refers to the time required for the device to generate photo-generated carriers to change the output current when the photodetector is irradiated.The rising time is defined as the current increase from the 10% to 90% of the saturation current.On the contrary, the falling time indicates the time falling from 90%to 10%of the saturation current when the optical source is removed.The response time of the single ReS2detector is shown in Fig.6(a).The rise time is 6.7 s and a fall time of 25.7 s.The long fall response time is attributed to trap states generated in the ReS2material as a result of its preparation.When ReS2absorbs photon energy,it generates electron–hole pairs, and a sort of the carriers can become trapped by a trap state,this impedes the recombination of electron–hole pairs in the conductive channel, thereby extending the response time of the ReS2detector.[14,23,24]The response time of the heterojunction is shown in Fig.6(b), with a rise time of 1.4 s and a fall time of 7 s.The response speed of the device is obviously improved.It is attributed to the fact that the built-in electric field between ReS2and SnS2heterojunction, accelerates the separation of photogenerated electron–hole pairs.Moreover,the device is still stable when the device is optically switched several times.In addition, we also tested the optical switching characteristics of the device under different light source,as shown in Figs.6(c) and 6(d).The device still has stable optical switching characteristics under 460-nm and 532-nm illuminations.

    Fig.6.(a)The optical switching characteristic of the ReS2 photodetector at λ =365 nm.(b)–(d)The optical switching characteristic of the ReS2/SnS2 heterostructure photodetector at λ =365-nm,460-nm,and 532-nm wavelengths,respectively.

    Table 1.Comparison with reported heterojunction photodetectors.

    To compare with other heterojunction photodetectors,Table 1 lists the results of other research groups.[12,17,22,25–29]According to the comparison and analysis in the table, although the response speed of the detector is not as fast as other reported results,the responsivity of the detector is much higher than other reported results,andD*is also about 2–3 orders of magnitude higher than most detectors.In order to improve the responsivity and the response speed of ReS2-based photodetector, the ReS2/SnS2heterojunction is a good choice, and it provides a direction for improving the comprehensive performance of the ReS2-based photodetector.

    3.Conclusion

    We have achieved an ReS2/SnS2heterojunction photodetector,which presents an ultra-high responsivity of 4706 A/W under 365-nm light irradiation, and the response time is only 1.4 s.In addition, the device also has a high specific detectivity of 5.29×1012Jones,an ultra-high EQE of 1.602×106%and an ultra-low noise equivalent power of 1.2×10-16.From the energy band analysis,such a high responsivity is obtained due to the effectively separated electron–hole pairs,which prolongs the lifetime of the carriers, thereby increasing the photocurrent.In conclusion,our ReS2/SnS2heterostructures photodetector provides a new way to improve the responsivity of ReS2-based photodetector and shorten the response time of a single ReS2photodetector.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.61574011,60908012,61575008,61775007, 61731019, 61874145, 62074011, and 62134008),the Beijing Natural Science Foundation(Grant Nos.4182015,4172011, and 4202010), and Beijing Nova Program (Grant No.Z201100006820096).The authors would like to thank the Nano Fabrication Facility, Vacuum Interconnected Nanotech Workstation at Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, and Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences for their technical supports.

    猜你喜歡
    韓軍
    Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
    Negative photoconductivity in low-dimensional materials?
    離婚算算家務(wù)賬
    Based on the core competitiveness of enterprise innovation culture research
    青春歲月(2017年6期)2017-05-13 13:20:45
    內(nèi)網(wǎng)被黑客攻破令韓軍震驚
    飛翔的樹葉
    延河(2016年1期)2016-02-26 08:21:46
    好課堂讓人思緒萬千——基于韓軍老師《老王》課堂教學(xué)的深度思考
    韓媒:中國軍艦去年“侵犯韓軍作戰(zhàn)區(qū)域”76次
    精品人妻一区二区三区麻豆| 日日啪夜夜爽| 中文天堂在线官网| 欧美激情极品国产一区二区三区 | 2018国产大陆天天弄谢| 成人18禁高潮啪啪吃奶动态图 | 少妇丰满av| 一边亲一边摸免费视频| 国产免费视频播放在线视频| 一本一本综合久久| 国产精品久久久久久精品古装| 三上悠亚av全集在线观看 | 久久精品国产自在天天线| 国产成人免费观看mmmm| 亚洲欧洲日产国产| 丰满乱子伦码专区| 日韩成人av中文字幕在线观看| 91久久精品国产一区二区三区| 精品一区二区免费观看| 午夜久久久在线观看| 久久ye,这里只有精品| 日本猛色少妇xxxxx猛交久久| av播播在线观看一区| 九九爱精品视频在线观看| 精品99又大又爽又粗少妇毛片| 久久久a久久爽久久v久久| 国产免费又黄又爽又色| 精品人妻熟女av久视频| 亚洲av免费高清在线观看| 色哟哟·www| 91午夜精品亚洲一区二区三区| 日韩成人伦理影院| 91成人精品电影| 久久精品久久久久久久性| 国产片特级美女逼逼视频| 精品少妇久久久久久888优播| 国产成人精品婷婷| 一本—道久久a久久精品蜜桃钙片| 国内少妇人妻偷人精品xxx网站| 成人二区视频| 亚洲精品456在线播放app| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 美女国产视频在线观看| 国内精品宾馆在线| 日韩精品免费视频一区二区三区 | av黄色大香蕉| 日本-黄色视频高清免费观看| 久久久久久伊人网av| 视频中文字幕在线观看| 国产爽快片一区二区三区| 国产在线视频一区二区| 国产成人91sexporn| 一区二区三区四区激情视频| 久久久久久人妻| www.av在线官网国产| 欧美日韩视频精品一区| 91精品伊人久久大香线蕉| 亚洲国产成人一精品久久久| 免费av不卡在线播放| 日韩制服骚丝袜av| 能在线免费看毛片的网站| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看| 亚洲美女视频黄频| 久久韩国三级中文字幕| 亚洲精品国产av蜜桃| 亚洲欧美日韩东京热| 欧美日韩精品成人综合77777| 久久久久久久精品精品| 国产深夜福利视频在线观看| 精品熟女少妇av免费看| 多毛熟女@视频| 天堂中文最新版在线下载| 久久精品久久久久久噜噜老黄| 久久女婷五月综合色啪小说| 欧美97在线视频| 日日啪夜夜爽| 免费久久久久久久精品成人欧美视频 | 大又大粗又爽又黄少妇毛片口| 久久精品久久久久久久性| 深夜a级毛片| 亚洲国产欧美日韩在线播放 | 精品一区二区免费观看| 麻豆乱淫一区二区| 欧美日韩在线观看h| av视频免费观看在线观看| 热re99久久精品国产66热6| 性色avwww在线观看| 大码成人一级视频| 欧美日韩视频精品一区| 最近中文字幕2019免费版| 久久人妻熟女aⅴ| 边亲边吃奶的免费视频| 亚洲成人av在线免费| 国产午夜精品一二区理论片| 另类亚洲欧美激情| 99热这里只有精品一区| 国产视频内射| 亚洲精品国产av成人精品| av天堂久久9| 精品久久国产蜜桃| 欧美精品一区二区免费开放| 中文天堂在线官网| 国产精品偷伦视频观看了| 纵有疾风起免费观看全集完整版| 国产av一区二区精品久久| 中文字幕人妻熟人妻熟丝袜美| 黑人巨大精品欧美一区二区蜜桃 | 日日啪夜夜爽| 香蕉精品网在线| 啦啦啦啦在线视频资源| 亚洲四区av| 一区在线观看完整版| 久久久国产精品麻豆| 国产av一区二区精品久久| 亚洲精品456在线播放app| 97在线视频观看| 这个男人来自地球电影免费观看 | 国产毛片在线视频| 欧美精品亚洲一区二区| 久久久久精品性色| 国产亚洲一区二区精品| 天堂俺去俺来也www色官网| 免费黄色在线免费观看| 亚洲国产欧美日韩在线播放 | 成人黄色视频免费在线看| 午夜福利网站1000一区二区三区| 免费观看在线日韩| 久久久国产欧美日韩av| 亚洲va在线va天堂va国产| 久久影院123| 最新的欧美精品一区二区| 五月玫瑰六月丁香| 久久久久久久久久久免费av| 欧美一级a爱片免费观看看| 亚洲不卡免费看| 女性被躁到高潮视频| 一区二区三区四区激情视频| 激情五月婷婷亚洲| 激情五月婷婷亚洲| 久久ye,这里只有精品| 少妇人妻精品综合一区二区| 久久鲁丝午夜福利片| 最黄视频免费看| 热re99久久国产66热| 新久久久久国产一级毛片| 在线看a的网站| 国产精品无大码| 国产亚洲最大av| 久久人人爽人人片av| 建设人人有责人人尽责人人享有的| 偷拍熟女少妇极品色| 中文字幕精品免费在线观看视频 | 亚洲美女黄色视频免费看| 伊人久久国产一区二区| 亚洲精品日本国产第一区| 一区二区三区四区激情视频| 18禁在线播放成人免费| 一级二级三级毛片免费看| 国产高清国产精品国产三级| 亚洲国产欧美在线一区| 五月玫瑰六月丁香| 精品一区二区免费观看| 日韩精品有码人妻一区| 亚洲精品自拍成人| 久久影院123| 欧美精品亚洲一区二区| 亚洲美女搞黄在线观看| 久热久热在线精品观看| 老司机亚洲免费影院| 十八禁高潮呻吟视频 | 国产欧美亚洲国产| 亚洲成人av在线免费| 国产精品久久久久久精品古装| 亚洲精品国产av蜜桃| 在线播放无遮挡| 人体艺术视频欧美日本| av有码第一页| 女人久久www免费人成看片| 2022亚洲国产成人精品| 一级毛片 在线播放| 在线观看免费高清a一片| 欧美3d第一页| 国产精品不卡视频一区二区| 日本-黄色视频高清免费观看| 又大又黄又爽视频免费| 亚洲欧美日韩卡通动漫| 久久精品久久久久久久性| tube8黄色片| a级片在线免费高清观看视频| 女人久久www免费人成看片| 国产熟女午夜一区二区三区 | 亚洲性久久影院| 国产色婷婷99| av在线老鸭窝| 少妇被粗大的猛进出69影院 | 久久久午夜欧美精品| 亚洲综合色惰| 搡女人真爽免费视频火全软件| 少妇被粗大猛烈的视频| 爱豆传媒免费全集在线观看| 曰老女人黄片| 久久精品国产亚洲av涩爱| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美日韩另类电影网站| 国产av码专区亚洲av| 搡老乐熟女国产| 日日啪夜夜爽| 欧美精品一区二区免费开放| 日韩 亚洲 欧美在线| 日韩精品免费视频一区二区三区 | 少妇的逼好多水| 嫩草影院新地址| 国产深夜福利视频在线观看| 久久久国产精品麻豆| 在线观看三级黄色| 精品人妻熟女av久视频| a级片在线免费高清观看视频| 精品久久久久久久久亚洲| 午夜91福利影院| 高清在线视频一区二区三区| 人妻制服诱惑在线中文字幕| 亚洲精品日韩av片在线观看| 国精品久久久久久国模美| 国产在线一区二区三区精| 国产av精品麻豆| 亚洲精品日韩在线中文字幕| 搡老乐熟女国产| 国产91av在线免费观看| 国产熟女欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 青青草视频在线视频观看| 国产精品99久久99久久久不卡 | 成人二区视频| 久久国产精品大桥未久av | 久久精品国产鲁丝片午夜精品| 国产高清不卡午夜福利| 亚洲怡红院男人天堂| 热re99久久国产66热| 蜜桃久久精品国产亚洲av| 人妻制服诱惑在线中文字幕| 亚洲伊人久久精品综合| 一二三四中文在线观看免费高清| 又黄又爽又刺激的免费视频.| 免费av不卡在线播放| 大陆偷拍与自拍| 又大又黄又爽视频免费| 一级毛片我不卡| 天堂俺去俺来也www色官网| 99国产精品免费福利视频| 五月伊人婷婷丁香| 国产国拍精品亚洲av在线观看| 在线免费观看不下载黄p国产| 日韩成人伦理影院| 精品一区二区免费观看| 精品少妇内射三级| 老熟女久久久| 国产亚洲5aaaaa淫片| 校园人妻丝袜中文字幕| 国产一区有黄有色的免费视频| 日产精品乱码卡一卡2卡三| 午夜91福利影院| 久久久欧美国产精品| 最黄视频免费看| 曰老女人黄片| 久久久久久久久久久免费av| 国国产精品蜜臀av免费| 亚洲国产成人一精品久久久| 欧美xxⅹ黑人| 亚洲国产精品一区三区| 日本91视频免费播放| 亚洲精品亚洲一区二区| 亚洲高清免费不卡视频| 久热这里只有精品99| 26uuu在线亚洲综合色| 熟女人妻精品中文字幕| 黄色一级大片看看| 国产男人的电影天堂91| 亚洲精品456在线播放app| 高清黄色对白视频在线免费看 | 精品一区二区三卡| 大话2 男鬼变身卡| 人人妻人人添人人爽欧美一区卜| 人妻系列 视频| 亚洲在久久综合| 色吧在线观看| 亚洲欧美一区二区三区国产| 欧美日本中文国产一区发布| 22中文网久久字幕| 国产男女内射视频| 久久久久精品性色| 成年人免费黄色播放视频 | 六月丁香七月| 国产精品蜜桃在线观看| 亚洲久久久国产精品| 亚洲性久久影院| 国产伦精品一区二区三区视频9| 精品卡一卡二卡四卡免费| 免费黄网站久久成人精品| av黄色大香蕉| 人人妻人人爽人人添夜夜欢视频 | 亚州av有码| 国产精品一区二区在线不卡| 免费观看无遮挡的男女| 麻豆成人午夜福利视频| 国产色爽女视频免费观看| 欧美人与善性xxx| 日韩熟女老妇一区二区性免费视频| 天天操日日干夜夜撸| 大片电影免费在线观看免费| 亚洲情色 制服丝袜| 色视频在线一区二区三区| 欧美3d第一页| 国产在线男女| 欧美日韩视频精品一区| 亚洲综合色惰| 国产av国产精品国产| a级毛色黄片| 岛国毛片在线播放| av播播在线观看一区| 国产高清有码在线观看视频| 精品亚洲成国产av| 人体艺术视频欧美日本| 日本猛色少妇xxxxx猛交久久| 高清欧美精品videossex| 国产一级毛片在线| 另类精品久久| 男女免费视频国产| 久久午夜福利片| 99久久精品一区二区三区| 七月丁香在线播放| 99热6这里只有精品| 99精国产麻豆久久婷婷| 国产精品久久久久久久电影| 亚洲一级一片aⅴ在线观看| 极品教师在线视频| av网站免费在线观看视频| 免费av中文字幕在线| 欧美 日韩 精品 国产| 精品酒店卫生间| 大片电影免费在线观看免费| 亚洲国产成人一精品久久久| 永久免费av网站大全| 最近中文字幕高清免费大全6| 老熟女久久久| 亚洲精品久久久久久婷婷小说| 嫩草影院入口| 中文资源天堂在线| 伦理电影大哥的女人| 99九九线精品视频在线观看视频| 在线观看人妻少妇| 欧美日韩精品成人综合77777| 精品人妻熟女av久视频| 日本黄色日本黄色录像| 久久人妻熟女aⅴ| 国产亚洲欧美精品永久| 日本黄色片子视频| h日本视频在线播放| 狂野欧美激情性xxxx在线观看| 欧美日韩av久久| 男女边吃奶边做爰视频| 三上悠亚av全集在线观看 | 亚洲国产精品专区欧美| 国产片特级美女逼逼视频| 看免费成人av毛片| 99热国产这里只有精品6| 久久韩国三级中文字幕| 99热这里只有是精品50| 成人毛片60女人毛片免费| 男女边吃奶边做爰视频| 免费看av在线观看网站| 亚洲,欧美,日韩| 久久精品久久久久久噜噜老黄| 精品人妻熟女av久视频| 人妻制服诱惑在线中文字幕| 久久久久久久久大av| 亚洲精品国产av成人精品| 十八禁网站网址无遮挡 | 婷婷色av中文字幕| 亚洲国产日韩一区二区| 高清av免费在线| 欧美成人精品欧美一级黄| 亚洲精品aⅴ在线观看| 国产免费视频播放在线视频| 中文在线观看免费www的网站| 曰老女人黄片| 少妇高潮的动态图| 亚洲av男天堂| 少妇熟女欧美另类| 久久久国产精品麻豆| 国产视频首页在线观看| 国产精品麻豆人妻色哟哟久久| 午夜老司机福利剧场| 日本欧美视频一区| 日本午夜av视频| 国产精品久久久久久精品电影小说| h日本视频在线播放| 丰满迷人的少妇在线观看| videos熟女内射| 日韩av在线免费看完整版不卡| 人人妻人人添人人爽欧美一区卜| 中文在线观看免费www的网站| 亚洲熟女精品中文字幕| 91精品伊人久久大香线蕉| 亚洲人成网站在线观看播放| 又大又黄又爽视频免费| 妹子高潮喷水视频| 日本-黄色视频高清免费观看| 一二三四中文在线观看免费高清| 中国美白少妇内射xxxbb| 草草在线视频免费看| 国产淫片久久久久久久久| 成年人免费黄色播放视频 | 免费av中文字幕在线| 亚洲国产成人一精品久久久| 中文天堂在线官网| 午夜福利视频精品| 亚洲,欧美,日韩| 2018国产大陆天天弄谢| 妹子高潮喷水视频| 边亲边吃奶的免费视频| 一本大道久久a久久精品| 国产在线免费精品| 成人特级av手机在线观看| 国产91av在线免费观看| 日韩av不卡免费在线播放| 亚洲色图综合在线观看| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 女性被躁到高潮视频| 久久国产精品大桥未久av | 久久久欧美国产精品| 国产一区亚洲一区在线观看| 一级av片app| 男的添女的下面高潮视频| 精品久久久精品久久久| 欧美日本中文国产一区发布| 亚洲精品国产色婷婷电影| 欧美97在线视频| 亚洲内射少妇av| a级片在线免费高清观看视频| 最近中文字幕高清免费大全6| 亚洲av二区三区四区| 精品久久久精品久久久| 22中文网久久字幕| 国产精品久久久久久久久免| 国产精品无大码| 99热全是精品| av福利片在线观看| 久久国产精品大桥未久av | 精品亚洲乱码少妇综合久久| 日韩av不卡免费在线播放| 国产精品久久久久久久电影| 人人澡人人妻人| 赤兔流量卡办理| 哪个播放器可以免费观看大片| 一本—道久久a久久精品蜜桃钙片| 国产一级毛片在线| 22中文网久久字幕| 我要看黄色一级片免费的| 欧美激情极品国产一区二区三区 | 伦理电影免费视频| 妹子高潮喷水视频| 亚洲av欧美aⅴ国产| 国产精品熟女久久久久浪| 免费av不卡在线播放| 国产成人免费无遮挡视频| 亚洲性久久影院| 成人18禁高潮啪啪吃奶动态图 | h视频一区二区三区| 成人影院久久| 一级毛片我不卡| 交换朋友夫妻互换小说| 一级av片app| 久久久久久伊人网av| 久久久国产欧美日韩av| 国产精品一区二区在线不卡| 国产精品一区二区在线观看99| 婷婷色综合www| 我的老师免费观看完整版| 亚洲人与动物交配视频| 国产亚洲5aaaaa淫片| 欧美成人午夜免费资源| 午夜激情久久久久久久| a级片在线免费高清观看视频| 国产成人a∨麻豆精品| 两个人的视频大全免费| 国产精品久久久久久久久免| 黑人高潮一二区| 国产午夜精品一二区理论片| 在线观看美女被高潮喷水网站| 亚洲成人av在线免费| 国产美女午夜福利| 视频区图区小说| 欧美一级a爱片免费观看看| 99九九线精品视频在线观看视频| 久久久久久久久久人人人人人人| 国产黄色视频一区二区在线观看| 欧美日韩视频精品一区| 午夜影院在线不卡| 亚洲精品国产成人久久av| 女人久久www免费人成看片| 女性被躁到高潮视频| 91aial.com中文字幕在线观看| 国产爽快片一区二区三区| 各种免费的搞黄视频| 日日摸夜夜添夜夜添av毛片| 毛片一级片免费看久久久久| 久久热精品热| 高清毛片免费看| 亚洲欧洲日产国产| 成年人免费黄色播放视频 | 老司机影院毛片| 一本大道久久a久久精品| 亚洲精品久久久久久婷婷小说| 国产深夜福利视频在线观看| a级毛片免费高清观看在线播放| 少妇高潮的动态图| 国产精品一区www在线观看| 亚洲熟女精品中文字幕| 久久国产精品男人的天堂亚洲 | 久久ye,这里只有精品| 亚洲av二区三区四区| 狂野欧美激情性bbbbbb| 国产伦精品一区二区三区视频9| 国产伦精品一区二区三区四那| 高清不卡的av网站| 国产永久视频网站| 在线亚洲精品国产二区图片欧美 | 18禁在线无遮挡免费观看视频| 亚洲精品aⅴ在线观看| 女的被弄到高潮叫床怎么办| 18禁裸乳无遮挡动漫免费视频| 午夜福利,免费看| 美女cb高潮喷水在线观看| 2022亚洲国产成人精品| 在线观看人妻少妇| 少妇裸体淫交视频免费看高清| 亚洲第一区二区三区不卡| 亚洲成人一二三区av| 97超视频在线观看视频| 久久精品国产亚洲av涩爱| 热99国产精品久久久久久7| 亚洲精品日韩av片在线观看| 精品一区二区三卡| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品一区二区三区在线| 久久久久久久大尺度免费视频| 九色成人免费人妻av| 人妻制服诱惑在线中文字幕| 国产精品一区www在线观看| 日韩不卡一区二区三区视频在线| 久热这里只有精品99| 国产免费一区二区三区四区乱码| 丰满迷人的少妇在线观看| 免费av不卡在线播放| 久久人人爽人人片av| 亚洲怡红院男人天堂| 国产高清三级在线| 国产精品欧美亚洲77777| 久久鲁丝午夜福利片| 简卡轻食公司| 精品久久久久久久久亚洲| 亚洲国产精品国产精品| 国产亚洲91精品色在线| 国产在线视频一区二区| 水蜜桃什么品种好| 色婷婷av一区二区三区视频| 91精品一卡2卡3卡4卡| 一级毛片我不卡| 91aial.com中文字幕在线观看| 精品久久久噜噜| 精品少妇久久久久久888优播| 国产女主播在线喷水免费视频网站| 国产爽快片一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 51国产日韩欧美| 国产成人免费观看mmmm| 国产精品99久久久久久久久| 中文乱码字字幕精品一区二区三区| 免费播放大片免费观看视频在线观看| 国产伦精品一区二区三区四那| 丰满少妇做爰视频| 久久99蜜桃精品久久| 久久精品国产a三级三级三级| 青春草亚洲视频在线观看| 国产精品福利在线免费观看| 丝袜喷水一区| 中文字幕av电影在线播放| av网站免费在线观看视频| 国产在线一区二区三区精| 久久综合国产亚洲精品| 高清午夜精品一区二区三区| 欧美成人精品欧美一级黄| 国国产精品蜜臀av免费| 国产高清不卡午夜福利| 男人狂女人下面高潮的视频| √禁漫天堂资源中文www| av天堂中文字幕网| 热re99久久精品国产66热6| 777米奇影视久久| 亚洲成色77777| 超碰97精品在线观看| 色哟哟·www| 亚洲成人av在线免费| 丝袜在线中文字幕| a级毛片免费高清观看在线播放| 免费观看av网站的网址| 中文字幕免费在线视频6| 久久午夜综合久久蜜桃| 国产免费一级a男人的天堂| 成年av动漫网址| 久久午夜综合久久蜜桃| 人妻夜夜爽99麻豆av|