• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High performance solar-blind deep ultraviolet photodetectors via β-phase(In0.09Ga0.91)2O3 single crystalline film

    2023-10-11 07:56:38BichengWang王必成ZiyingTang湯梓熒HuyingZheng鄭湖穎LishengWang王立勝YaqiWang王亞琪RunchenWang王潤(rùn)晨ZhirenQiu丘志仁andHaiZhu朱海
    Chinese Physics B 2023年9期

    Bicheng Wang(王必成), Ziying Tang(湯梓熒), Huying Zheng(鄭湖穎), Lisheng Wang(王立勝),Yaqi Wang(王亞琪), Runchen Wang(王潤(rùn)晨), Zhiren Qiu(丘志仁),?, and Hai Zhu(朱海),2,?

    1State Key Laboratory of Optoelectronic Materials and Technologies,School of Physics,Sun Yat-Sen University,Guangzhou 510275,China

    2Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices,School of Physics,Sun Yat-sen University,Guangzhou 510275,China

    Keywords: deep ultraviolet,film,photodetector,heteroepitaxy

    1.Introduction

    Solar irradiation with wavelength shorter than 280 nm,commonly known as the solar-blind range,is rarely present at the Earth’s surface due to the strong absorption of deep ultraviolet(DUV)light by the ozone layer,water vapor and fine particles in the atmosphere.[1]As a result,photodetectors operating in this spectral range, as solar-blind photodetectors, have the advantages of low bit error rates and high signal-to-noise ratios.[2]These photodetectors have a wide range of important applications in industry,environmental protection,monitoring of the ozone layer, and the military.[1,3–6]Therefore, solarblind photodetectors have received extensive attention and high research enthusiasm.Narrow-bandgap semiconductors,such as silicon semiconductors, have been largely limited in the development of solar-blind photodetectors due to the low ultraviolet light sensitivity and poor thermal stability.[7]The ultra-wide bandgap semiconductors have large bandgaps and high Baliga figures of merit (BFOMs), providing incomparable advantages in terms of breakdown resistance,low leakage,and low loss.[8–10]In recent years, ultra-wide bandgap semiconductor materials,including aluminum nitride(AlN),[11–13]diamond,[5,14,15]β-phase gallium oxide (β-Ga2O3),[2,16–24]aluminum gallium nitride (AlGaN),[25,26]aluminum gallium oxide (AlGaO),[27]magnesium zinc oxide (MaZnO)[28]and InGaO[29–32]have been used to fabricate solar-blind photodetectors.As an important member of ultrawide bandgap semiconductors, the bandgap (BFOM) ofβ-Ga2O3is 4.9 eV(3000).Furthermore,β-Ga2O3exhibits a significant absorption in the solar-blind range, exceptional thermal and chemical stability.Therefore,Ga2O3-based semiconductor is an excellent material for the preparation of solar-blind DUV photodetectors,which has high responsivity and external quantum efficiency.[24,33,34]Although manyβ-Ga2O3solar-blind detectors have been reported to have excellent performance,they are limited by the fact thatβ-Ga2O3only has a single bandgap.

    In order to realize the manipulation ofβ-Ga2O3bandgap flexiblility,the Ga2O3host crystal lattice can be doped with Al or In atom.Due to the similar diameter between the In and Ga atoms,the In is an ideal candidate for dopingβ-Ga2O3.[35,36]The bandgap of InGaO alloy system can be manipulated by adjusting the atom components ratio.[31,37]This doping scheme will allow the fabricated detector to cover a wider spectral range and enhance parameters such as responsibility.[29,31]

    Swallowet al.utilized density functional theory(DFT)to determine the electronic structure of InGaO alloys and discovered that the density of the In 4d state in In2O3is higher than that of the Ga 3d state in Ga2O3,indicating that InGaO has an increased density of states in the valence band due to the presence of indium.[38]This increase In density results in stronger light absorption,especially in the deep ultraviolet range.Consequently, the InGaO solar-blind detector produces a higher density of photoexcited carriers than that of the Ga2O3solarblind detector under deep ultraviolet light irradiation.Additionally, indium doping introduces In 5s orbital at the bottom of the conduction band,which enhances the transport of photogenerated carrier.Because In 5s orbital has a larger spatial expansion than that of Ga 4s orbital, the electron mobility is higher.[39]In conclusion,the In-modulated electronic structure in Ga2O3significantly improves the performance of the InGaO solar-blind photodetector.

    In this article, the realization of high-performance In-GaO alloy based solar-blind photodetector is reported at room-temperature (RT).The InGaO film is grown oncplane sapphire by plasma-assisted molecular beam epitaxy.Typical schottky junction is constructed between interdigital electrodes and InGaO film with metal–semicondutor–metal(MSM) configuration.The dark current of device is as low as 40 pA,while it’s responsivity is as high as 450 A/W(50 V).The UV/VIS rejection ratio of device (R232nm/R380nm) exceeds 4×104, which demonstrates the excellent solar-blind selectivity response character.The transient response test gives the rising and falling time of the device are only 80 ns and 420 ns, respectively.Moreover, an unambiguous twodimensional scanning imaging pattern provided by InGaO solar-blind detectors is also demonstrated.

    2.Experimental procedures

    InGaO film was grown on 2 inches sapphire (0001) by PA-MBE(SVT 35-V-3).The sapphire substrate was annealed at 750°C for 15 min at an oxygen flow rate of 1.6 sccm.Firstly, high-purity (6N) gallium source was evaporated onto the substrate.Then,a low temperature(200°C)Ga2O3buffer layer was grown.Afterwards, a high temperature Ga2O3buffer later was grown for 1 h at temperature of 950°C for the Ga source and 700°C for the substrate while maintaining the oxygen flow rate.To introduce the indium source,the indium source temperature was raised to 550°C and the indium gallium oxide grown for 1 h.After InGaO growth,the surface topography and thickness of the film were characterized by field-emission scanning electron microscopy (SEM, Hitachi S-4800), and the surface roughness of the film was measured using the tapping mode of the atomic force microscopy(AFM,Veeco Dimension Edge).X-ray diffraction instruments(XRD,Bruker Discover&Advance)were used to determine the crystal structure and growth quality of the thin film.The spectrometer (Shimadzu UV-2700) can test the transmittance and absorption optical properties of the sample.Then x-ray photoelectron spectroscopy(XPS,Escalab 250 Xi, Thermo Fisher)was tested on the InGaO film to obtain the composition content information of the film.The solar-blind photodetector devices were designed to be 50 pairs of interdigital electrodes(Ti/Au 20 nm/50 nm) with interfingers spacing of 6 μm that evaporated by electron beam(EB,Oxford Cryo-Plex 8)on In-GaO film.For electrical measurements of the detector,theI–Vcharacteristics and responsivity of device were carried out with a multifunctional digital source measure unit (Keysight B2902A) when a 150 W Xe lamp was used as an ultraviolet light excitation source.The transient photoresponse test of detector was recorded by an oscilloscope (Teledyne LeCroy HDO4304) under 193 nm pulse laser (GAM laser EX5 EXCIMER laser).

    3.Results and discussion

    In this paper, high-quality InGaO thin films are grown on sapphire (001) using the plasma-assisted molecular beam epitaxy (PA-MBE).First, the sapphire substrate is annealed at 750°C for 15 min before growth to remove impurities on the substrate surface.Then, in order to release the mismatch between sapphire and InGaO, Ga/Ga2O3buffer layers are first grown on the sapphire substrate.Here,the Ga atomic layer can release interfacial strain due to its inherent ductility.Meanwhile, the low-temperature Ga2O3buffer layer acts as a nucleation site,and the high-temperature buffer layer provides a smooth plane for growth.After the deposition of the buffer layer, a uniform thin film of InGaO is grown at high substrate temperature for 1 h.A schematic diagram of the growth process of InGaO is shown (Fig.1(a)).During the growth process, the flux of oxygen atoms is greater than that of Ga atoms,which is due to the fact that oxygen-rich conditions can inhibit the formation of suboxide Ga2O and reduce the decomposition rate of GaOxon the substrate surface.[40,41]To monitor InGaO crystal quality during the growth process,reflection high energy electron diffraction (RHEED) patterns are recorded(Fig.1(b)).It can be seen that the diffraction patterns of the InGaO thin film are sharp linear shape,indicating that the surface during the growth process is very flat and the atoms on the surface are arranged in an orderly manner,which confirms that the epitaxial InGaO layer is a high-quality single crystal film with a two-dimensional planar growth mode.

    The field-emission SEM surface topography of as-grown InGaO alloy film via MBE is depicted in Fig.1(d), meanwhile, the cross-sectional image of sample is given (inset of Fig.1(d)).It is noted that the thin film of InGaO presents compact and dense crystallization with a thickness of around 300 nm.The smooth surface of the film without pits can be seen obviously, which indicates that the fabricated InGaO alloy film is a high crystalline quality film.Figure 1(e) displays the AFM surface image of the InGaO thin film, it can be obtained that the as-grown InGaO film is extremely smooth with a root mean square (RMS) of 0.54 nm in the region of 5 μm×5 μm.

    Fig.1.Growth and surface morphology of InGaO.(a) Growth diagram of InGaO thin film on sapphire substrate.The two designed buffer layers are deposited sequentially to reduce mismatches between the epitaxial film and the substrate.(b) and (c) RHEED patterns of InGaO thin film growth along [010] azimuth for 10 min and 30 min.(d) SEM image of InGaO thin film surface.The cross-section displays that the thin film exhibits dense crystallization, with a thickness of 300 nm(insert).(e) The atom AFM scanning image of InGaO hetero-epitaxy film.Here,the RMS of film is about 0.54 nm.

    Figure 2(a) presents the XRD patterns of InGaO sample and pureβ-Ga2O3thin film.In addition to the characteristic peak of sapphire (0006) at 41.81°, both InGaO andβ-Ga2O3films contain three typical diffraction peaks at around 18.92°, 38.36°, and 59.08°, which correspond to its three crystal planes (ˉ201), (ˉ402), and (ˉ603), respectively.[21]Figure 2(b) shows the XRD pattern around the (ˉ201) diffraction peak which can be seen that the (ˉ201) diffraction peak of In-GaO has an obvious blue shift, and the FHWM is 0.21°, indicating that high-quality single-crystal thin films have been achieved.Furthermore, the InGaO sample has a blue shift of about 0.03°relative to Ga2O3,which is due to the larger diameter of the indium atom than that of the gallium atom,resulting in a larger lattice constant.[29]It can be seen from XRD pattern that the quality of InGaO film is very excellent.

    Then, the ultraviolet-visible optical absorption spectrum test between the InGaO and Ga2O3thin films is carried out to compare the difference in optical properties.As shown in Fig.2(c),both InGaO and Ga2O3thin films have obvious absorption in the sola-blind band, and the absorption peak cutoff wavelength of InGaO(Ga2O3)is 266(257)nm.The inset of Fig.2(c) displays the relationship between (αhν) andEg,which is calculated according to the Tauc formula combined bandgap of the film[32]

    wherehνis the incident photon energy,Egis the band-gap,andAis a constant.[30]Based on Eq.(1), the bandgap of the InGaO film is 4.76 eV, which is smaller than the bandgap of Ga2O3(4.87 eV).It can be concluded that the doping of indium can effectively regulate the bandgap of Ga2O3.

    To determine the indium content of the film, XPS spectrum is presented in Fig.2(d), which shows the presence of all elements,and their concentrations are calculated using the integrated peak area ratio given by

    whereAiis the integral area of elementi, andnis the total number of elements contained.The indium,gallium,and oxygen concentrations are found to be 2.7%, 28.4%, and 68.8%,respectively.Accordingly, the value ofXlnis estimated to be approximately 0.09 in InGO, which is consistent with the bandgap value obtained from the Tauc plot in Fig.2(c).Hence,the flexible doping technique for the InGaO alloy films using PA-MBE is feasible,which serves as a foundation for the fabrication of high performance solar-blind detectors.

    Based on the high-quality InGaO film, the MSM-type solar-blind photodetectors with interdigital electrodes configuration are constructed.Figure 3(a) illustrates the 4×5 matrix of the fabricated solar-blind detectors,where each device’s surface appears clean without any impurities.On the other hand,Fig.3(b)shows the physical image of the InGaO solarblind DUV photodetector.As can be seen,the width and spacing of fingers are both equal to 6 μm,and the total number of interdigitated electrodes is 50 pairs.

    Figure 3(c) displays theI–Vcharacteristic of the photodetector under 232 nm light illumination and dark condition, respectively.The inset presents theI–Vcurve in semilogarithmic coordinates to distinguish the dark currents.Without DUV irradiation, the dark current of device is as low as 40 pA at zero bias.With increase of the bias voltage, the photon/dark current plots exhibit an obvious rectification characteristic.Above nonlinearly photon/darkI–Vproperties of device originate from the Schottky barrier between the Ti/Au and InGaO films.The current of the device is mainly tunneling current through metal/semiconductor interface for InGaO Schottky junction.At high external bias, the field emission(FE)current will dominate and can be described as[42]

    Based on Eq.(3), the fitting of theI–Vcurves shows that the field emission component dominates the carrier transport at high voltage (inset of Fig.3(d)).The fitted curve closely matches the experimental data.

    Fig.2.The crystalline properties of InGaO alloy film grown on sapphire substrate.(a)The XRD patterns of InGaO alloy and β-Ga2O3.(b)The XRD pattern around the(ˉ201)diffraction peak.It can be seen that the(201)diffraction peak of InGaO has an obvious blue shift,and the FHWM is 0.21°.(c)The absorption spectrum of InGaO alloy film and β-Ga2O3 at room-temperature,its cut-off peak is 267 nm.Insert: the relationship between(αhν)and Eg.The optical bandgap of sample is estimated via Tauc plot.(d)XPS spectrum of InGaO alloy films grown on sapphire substrates.Composition estimated from XPS measurements is calculated using peak areas rather than exact peak positions.XPS measurement results show that XIn=0.09 in InGO.

    Fig.3.The InGaO alloy ultraviolet photodetector and photon response.(a) 4×5 solar-blind photodetector matrix.(b) Enlargerd SBPDs devices are constructed with interdigital Ti/Au electrodes(20 nm/50 nm)with interfingers spacing of 6 μm that are fabricated via photolithography.(c)The characteristic I–V curve of InGaO detector corresponds to DUV light and dark current of the device respectively.Insert: the I–V plots that are described in semi-log coordinates.(d) The typical photon responsibility spectra of the InGaO detector at RT.Insert: the responsibility of device as a function of the externally applied voltage.

    When the bias voltage reaches 10 V,the DUV photoncurrent of the device is as high as 30 μA.The photo-to-dark ratio(PDCR) can give the detail information about the signal-tonoise ratio of detector,which is described as follows:[16]

    whereIPis the photoncurrent under irradiation of 232 nm andIdis the dark current.The value of PDCR can be obtained as high as 20 at 10 V, indicating that the as-grown InGaO photodetector exhibits an excellent signal-to-noise ratio.

    As one of the critical parameters of a detector,photon responsivity refers to the magnitude of photocurrent under the illumination of a unit of light power.The responsivity can be calculated as[43]

    wherePis light power.As shown in Fig.3(d),the photon responsivity peak corresponds to a wavelength of 232 nm.Under the applied bias voltage of 50 V,the value of responsivity peak can increase to be as high as 450 A/W.Meanwhile the magnitude of UV/VIS suppression ratio(R232nm/R380nm)can be extracted to be about 4×104from the plot.It should be noted that almost no obvious response of the detector in visible light region is observed, which demonstrates a cracking solar-blind selection characteristic.

    The inset of Fig.3(d) displays the relationship between responsivity and applied bias voltage.It can be observed that the responsivity increases linearly with the increase in bias voltage.Furthermore, the device does not exhibit any saturation or breakdown phenomenon even when the bias voltage reaches 60 V,demonstrating that the device can stably operate under high voltage at room temperature.

    The external quantum efficiency(EQE)of the device can be calculated from the optical responsivity using[20]

    wherehis the Planck constant,cis the speed of light,λis the corresponding wavelength,andRλis the responsivity corresponding to the wavelength.Under an external bias voltage of 50 V, the calculation shows that, EQE=2×105%, which proves that the device has great muscle augmentation.

    The noise equivalent power (NEP) represents the minimum incident optical power required for the signal-to-noise ratio (SNR) to reach 1, and is calculated using the following equation:[32]

    To further measure the performance of the solar blind detector,special detectivity can be calculated by[32]

    whereAis the effective area of the device with a value of 0.18 mm2, and Δfrepresents the bandwidth, which is equal to 1 Hz.Therefore,special detectivity of the solar-blind detector is 2×108Jones, demonstrating the superior performance of the device.

    Fig.4.The temporal dynamic characteristics of InGaO alloy film solarblind photodetectors.(a)The transient photo-response of device with the irradiation of nanosecond pulsed laser.Here,the red solid line is a fitting curve according to a double exponential formula.Detector exhibits an extremely fast response speed and short restoring time.(b)Response time plots for different voltages.As the applied voltage increases,the lifetime of the device is slowly decreasing,and there is a tendency to saturation.

    In order to investigate the temporal dynamic properties of our InGaO solar-blind detector,we perform measurements of the instantaneous response kinetics of the device.The response time of photodetector is defined as the time it takes for the photon current to rise(or fall)to 1/e of its maximum value when the irradiation light is turned on or off.Figure 4 depicts the instantaneous response curve of the InGaO detector under pulsed 193 nm laser excitation.Experimental data can be fitted with double exponential function

    whereI0represents steady-state current,τ1andτ2are the response times, andA1andA2are the coefficients associated with the response times.As can be seen from Fig.4(a), the device exhibits an extremely fast response speed under pulsed laser irradiation.The rising time of the device,extracted from the rising edge of the plot, is approximately 80 ns.Transient drop timeτ1=420 ns andτ2=6.3 μs are deduced from the good agreement fitting curve.By varying the voltage, different response times are obtained (Fig.4(b)).As the applied voltage increasing, the response time of the device gradually decreases, which is due to the gradual increase of the carrier drift speed under the action of a strong electric field.However,when the load voltage is further increased,the probability of carrier-lattice collision increases so that the drift velocity reaches an extreme value.Therefore,the response time of the device is also saturated.

    Table 1.Comparison of several reported solar-blind detectors with important parameters.

    Fig.5.The imaging properties of InGaO detector.(a)Schematic diagram of imaging test system.Here, a InGaO film DUV photodetector plays a role as an imaging unit under external voltage.(b) The photograph of the two-dimensional(2D)object with several words SYSU.(c)The mapping image of the photon current corresponds to the profile of object.The scanning image exhibits a sharp edge, which is very similar to hollow letters.

    In addition,the decay time obtained by the experiment is much shorter than that of most reported Ga2O3-based devices.τ1andτ2correspond to two different relaxation mechanisms.Among them,τ1is mainly due to the formation of recombination center energy levels in the interior and surface of the film.Rapid carriers transport between the interdigitated Ti/Au electrode and the thin film under an applied electric field.When the 193 nm laser is turned off,the current-carrying concentration drops rapidly,andτ1can be further optimized by changing the interdigital electrode parameters, annealing, etc.The parameterτ2is primarily associated with persistent photoconductivity(PPC).In InGaO film,traps capture minority carriers,and these carriers that fall into the traps cannot recombine directly.Instead,they recombine through recombination centers,resulting in slow decay characteristics of photonresponse.[7]In addition,τ2is also related to factors such as laser power and device parasitic capacitance.The ratio ofA1/A2is 16,which proves that the transport of photogenerated carriers between the electrode accounts for the main part of the device.Both the fast rise and fall exhibited by our device indicate its excellent fast response capability.

    Table 1 summarizes various solar-blind detectors related to gallium oxide and their important parameters.Our devices exhibit remarkably high responsivity and fast response speed.

    Additionally, the DUV scanning imaging capability is critical faculty for solar-blind photodetector.A self-designed scanning detecting system as shown in Fig.5(a)is constructed to evaluate the imaging performance of the device.Among them, Xe lamp provides DUV light and places the imaging object at the focal point of the first lens.DUV light passes through the second lens and parallel exits to the detector.Under ultraviolet light,the object with the word SYSU(Fig.5(b)) moves through the two-dimensional mobile platform.A source meter is used to provide an external bias voltage of 20 V and the computer records the current conditions at different positions.Finally, the current intensity at different locations is imaged.It can be observed from Fig.5(c)that the imaging of the current intensity is very similar to the object and has obvious boundaries.The wonderful performance demonstrates that the system has excellent fidelity characteristics and InGaO devices can satisfy imaging systems requirement.

    4.Conclusion

    The growth and characterization of high-quality InGaO film by PA-MBE is reported, meanwhile the solar-blind detector with metal–semiconductor–metal structure is fabricated using the as-grown InGaO film.The excellent performance of our detector is analyzed comprehensively at RT.The dark current of device is weakness as low as 40 pA, while it’s responsivity is as high as 450 A/W(50 V).The UV/VIS rejection ratio of device(R232nm/R380nm)exceeds 4×104,which demonstrates the excellent solar-blind selectivity response faculty.The transient response gives the rising and falling time of the device are only 80 ns and 420 ns,respectively.In addition,the clear two-dimensional scanning imaging patterns by In-GaO solar-blind detectors are demonstrated.Our results pave the way for future applications of DUV photodetectors based on large-scale InGaO heteroepitaxially grown alloy semiconductor films.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant Nos.U22A2073,11974433,91833301,and 11974122).

    亚洲激情在线av| 老司机深夜福利视频在线观看| 老司机午夜十八禁免费视频| 免费高清在线观看日韩| 波多野结衣av一区二区av| 日韩免费高清中文字幕av| 精品第一国产精品| 岛国视频午夜一区免费看| 国产精品99久久99久久久不卡| 国产麻豆69| 欧美乱妇无乱码| 啪啪无遮挡十八禁网站| 欧美日韩亚洲综合一区二区三区_| 在线观看一区二区三区| 日日摸夜夜添夜夜添小说| 久久性视频一级片| 欧美激情高清一区二区三区| 岛国视频午夜一区免费看| 久久久久久免费高清国产稀缺| 一区二区三区国产精品乱码| 国产日韩一区二区三区精品不卡| 法律面前人人平等表现在哪些方面| 国产极品粉嫩免费观看在线| 18禁裸乳无遮挡免费网站照片 | 日日摸夜夜添夜夜添小说| 久久久久九九精品影院| 在线永久观看黄色视频| 久久国产精品影院| 老司机午夜十八禁免费视频| 精品国产一区二区三区四区第35| 在线观看66精品国产| 亚洲在线自拍视频| 日韩欧美在线二视频| 夜夜夜夜夜久久久久| 国产欧美日韩综合在线一区二区| 两性夫妻黄色片| 一个人观看的视频www高清免费观看 | 最近最新中文字幕大全电影3 | 天堂中文最新版在线下载| 在线观看一区二区三区| 999精品在线视频| 免费在线观看视频国产中文字幕亚洲| 久久影院123| 色婷婷av一区二区三区视频| 亚洲五月婷婷丁香| av有码第一页| 91麻豆精品激情在线观看国产 | 久久久久九九精品影院| 99在线人妻在线中文字幕| 午夜免费成人在线视频| 亚洲欧美日韩另类电影网站| 国产乱人伦免费视频| 欧美精品啪啪一区二区三区| 国产伦一二天堂av在线观看| 亚洲自偷自拍图片 自拍| 中出人妻视频一区二区| 狠狠狠狠99中文字幕| 亚洲第一青青草原| 亚洲伊人色综图| 97人妻天天添夜夜摸| 窝窝影院91人妻| 伦理电影免费视频| 亚洲avbb在线观看| 欧美丝袜亚洲另类 | 国产一区二区在线av高清观看| 欧美激情 高清一区二区三区| 亚洲精品美女久久久久99蜜臀| 色婷婷久久久亚洲欧美| 夫妻午夜视频| 欧美成人免费av一区二区三区| 免费高清在线观看日韩| 美女大奶头视频| 精品国产亚洲在线| 黑人操中国人逼视频| 日本三级黄在线观看| 亚洲一区高清亚洲精品| av福利片在线| 99在线视频只有这里精品首页| 亚洲五月婷婷丁香| 99在线视频只有这里精品首页| 久久香蕉激情| 大香蕉久久成人网| 国产伦人伦偷精品视频| 精品国产美女av久久久久小说| 乱人伦中国视频| 一区二区三区国产精品乱码| 欧美日韩亚洲国产一区二区在线观看| 中文字幕人妻熟女乱码| 亚洲黑人精品在线| 久久中文字幕人妻熟女| 欧美激情 高清一区二区三区| 在线观看一区二区三区激情| 91字幕亚洲| 日韩中文字幕欧美一区二区| 亚洲人成网站在线播放欧美日韩| 美女国产高潮福利片在线看| 搡老乐熟女国产| 亚洲五月婷婷丁香| 波多野结衣一区麻豆| 大香蕉久久成人网| av福利片在线| 夜夜夜夜夜久久久久| 欧美成人免费av一区二区三区| 99久久综合精品五月天人人| 久久午夜亚洲精品久久| 久久久久久久午夜电影 | 夜夜爽天天搞| 久久中文字幕一级| 国产精品av久久久久免费| 亚洲专区中文字幕在线| 国产深夜福利视频在线观看| 亚洲美女黄片视频| 亚洲片人在线观看| 国产欧美日韩一区二区三| 人人妻人人爽人人添夜夜欢视频| 岛国视频午夜一区免费看| 国产一区二区三区综合在线观看| 大陆偷拍与自拍| 亚洲自拍偷在线| 97碰自拍视频| 亚洲欧美日韩另类电影网站| 精品国产乱子伦一区二区三区| 久久草成人影院| 精品无人区乱码1区二区| 久久精品国产亚洲av高清一级| 少妇裸体淫交视频免费看高清 | 亚洲国产精品合色在线| 久热爱精品视频在线9| 动漫黄色视频在线观看| 99久久久亚洲精品蜜臀av| 精品国产超薄肉色丝袜足j| 亚洲 欧美 日韩 在线 免费| 欧美日韩精品网址| 免费在线观看日本一区| 久久久久久久久免费视频了| 成年女人毛片免费观看观看9| 无人区码免费观看不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 夜夜爽天天搞| 亚洲aⅴ乱码一区二区在线播放 | 久久精品影院6| 亚洲久久久国产精品| 十八禁网站免费在线| 久久中文看片网| 深夜精品福利| 美女高潮到喷水免费观看| 国产伦人伦偷精品视频| 亚洲九九香蕉| а√天堂www在线а√下载| 91av网站免费观看| 国产精品av久久久久免费| 淫秽高清视频在线观看| 久久99一区二区三区| 又大又爽又粗| 麻豆国产av国片精品| 精品久久久久久电影网| www国产在线视频色| 国产麻豆69| 真人一进一出gif抽搐免费| 18禁裸乳无遮挡免费网站照片 | 国产黄色免费在线视频| 女生性感内裤真人,穿戴方法视频| avwww免费| 亚洲一区二区三区色噜噜 | 亚洲av美国av| 女性生殖器流出的白浆| 一夜夜www| 中文欧美无线码| 日韩三级视频一区二区三区| 日韩欧美一区二区三区在线观看| 人人妻,人人澡人人爽秒播| 九色亚洲精品在线播放| 女性被躁到高潮视频| 我的亚洲天堂| 亚洲男人的天堂狠狠| 欧美久久黑人一区二区| 校园春色视频在线观看| 夫妻午夜视频| 成人精品一区二区免费| a级毛片黄视频| 国产精品综合久久久久久久免费 | 免费一级毛片在线播放高清视频 | 老司机午夜福利在线观看视频| 欧美日韩视频精品一区| 欧美成狂野欧美在线观看| 在线看a的网站| 日韩人妻精品一区2区三区| 人成视频在线观看免费观看| 久久亚洲真实| 男人的好看免费观看在线视频 | 夜夜爽天天搞| 欧美色视频一区免费| av片东京热男人的天堂| 成人三级做爰电影| 丰满人妻熟妇乱又伦精品不卡| 亚洲情色 制服丝袜| 成人18禁在线播放| 97超级碰碰碰精品色视频在线观看| 午夜老司机福利片| 两人在一起打扑克的视频| √禁漫天堂资源中文www| 看片在线看免费视频| 亚洲av五月六月丁香网| 不卡一级毛片| 久热这里只有精品99| 国产在线观看jvid| 黄色女人牲交| 国产黄a三级三级三级人| 十八禁网站免费在线| 国产成人精品在线电影| 免费女性裸体啪啪无遮挡网站| 又大又爽又粗| 国产成人av教育| 多毛熟女@视频| 国产1区2区3区精品| 国产乱人伦免费视频| 97碰自拍视频| 1024香蕉在线观看| 99国产综合亚洲精品| tocl精华| 精品欧美一区二区三区在线| 亚洲欧美激情综合另类| 桃色一区二区三区在线观看| 男人的好看免费观看在线视频 | 国产一卡二卡三卡精品| 丰满的人妻完整版| 久久精品国产亚洲av香蕉五月| 精品国产美女av久久久久小说| 99国产精品免费福利视频| 69av精品久久久久久| tocl精华| 成人亚洲精品av一区二区 | 国产精品香港三级国产av潘金莲| 久久香蕉国产精品| 一级,二级,三级黄色视频| 真人一进一出gif抽搐免费| 久久精品国产99精品国产亚洲性色 | 国产精品免费视频内射| 搡老熟女国产l中国老女人| 少妇粗大呻吟视频| 精品一品国产午夜福利视频| 色综合站精品国产| 99国产综合亚洲精品| 夜夜爽天天搞| 欧美日韩视频精品一区| 免费不卡黄色视频| 亚洲第一欧美日韩一区二区三区| 制服人妻中文乱码| 免费在线观看视频国产中文字幕亚洲| 在线观看www视频免费| 99久久人妻综合| 国产午夜精品久久久久久| 亚洲七黄色美女视频| 亚洲国产欧美一区二区综合| 久久九九热精品免费| 老司机午夜十八禁免费视频| 高清在线国产一区| 欧美性长视频在线观看| 午夜精品国产一区二区电影| 宅男免费午夜| 国产精品久久久久久人妻精品电影| 日本撒尿小便嘘嘘汇集6| 啦啦啦在线免费观看视频4| 亚洲国产欧美网| 一级毛片精品| 9191精品国产免费久久| 亚洲va日本ⅴa欧美va伊人久久| 黄色 视频免费看| 国产精品久久久人人做人人爽| 久久久久久大精品| 夜夜爽天天搞| 色婷婷av一区二区三区视频| 日韩大尺度精品在线看网址 | 制服人妻中文乱码| 国产精品久久久久成人av| 老熟妇仑乱视频hdxx| 1024香蕉在线观看| 性色av乱码一区二区三区2| 99热国产这里只有精品6| 中国美女看黄片| 97超级碰碰碰精品色视频在线观看| 很黄的视频免费| 性欧美人与动物交配| 国产av一区在线观看免费| 最近最新中文字幕大全电影3 | 色老头精品视频在线观看| 久热爱精品视频在线9| 欧美av亚洲av综合av国产av| 亚洲精品美女久久久久99蜜臀| 视频在线观看一区二区三区| 亚洲欧美激情综合另类| 日韩大尺度精品在线看网址 | 国产激情欧美一区二区| 欧美乱色亚洲激情| 午夜福利影视在线免费观看| 国产精品1区2区在线观看.| 三上悠亚av全集在线观看| 国产成人系列免费观看| 18禁观看日本| 天天影视国产精品| 日韩三级视频一区二区三区| 精品福利永久在线观看| 日韩有码中文字幕| 91大片在线观看| 女性被躁到高潮视频| 亚洲av成人不卡在线观看播放网| 日韩欧美三级三区| 亚洲一码二码三码区别大吗| 婷婷丁香在线五月| 看黄色毛片网站| 999久久久国产精品视频| 一区二区日韩欧美中文字幕| 亚洲av成人av| 免费看十八禁软件| 午夜久久久在线观看| 亚洲专区字幕在线| 亚洲精品在线观看二区| 女性生殖器流出的白浆| bbb黄色大片| 亚洲 欧美一区二区三区| 日韩中文字幕欧美一区二区| 嫩草影视91久久| 亚洲第一青青草原| 欧美激情高清一区二区三区| 亚洲人成电影免费在线| 免费av中文字幕在线| 国产精品99久久99久久久不卡| 国产真人三级小视频在线观看| 成在线人永久免费视频| 操美女的视频在线观看| 国产亚洲精品综合一区在线观看 | 好看av亚洲va欧美ⅴa在| 老熟妇仑乱视频hdxx| 亚洲精品美女久久久久99蜜臀| 桃红色精品国产亚洲av| 人人澡人人妻人| 丁香六月欧美| 亚洲 欧美 日韩 在线 免费| 好男人电影高清在线观看| 岛国视频午夜一区免费看| 黑丝袜美女国产一区| 99riav亚洲国产免费| 精品一区二区三区四区五区乱码| 亚洲国产中文字幕在线视频| 亚洲欧美一区二区三区久久| 天堂俺去俺来也www色官网| 巨乳人妻的诱惑在线观看| 精品国产乱码久久久久久男人| e午夜精品久久久久久久| 成人永久免费在线观看视频| 欧美av亚洲av综合av国产av| 交换朋友夫妻互换小说| 成年女人毛片免费观看观看9| 好看av亚洲va欧美ⅴa在| 在线观看一区二区三区激情| 国产成人精品无人区| 欧洲精品卡2卡3卡4卡5卡区| 午夜激情av网站| 亚洲精品在线观看二区| 国产精品爽爽va在线观看网站 | 久久久久国产一级毛片高清牌| 成人18禁在线播放| 免费日韩欧美在线观看| 无遮挡黄片免费观看| 99在线人妻在线中文字幕| 两性夫妻黄色片| 中出人妻视频一区二区| 日韩欧美在线二视频| 欧美国产精品va在线观看不卡| 变态另类成人亚洲欧美熟女 | 人人妻,人人澡人人爽秒播| 久久久精品欧美日韩精品| 国产欧美日韩综合在线一区二区| xxxhd国产人妻xxx| 天堂俺去俺来也www色官网| 99re在线观看精品视频| 在线看a的网站| 十分钟在线观看高清视频www| 国产免费男女视频| 欧美在线黄色| 视频在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 激情视频va一区二区三区| 岛国视频午夜一区免费看| 中文字幕另类日韩欧美亚洲嫩草| 操出白浆在线播放| 一级毛片女人18水好多| 欧美性长视频在线观看| 无遮挡黄片免费观看| 国产成人精品无人区| 色综合欧美亚洲国产小说| 国产精品乱码一区二三区的特点 | 咕卡用的链子| 天天影视国产精品| 亚洲国产欧美一区二区综合| 色尼玛亚洲综合影院| 亚洲熟女毛片儿| 国产91精品成人一区二区三区| 成人手机av| 99国产精品99久久久久| 亚洲国产毛片av蜜桃av| 在线看a的网站| 日韩一卡2卡3卡4卡2021年| 亚洲中文日韩欧美视频| 色哟哟哟哟哟哟| 88av欧美| 中国美女看黄片| 欧美大码av| 又黄又爽又免费观看的视频| 男女下面进入的视频免费午夜 | 又大又爽又粗| 久久影院123| 精品电影一区二区在线| 黑丝袜美女国产一区| 国内久久婷婷六月综合欲色啪| 男男h啪啪无遮挡| 国产av在哪里看| 18禁美女被吸乳视频| 精品日产1卡2卡| 欧美日韩av久久| 国产主播在线观看一区二区| 亚洲五月天丁香| 国内久久婷婷六月综合欲色啪| 国产精品98久久久久久宅男小说| 日韩 欧美 亚洲 中文字幕| 黑丝袜美女国产一区| 日本vs欧美在线观看视频| 搡老熟女国产l中国老女人| 丁香欧美五月| 久久亚洲真实| 夜夜躁狠狠躁天天躁| 欧美一区二区精品小视频在线| 精品久久久久久久毛片微露脸| 国产成人欧美在线观看| 欧美日韩精品网址| 宅男免费午夜| 三级毛片av免费| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 久久久久国内视频| 国产成+人综合+亚洲专区| 精品国产一区二区三区四区第35| 最近最新免费中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 欧美成人午夜精品| 亚洲av美国av| 男人操女人黄网站| 欧美日韩国产mv在线观看视频| 一进一出好大好爽视频| 国产熟女xx| 黄色 视频免费看| 天堂中文最新版在线下载| 国产高清国产精品国产三级| 丝袜在线中文字幕| 五月开心婷婷网| 欧美一级毛片孕妇| 999精品在线视频| 国产亚洲精品久久久久5区| 国产日韩一区二区三区精品不卡| 99久久人妻综合| 亚洲人成电影观看| 一区二区三区国产精品乱码| 在线观看一区二区三区| 午夜老司机福利片| 国产精品1区2区在线观看.| 国产一区二区激情短视频| 国产激情久久老熟女| 日本免费一区二区三区高清不卡 | 美女高潮到喷水免费观看| 黄色丝袜av网址大全| 国产欧美日韩一区二区三区在线| 国产三级黄色录像| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品一区二区www| 午夜a级毛片| 国产精品 国内视频| xxx96com| 老熟妇仑乱视频hdxx| 大型av网站在线播放| 91大片在线观看| 国产深夜福利视频在线观看| 国产黄色免费在线视频| 国产成人精品久久二区二区免费| 国产免费av片在线观看野外av| x7x7x7水蜜桃| 亚洲三区欧美一区| 欧美日韩乱码在线| 黄色毛片三级朝国网站| 男人舔女人下体高潮全视频| 欧美日韩福利视频一区二区| www日本在线高清视频| 久久精品人人爽人人爽视色| 亚洲一区高清亚洲精品| 日韩国内少妇激情av| 99国产精品免费福利视频| 69精品国产乱码久久久| 精品第一国产精品| 亚洲国产看品久久| 欧美日韩视频精品一区| 老熟妇乱子伦视频在线观看| 黑丝袜美女国产一区| 天堂影院成人在线观看| 亚洲伊人色综图| 高清毛片免费观看视频网站 | 久久国产精品影院| 99国产综合亚洲精品| xxx96com| 搡老岳熟女国产| 国产熟女午夜一区二区三区| 久久久久国产精品人妻aⅴ院| 啦啦啦 在线观看视频| 一级片'在线观看视频| 日韩免费av在线播放| 嫁个100分男人电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产伦一二天堂av在线观看| 精品国产美女av久久久久小说| 女人被狂操c到高潮| 亚洲国产欧美日韩在线播放| 欧美在线一区亚洲| 久久青草综合色| av欧美777| aaaaa片日本免费| 女人被躁到高潮嗷嗷叫费观| 又大又爽又粗| 欧美日韩精品网址| 成在线人永久免费视频| 国产99久久九九免费精品| 一进一出好大好爽视频| 精品欧美一区二区三区在线| 18禁观看日本| 99在线视频只有这里精品首页| 中文亚洲av片在线观看爽| 亚洲精品中文字幕一二三四区| 成人精品一区二区免费| 亚洲精品美女久久av网站| 国内久久婷婷六月综合欲色啪| 午夜免费成人在线视频| 99在线视频只有这里精品首页| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 亚洲精品av麻豆狂野| 国产在线观看jvid| 桃色一区二区三区在线观看| 欧美日韩亚洲高清精品| 超色免费av| av免费在线观看网站| 午夜亚洲福利在线播放| 色综合婷婷激情| 国产黄a三级三级三级人| 精品久久久久久久久久免费视频 | 老汉色av国产亚洲站长工具| 欧洲精品卡2卡3卡4卡5卡区| 精品高清国产在线一区| 亚洲激情在线av| 黑人猛操日本美女一级片| 在线观看一区二区三区激情| 久久九九热精品免费| 亚洲一区中文字幕在线| 久久中文字幕一级| 高潮久久久久久久久久久不卡| 国产不卡一卡二| 成年女人毛片免费观看观看9| 亚洲国产欧美日韩在线播放| 国产精品 国内视频| 香蕉久久夜色| 国产精品日韩av在线免费观看 | 老司机午夜十八禁免费视频| 亚洲 国产 在线| 国产色视频综合| 国产视频一区二区在线看| 一个人观看的视频www高清免费观看 | 亚洲在线自拍视频| 1024香蕉在线观看| 男女高潮啪啪啪动态图| 免费av毛片视频| 欧美中文综合在线视频| 99re在线观看精品视频| 大码成人一级视频| 丁香欧美五月| 亚洲第一欧美日韩一区二区三区| 午夜影院日韩av| 精品久久久久久电影网| 亚洲 国产 在线| 性少妇av在线| av中文乱码字幕在线| 日本vs欧美在线观看视频| 亚洲伊人色综图| 国产精品美女特级片免费视频播放器 | 日本五十路高清| 一进一出抽搐动态| 欧美+亚洲+日韩+国产| 99热国产这里只有精品6| 亚洲成人久久性| 欧美日韩一级在线毛片| 亚洲成人久久性| 99在线视频只有这里精品首页| 国产高清视频在线播放一区| 一级作爱视频免费观看| 免费在线观看影片大全网站| 欧美日韩福利视频一区二区| 亚洲精品中文字幕在线视频| 超色免费av| 麻豆久久精品国产亚洲av | 国产精品99久久99久久久不卡| 国产精品 国内视频| 国产视频一区二区在线看| 日韩高清综合在线| 亚洲欧美激情在线| 成人手机av| 999久久久精品免费观看国产| 嫁个100分男人电影在线观看| 夜夜看夜夜爽夜夜摸 | 中文字幕色久视频| 亚洲成人免费av在线播放|