• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Commensurate and incommensurate Haldane phases for a spin-1 bilinear–biquadratic model

    2023-10-11 07:54:56YanWeiDai代艷偉AiMinChen陳愛(ài)民XiJingLiu劉希婧andYaoHengSu蘇耀恒
    Chinese Physics B 2023年9期
    關(guān)鍵詞:愛(ài)民

    Yan-Wei Dai(代艷偉), Ai-Min Chen(陳愛(ài)民), Xi-Jing Liu(劉希婧), and Yao-Heng Su(蘇耀恒)

    1Centre for Modern Physics and Department of Physics,Chongqing University,Chongqing 400044,China

    2School of Science,Xi’an Polytechnic University,Xi’an 710048,China

    3The School of Materials Science and Engineering,Chongqing Jiaotong University,Chongqing 400044,China

    Keywords: commensurate and incommensurate phases, symmetry-protected topological phase, transversal spin correlation

    1.Introduction

    Quantum phase transitions are always a hot topic of interest in condensed matter physics,which are driven by quantum fluctuations due to the uncertainty principle in quantum mechanics.One of the targets is towards completing classification of quantum states of matter.[1]In 1983,Haldane[2,3]conjectured that the half-integer spin antiferromagnetic Heisenberg chain is gapless, and the integer spin chain has an energy gap between the ground state and the first excited state.For the spin-1 Heisenberg chain, a symmetry protected topological (SPT) phase, i.e., the Haldane phase, induces a longrange string order,due to the hidden symmetry of fully brokenZ2×Z2.Interestingly,the Haldane phase in the spin-1 bilinearbiquadratic (BLBQ) model displays two parts in the structure of the Haldane phase,[4–7]i.e.,the commensurate Haldane(HaldaneC) phase and incommensurate Haldane (HaldaneIC)phases.

    Let us recall the ground state phase diagram of the spin-1 BLBQ model with the Hamiltonian described as

    whereSidenotes the spin-1 operator at lattice sitei,andα=tanφis the control parameter.The model has been investigated extensively using analytical and numerical methods,[8–20]exhibiting rich physics.Its ground state phase diagram has been mostly understood.Atφ=0, the model corresponds to the spin-1 Heisenberg antiferromagnet, and forφ=π/4, the model has been exactly solved by Sutherland,[21]who in turn justified the presence of the critical phase with central chargec= 2[20]forπ/4≤φ <π/2.The model exhibits SU(3)symmetry[22,23]atφ=±π/2,π/4,and-3π/4,and a gapless ferromagnetic phase with a multi-fold degenerate is detected fromφ=π/2 toφ=-3π/4.Forφ=-π/2 the model has been solved by Takhtajan and Bubujian,[24,25]which turns out to be the SU(2) WZW model at levelk=2, with the central chargec=3/2.Atφ=-π/4,Barber and Batchelor[26]solve the model in terms of the Bethe ansatz, which indicates that the dimerized phase exists nearby.Whether or not the phase transition from the gapless ferromagnetic phase to the dimerized phase is direct remains controversial.However,this controversial problem has been solved in our previous work.[16]Reference[16]showed the absence of a critical nematic phase in the vicinity of an SU(3)ferromagnetic point(φ=-3π/4)by means of tensor network algorithms.At the SU(3) ferromagnetic pointφ=-3π/4,the ground state wave function is highly degenerated, which is scaled but not conformally invariant, with the fractal dimensiondfbeing equal to 2.In addition, forφ= arctan(1/3), the model has been exactly solved by Affleck, Kennedy, Lieb, and Tasaki (AKLT),[27]with its ground state being the valence-bond-solid state.For-π/4<φ <π/4, the model is in the gapped Haldane phase with hidden topological order;[3,28]the gapped Haldane phase can divide into two subphases (HaldaneCand HaldaneIC) by the AKLT point.

    The transitions between commensurate and incommensurate are important problems in quantum many-body spin systems and are induced by frustration.Physically, “incommensurate”means that the wavelength of the oscillation pattern is not an integer multiple of the lattice spacing.Normally, it is not easy to characterize the incommensurate phase.Therefore, characterization of the commensurate and incommensurate phases is an important problem in physics.Here, we focus on the gapped Haldane phase for-π/4<φ <π/4.Murashimaet al.[4]characterized the HaldaneC–HaldaneICchange by analyzing the energy gap of edge states.F′athet al.[5]proposed an effective field theory to explain these features in the HaldaneC–HaldaneICchange of the spin-1 BLBQ chain.In addition, Nomura[6]proposed a mechanism to explain the onset of the incommensurability and the shortest correlation length at AKLT point and a simple random-walk-type argument is proposed to explain the HaldaneC–HaldaneICtransition in Ref.[7].Our characterization in this study is a numerical method from the tensor network in that we use the transversal spin correlations〈S+S-〉 and the corresponding momentum distribution of the structure factorS+-(q)to characterize the HaldaneCand HaldaneICphases.The transversal spin correlations〈S+S-〉exhibit different decay forms in both subphases.The results show that the transversal spin structure factorS+-(q)exhibits an incommensurate oscillation pattern in the HaldaneIC.Our numerical method can provide a powerful tool for characterizing incommensurable phases.In addition, the transition pointαc(χ) between the HaldaneCand HaldaneICphases is detected by using von Neumann entropy.The singular values of second-order derivatives of the von Neumann entropy correspond to the transition pointsαc(χ).As a typical example of the SPT phase,[29–31]the Haldane phase is protected by any of the following three symmetries:bond-centered inversion symmetry, time-reversal symmetry,and a dihedral group comprising any pair ofπ-rotations in the spin space.[29,30]In order to further characterize the HaldaneCand HaldaneICphases, we also calculate the nonlocal order parameter.The nonlocal order parameter of the bond-centered inversion with a saturation value of-1 and the nonzero value string order indicate that the Haldane phase is a symmetryprotected topological phase.

    In this study, the infinite matrix product state (iMPS)algorithm[32]is used to calculate the ground state wave function withχas the bond dimension.The remainder of this article is organized as follows.In Section 2, bipartite entanglement entropy and entanglement spectrum are calculated; a transition point is located between the HaldaneCand HaldaneICphases, corresponding to the AKLT point withα=1/3.In Section 3, we discuss the bond-centered inversion nonlocal order parameter.Section 4 discusses the string order parameter, and Section 5 characterizes the HaldaneCand HaldaneICphases using the transversal spin correlations〈S+S-〉 and the corresponding momentum distribution of the structure factorS+-(q).Finally, a summary is presented in Section 6.

    Fig.1.(a)Bipartite entanglement entropy S(χ)as a function of the parameter α with bond dimensions χ=30,60,120,150,and 200.(b)The second-order derivatives of the entanglement entropy S(χ)as a function of the parameter α.The bond dimension is χ =150.

    2.Bipartite entanglement entropy and entanglement spectrum

    The von Neumann entropy is a measure of bipartite entanglement for a quantum state,which is exploited to detect a transition point.This entropy is from the perspective of quantum information on the study phase transition.For a system of a pure state partitioned into two subsystems A and B,the bipartite entanglement entropy is defined asS=-TrρAlogρA=-TrρBlogρB, whereρA=|ψA〉〈ψA| (ρB=|ψB〉〈ψB|) denotes the reduced density matrix of subsystem A (B).In this study,we obtain the ground state wave function|ψ〉using the iMPS algorithm[32]from tensor network simulations.In the iMPS representation,the bipartite entanglement entropy for a semi-infinite chain may be rewritten as follows:

    whereλdenotes the Schmidt decomposition coefficient, andχdenotes the bond dimension.Because we consider that the translation of two lattice points is invariant,entanglement entropyS(χ)=(Sa+Sb)/2.The bipartite entanglement entropyS(χ) is plotted in Fig.1(a) as a function of the parameterαwith the bond dimensionsχ= 30, 60, 120,150,and 200.In the region-1.5≤α ≤1.5, three phase transition points are located atα=-1,1/3,1 from the entanglement entropy,and they correspond to four phases: the dimerized phase,HaldaneCphase,HaldaneICphase,and trimerized phase.Notably, an antiferromagnetic phase occurs between the dimerized phase and HaldaneCphases, which disappears as the bond dimensionχincreases.In this study, we focus on the Haldane phase.To detect the transition pointαc(χ)between the HaldaneCand HaldaneICphases,we plot the secondorder derivatives of the entanglement entropyS(χ)as a function of the parameterαin Fig.1(b),with the bond dimensionχ=150.A singular point appears at theα=0.334,which is very close to the AKLT pointα=1/3.Our results indicate a transition at the AKLT point.

    Fig.2.Entanglement spectrum En as a function of n for(a)HaldaneC phase and (b) HaldaneIC phase for different α parameters.The number of dots on each level indicates its degeneracy.The bond dimension χ =200.

    The topological phases can be characterized by the entanglement spectrum.[33–36]The entanglement spectrum of a pure state of a bipartite system is the full set of eigenvalues of the reduced density matrix obtained from tracing out one part.In several cases, the spectrum contains additional information besides the entanglement entropy.In numerical studies,the entanglement spectrum is a robust tool for identifying topological phases.For a bipartite system, the entanglement spectrum[37]is defined as follows:

    whereωn=denotes an eigenvalue of the reduced density matrixρ,nis the number of largest eigenvalues kept.In Fig.2,we plot the entanglement spectrumEnas a function ofnfor(a)the HaldaneCphase withα=-0.8,-0.4, 0, 0.2 and (b) the HaldaneICphase withα=0.4,0.6,0.8.Here,the bond dimensionχ=200.The results indicate that the entanglement spectrum shows double degeneracy in both phases.This means that the Haldane is a topological phase.But the entanglement spectrum can not distinguish the HaldaneCand HaldaneICphases.

    3.The bond-centered inversion nonlocal order parameter

    The Haldane phase[2]is a typical example of the SPT phase,[29–31]which is protected by any of the following three symmetries: bond-centered inversion symmetry,time-reversal symmetry, and a dihedral group comprising any pair ofπrotations in the spin space.[29,30]The topological phase cannot be characterized by a local order parameter, which falls beyond the Landau paradigm, but can be characterized by nonlocal order.The iMPS[32]and infinite density matrix renormalization group (iDMRG)[38]are robust tensor network algorithms, which can be exploited to efficiently simulate onedimensional quantum many-body systems.The algorithms generate a ground state wave function in an iMPS representation and provide an efficient means to evaluate various physical observables.From the iMPS simulation,the ground state|ψ〉is obtained, which is invariant under the two-site translation.In terms of the bond-centered inversionI(1,L),the bondcentered nonlocal order parameter for the segment comprisingLbonds of type A–B is defined as follows:[39,40]

    whereλBdenotes the Schmidt decomposition coefficient,and the segment lengthLis even.A graphical representation is shown in Fig.3.

    Fig.3.Graphical representation of nonlocal order parameters in the MPS picture for the segment comprising L bonds of type A–B.

    We plot the nonlocal order parameterOas a function ofαwith the bond dimensionχ=200 in the Haldane phase in Fig.4(a).In the entire Haldane phase,Oreaches a saturation value of-1 whenαis away from the quantum phase points±1,indicating that the nonlocal order parameterOcannot distinguish between the HaldaneCand HaldaneICphases,but can be used to characterize the SPT phase.In addition, we plot the nonlocal order parameterOas a function of the segment lengthLwith the bond dimensionχ=200 forα=-0.4,0,0.4[Fig.4(b)].This indicates that the nonlocal order parameterOtends to a saturation value of-1 as the segment lengthLincreases.

    Fig.4.(a)Nonlocal order parameter O as a function of α with the bond dimension χ=200 in the Haldane phase.(b)Saturation of the nonlocal order parameter O,with the block size L being even,for α =-0.4,0,0.4.

    4.String order parameter

    In the Haldane phase for the spin-1 BLBQ model with-1<α <1,due to the hiddenZ2×Z2symmetry is broken,[41]the characteristic order can be measured by the string correlation function[42]

    wherer=|i-j| denotes the lattice distance.In Fig.5, we plot the string correlation functiong(r) as a function of the lattice distancerfor (a) HaldaneCphase withα=-0.8,-0.4, 0, 0.2 and (b) HaldaneICphase withα=0.4, 0.6, 0.8.Here, the bond dimensionχ=200.For a small lattice distancer, theg(r) rapidly tends to a saturation value, indicating that the long-range order is evident.If we continue to increase the lattice distancer, the saturation value of string correlationg(r) stays at the limiting value.Forα=0, the spin-1 BLBQ model corresponds to the spin-1 antiferromagnetic Heisenberg model.Consequently,we compute the string correlation function, which shows a long-range order withg(∞) =-0.374324443, with the bond dimensionχ= 200.Our result agrees with the resultg(∞) =-0.374325096(2)from the iDMRG algorithm.[43]The behaviors of string correlation are the same in both the HaldaneCand HaldaneICphases.Note our results show that the entanglement spectrum,the bond-centered inversion nonlocal order parameter,and the string correlation cannot distinguish the HaldaneC–HaldaneICtransition,but they can clearly characterize the Haldane phase.

    Fig.5.String correlation function g(r)as a function of the lattice distance r for(a)HaldaneC phase and(b)HaldaneIC phase for different α parameters.The bond dimension χ =200.

    5.Characterization of the HaldaneC and HaldaneIC phases

    We now characterize the HaldaneCand HaldaneICphases.Physically, “incommensurate” means the wavelength of the oscillation pattern is not an integer multiple of the lattice spacing.To characterize the HaldaneCand HaldaneICphases, we calculate the transversal spin correlationC(r)=with the spin operatorS±=Sx±iSy.By a Fourier transform, the static spin structure factor of the transversal spin correlation is defined as follows:[44–46]

    In Fig.6(a), we plot the transversal spin correlationC(r) in the HaldaneCphase (up) withα=-0.8,-0.4, 0, 0.2 and the HaldaneICphase (down) withα= 0.4, 0.6, 0.8.The transversal spin correlation tends to zero as the lattice distancerincreases, indicating that no off-diagonal order exists in the Haldane phase.In addition, Fig.6(a) clearly shows that the transversal spin correlation〈〉 takes on different forms of decay in both HaldaneCand HaldaneICphases.To obtain the decay function,as an illustrative example,we choose two typical ground states in the HaldaneCand HaldaneICphases.In Fig.6(b) (up), for small lattice distancer=100, a number fit to the transversal spin correlation〈〉(for odd lattice distance) is performed withα=-0.8 in the HaldaneC,with the fitting functionC(r)=ar-η+b.The numerical constants are given asη=0.5118,a=0.69, andb=-0.0278.In Fig.6(b) (down), for the small lattice distancer=30, a number fit to the transversal spin correlation〈S+i S-j〉 is performed withα=0.6 in the HaldaneIC, with the fitting functionC(r)=r-ηcos(qr)+candq=βπ.The numerical constants are given asη=1.533,β=1.264, andc=-0.0012.The solid black line is the fit.Our results clearly show that the dominant decaying form to the transversal spin correlation is ∝r-ηfor the HaldaneCphase and ∝r-ηcos(qr) for the HaldaneICphase for small lattice distancer.In addition,to further characterize the HaldaneCand HaldaneICphases, we investigate the momentum distribution of the spin structure factorS+-(q).In Fig.6(c) (up), we plot the corresponding momentum distribution of the spin structure factorS+-(q)in the HaldaneCphase withα=-0.8,-0.4, 0, 0.2.For HaldaneCphase,we observe that the peaks for the transversal spin structure factorS+-(q)atq=±πare the uniform background.In Fig.6(c) (down), we plot the corresponding momentum distribution of the spin structure factorS+-(q)in the HaldaneICphase withα=0.4,0.6,0.8.For HaldaneICphase,we observe that the dips for the transversal spin structure factorS+-(q)are located atq=±π.In addition,we do see some peaks around(i)q=±0.7π,±1.3πforα=0.8, (ii)q=±0.66π,±1.34πforα=0.6 and(iii)q=±0.78π,±1.22πforα=0.4 in the transversal spin structure factorS+-(q),which account for the incommensurate contribution.Here, the bond dimension isχ=200.

    Fig.6.(a) Transversal spin correlation C(r) in the HaldaneC phase (up) and the HaldaneIC phase (down) for various α parameters, (b) the fitting of the transversal correlation C(r)in the HaldaneC phase(up)with α =-0.8 and the HaldaneIC phase(down)with α =0.6,and(c)the corresponding momentum distribution of the structure factor S+-(q)in the HaldaneC phase(up)and the HaldaneIC phase(down)for various α parameters.The bond dimension χ =200.

    As a result, the transversal spin correlation〈S+i S-j〉 exhibits different decay behaviors in HaldaneCand HaldaneICphases, respectively.The dominant decaying form of the transversal spin correlation〈S+i S-j〉is proportional tor-ηin the HaldaneCphase and is proportional tor-ηcos(qr) in the HaldaneICphase.In addition, the transversal spin structure factorS+-(q)exhibits an incommensurate oscillation pattern in the HaldaneIC.

    6.Summary

    The HaldaneCand HaldaneICphases for the spin-1 BLBQ model are investigated using the iMPS algorithm.A phase transition point, which corresponds to the AKLT point withα=1/3,is located by the bipartite entanglement entropy between the HaldaneCand HaldaneICphases.In both phases,the entanglement spectrum shows double degeneracy.We calculate the nonlocal order parameter of the bond-centered inversion in both phases,which rapidly approaches a saturation value of-1 as the segment lengthLincreases.The nonlocal string order is also calculated;a nonzero value string order can be used to characterize the topological phases.Forα=0,the spin-1 BLBQ model corresponds to the spin-1 antiferromagnetic Heisenberg model, and the string correlation function shows long-range order,withg(∞)~=-0.374325096(2)from the iDMRG algorithm.[43]Our results agree with the results from the iDMRG algorithm.[43]In addition,to distinguish the HaldaneCand HaldaneICphases, the transversal spin correlation〈S+i S-j〉 and corresponding momentum distribution of the structure factorS+-(q)are analyzed.Our results show that the dominant decaying form of the transversal spin correlation is proportional tor-ηfor HaldaneCphase and is proportional tor-ηcos(qr)for HaldaneICphase for a small lattice distancer.In addition, the HaldaneICphase exhibits an incommensurate oscillation pattern in the spin correlation structure factor.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.11805285), the Natural Science Foundation of Shaanxi Province of China (Grant No.2022JM-033),and the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN 201900703).

    猜你喜歡
    愛(ài)民
    李愛(ài)民美術(shù)作品
    中國(guó)承諾
    小英雄李愛(ài)民
    觸摸俄羅斯
    金秋(2020年24期)2020-04-30 00:15:28
    叫我怎不把你愛(ài)
    小燕子 剪春雨
    密語(yǔ)
    孫愛(ài)民作品
    保持快樂(lè)心情的秘密
    a级毛片在线看网站| 欧洲精品卡2卡3卡4卡5卡区| 国产不卡一卡二| 在线观看66精品国产| 高清av免费在线| www.www免费av| 国产精品日韩av在线免费观看 | 亚洲精品中文字幕一二三四区| 欧美激情极品国产一区二区三区| 午夜福利欧美成人| 亚洲全国av大片| 久久久久久人人人人人| 国产伦一二天堂av在线观看| 精品久久久久久久久久免费视频 | 一本大道久久a久久精品| 成人影院久久| a级毛片黄视频| 国产成人精品无人区| 在线天堂中文资源库| 国产蜜桃级精品一区二区三区| 巨乳人妻的诱惑在线观看| av中文乱码字幕在线| www.自偷自拍.com| 纯流量卡能插随身wifi吗| 久久婷婷成人综合色麻豆| 丝袜在线中文字幕| 天天躁夜夜躁狠狠躁躁| 国产无遮挡羞羞视频在线观看| 国产亚洲av高清不卡| 热99国产精品久久久久久7| 无限看片的www在线观看| 美国免费a级毛片| 中文字幕av电影在线播放| 我的亚洲天堂| 9色porny在线观看| 夫妻午夜视频| 一级片'在线观看视频| 亚洲国产中文字幕在线视频| 国产亚洲欧美98| x7x7x7水蜜桃| 亚洲精品久久午夜乱码| 国产成人欧美在线观看| 色综合欧美亚洲国产小说| 十分钟在线观看高清视频www| 久久精品成人免费网站| 满18在线观看网站| 性色av乱码一区二区三区2| 亚洲精品中文字幕一二三四区| 黄色视频,在线免费观看| 国产精品国产av在线观看| 久热爱精品视频在线9| 少妇的丰满在线观看| 精品免费久久久久久久清纯| 99国产极品粉嫩在线观看| 中文字幕最新亚洲高清| 日韩欧美免费精品| 91字幕亚洲| 99国产精品99久久久久| 精品国产一区二区久久| 婷婷六月久久综合丁香| 热99国产精品久久久久久7| 99热国产这里只有精品6| 午夜福利免费观看在线| 好男人电影高清在线观看| 丰满迷人的少妇在线观看| 日韩高清综合在线| 亚洲精品美女久久久久99蜜臀| 天天躁狠狠躁夜夜躁狠狠躁| 天天影视国产精品| 亚洲精品久久成人aⅴ小说| 另类亚洲欧美激情| 日韩欧美一区视频在线观看| 午夜福利一区二区在线看| 国产一卡二卡三卡精品| 一区福利在线观看| 免费av毛片视频| 午夜福利,免费看| 亚洲成av片中文字幕在线观看| 天堂√8在线中文| 极品教师在线免费播放| 俄罗斯特黄特色一大片| 叶爱在线成人免费视频播放| 天堂中文最新版在线下载| 国产av精品麻豆| 免费观看人在逋| 露出奶头的视频| 久久中文字幕人妻熟女| 满18在线观看网站| 国产精品爽爽va在线观看网站 | 1024视频免费在线观看| 麻豆av在线久日| 久久午夜亚洲精品久久| bbb黄色大片| 亚洲男人的天堂狠狠| 淫妇啪啪啪对白视频| 在线观看免费高清a一片| 久久久久久久久免费视频了| 热re99久久国产66热| 欧美日韩精品网址| a级毛片黄视频| 亚洲 欧美 日韩 在线 免费| 精品电影一区二区在线| 女人被躁到高潮嗷嗷叫费观| 女性被躁到高潮视频| 一级毛片女人18水好多| 亚洲一区高清亚洲精品| 高清黄色对白视频在线免费看| 亚洲视频免费观看视频| 亚洲一区二区三区色噜噜 | a级毛片黄视频| 午夜91福利影院| 最新美女视频免费是黄的| bbb黄色大片| 日本a在线网址| 亚洲av美国av| 在线观看一区二区三区激情| 色婷婷久久久亚洲欧美| 亚洲精品久久午夜乱码| 91麻豆av在线| 嫁个100分男人电影在线观看| 久久久精品欧美日韩精品| 亚洲自拍偷在线| 黄网站色视频无遮挡免费观看| 一本综合久久免费| 欧美日韩精品网址| 身体一侧抽搐| 村上凉子中文字幕在线| 国产一区在线观看成人免费| 国产欧美日韩一区二区三| 在线天堂中文资源库| 少妇裸体淫交视频免费看高清 | 99热只有精品国产| 在线天堂中文资源库| 久久中文字幕人妻熟女| 黄片大片在线免费观看| www国产在线视频色| 亚洲情色 制服丝袜| 欧美最黄视频在线播放免费 | 嫩草影视91久久| 国产不卡一卡二| 亚洲精品一二三| 国产高清激情床上av| 精品一品国产午夜福利视频| 国产精品一区二区三区四区久久 | 欧美人与性动交α欧美精品济南到| 久99久视频精品免费| 狂野欧美激情性xxxx| 国产精品一区二区在线不卡| 人妻丰满熟妇av一区二区三区| 亚洲av片天天在线观看| 在线观看66精品国产| 男女午夜视频在线观看| 国产一区在线观看成人免费| 亚洲av成人av| 少妇裸体淫交视频免费看高清 | 99在线人妻在线中文字幕| 99精国产麻豆久久婷婷| 日韩人妻精品一区2区三区| 69精品国产乱码久久久| 黑人猛操日本美女一级片| 在线观看免费高清a一片| 亚洲欧美精品综合一区二区三区| 精品电影一区二区在线| 亚洲片人在线观看| 一个人免费在线观看的高清视频| 免费人成视频x8x8入口观看| 国产国语露脸激情在线看| 色尼玛亚洲综合影院| 在线观看免费高清a一片| 国产精品98久久久久久宅男小说| 麻豆久久精品国产亚洲av | 精品一区二区三区四区五区乱码| 成人亚洲精品av一区二区 | 午夜福利欧美成人| 女性生殖器流出的白浆| 一级,二级,三级黄色视频| 免费不卡黄色视频| 久久人人爽av亚洲精品天堂| 亚洲中文日韩欧美视频| xxxhd国产人妻xxx| 中文字幕精品免费在线观看视频| 麻豆成人av在线观看| 亚洲全国av大片| 国产主播在线观看一区二区| 午夜福利在线免费观看网站| 交换朋友夫妻互换小说| 日韩有码中文字幕| 熟女少妇亚洲综合色aaa.| 我的亚洲天堂| 成年版毛片免费区| ponron亚洲| 欧美午夜高清在线| 嫩草影院精品99| 国产精品 国内视频| 69精品国产乱码久久久| www.熟女人妻精品国产| 丝袜美足系列| 色哟哟哟哟哟哟| 国产高清激情床上av| 日本黄色日本黄色录像| 国产精品 国内视频| 久9热在线精品视频| 国产精品久久电影中文字幕| 亚洲色图综合在线观看| 国产精品一区二区精品视频观看| 日韩精品青青久久久久久| 亚洲,欧美精品.| 亚洲性夜色夜夜综合| 18美女黄网站色大片免费观看| 国产麻豆69| 欧美中文综合在线视频| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区三区视频了| 午夜a级毛片| 成年人免费黄色播放视频| 国产精品久久视频播放| 两人在一起打扑克的视频| 我的亚洲天堂| 黄网站色视频无遮挡免费观看| av在线播放免费不卡| 欧美日本中文国产一区发布| 中亚洲国语对白在线视频| 亚洲第一欧美日韩一区二区三区| 在线国产一区二区在线| 亚洲三区欧美一区| 一级a爱片免费观看的视频| 国产欧美日韩精品亚洲av| 一级,二级,三级黄色视频| 十分钟在线观看高清视频www| 一区二区三区国产精品乱码| 亚洲三区欧美一区| 在线观看一区二区三区| 午夜福利免费观看在线| 久久久久久久久久久久大奶| 午夜老司机福利片| 黑人欧美特级aaaaaa片| 97人妻天天添夜夜摸| 午夜精品国产一区二区电影| 91成人精品电影| 亚洲欧美日韩无卡精品| 亚洲成av片中文字幕在线观看| 成人黄色视频免费在线看| 男女高潮啪啪啪动态图| 在线观看免费视频日本深夜| 国产av一区二区精品久久| 国产成人影院久久av| 国内久久婷婷六月综合欲色啪| 亚洲午夜理论影院| 在线十欧美十亚洲十日本专区| 无遮挡黄片免费观看| 亚洲狠狠婷婷综合久久图片| 在线免费观看的www视频| 久久人妻av系列| 黄色怎么调成土黄色| 免费av中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 免费久久久久久久精品成人欧美视频| 99久久综合精品五月天人人| 一级片'在线观看视频| 首页视频小说图片口味搜索| 久久久精品国产亚洲av高清涩受| 欧美在线一区亚洲| 久久亚洲真实| 18美女黄网站色大片免费观看| 一区二区三区精品91| 男人操女人黄网站| 99热国产这里只有精品6| 极品人妻少妇av视频| 国产单亲对白刺激| 国产亚洲精品一区二区www| 99久久人妻综合| 天堂动漫精品| tocl精华| 看免费av毛片| 久久精品91蜜桃| 精品乱码久久久久久99久播| av福利片在线| 一级毛片精品| av中文乱码字幕在线| 90打野战视频偷拍视频| 少妇的丰满在线观看| 久久久久国产精品人妻aⅴ院| 少妇被粗大的猛进出69影院| 免费人成视频x8x8入口观看| 亚洲精品国产一区二区精华液| 精品福利观看| 99re在线观看精品视频| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久亚洲精品国产蜜桃av| 欧美日韩国产mv在线观看视频| 午夜影院日韩av| 日韩视频一区二区在线观看| 久久这里只有精品19| 亚洲中文日韩欧美视频| 亚洲国产精品999在线| 亚洲精品中文字幕一二三四区| www.精华液| 亚洲欧美一区二区三区久久| 波多野结衣高清无吗| 久久久久久大精品| 99久久精品国产亚洲精品| 一级毛片精品| 国产深夜福利视频在线观看| 国产av精品麻豆| 精品久久蜜臀av无| 一边摸一边抽搐一进一出视频| 亚洲激情在线av| 国产欧美日韩一区二区精品| 黄色毛片三级朝国网站| 曰老女人黄片| 成人精品一区二区免费| 性少妇av在线| 人人妻人人爽人人添夜夜欢视频| 久99久视频精品免费| 亚洲欧洲精品一区二区精品久久久| 国产成人欧美| 国产精品乱码一区二三区的特点 | 99久久国产精品久久久| 最新在线观看一区二区三区| 可以免费在线观看a视频的电影网站| 久久久久精品国产欧美久久久| 成人精品一区二区免费| 亚洲精品一卡2卡三卡4卡5卡| 女人被躁到高潮嗷嗷叫费观| 99国产极品粉嫩在线观看| 国产欧美日韩一区二区三| 露出奶头的视频| 亚洲精品中文字幕一二三四区| 一个人观看的视频www高清免费观看 | 人成视频在线观看免费观看| 超色免费av| aaaaa片日本免费| 国产激情久久老熟女| 色综合婷婷激情| 亚洲美女黄片视频| cao死你这个sao货| √禁漫天堂资源中文www| 亚洲专区国产一区二区| 宅男免费午夜| 69精品国产乱码久久久| 99国产精品99久久久久| 亚洲成人免费av在线播放| 在线看a的网站| 免费av中文字幕在线| 身体一侧抽搐| 国产一区二区在线av高清观看| 精品国产一区二区久久| 美国免费a级毛片| 日本 av在线| 两性夫妻黄色片| 热re99久久国产66热| 亚洲成人免费av在线播放| 母亲3免费完整高清在线观看| 成人影院久久| 欧美日韩亚洲高清精品| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲一区二区三区色噜噜 | 十分钟在线观看高清视频www| 中文亚洲av片在线观看爽| 亚洲熟妇熟女久久| 一进一出抽搐动态| 亚洲国产欧美网| 精品人妻在线不人妻| 亚洲人成电影免费在线| 国产亚洲精品一区二区www| 99re在线观看精品视频| 高清黄色对白视频在线免费看| 免费av中文字幕在线| 伊人久久大香线蕉亚洲五| 国产精品自产拍在线观看55亚洲| 熟女少妇亚洲综合色aaa.| 国产99白浆流出| 黄色视频,在线免费观看| 在线播放国产精品三级| 新久久久久国产一级毛片| 在线观看午夜福利视频| 99国产精品99久久久久| 久久久国产欧美日韩av| 天堂中文最新版在线下载| 欧美大码av| 好男人电影高清在线观看| 狠狠狠狠99中文字幕| 成人影院久久| 91字幕亚洲| 露出奶头的视频| 夫妻午夜视频| 麻豆久久精品国产亚洲av | 黄片播放在线免费| 亚洲专区中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 99久久综合精品五月天人人| 亚洲av五月六月丁香网| 亚洲久久久国产精品| 99久久国产精品久久久| 亚洲午夜精品一区,二区,三区| 丰满的人妻完整版| 波多野结衣一区麻豆| 在线观看舔阴道视频| 男女下面进入的视频免费午夜 | 欧美大码av| av中文乱码字幕在线| 色精品久久人妻99蜜桃| 欧美最黄视频在线播放免费 | 一级片免费观看大全| 99精品在免费线老司机午夜| 亚洲成人免费av在线播放| 如日韩欧美国产精品一区二区三区| 亚洲午夜理论影院| 日本精品一区二区三区蜜桃| 可以免费在线观看a视频的电影网站| 午夜两性在线视频| 欧美日韩亚洲综合一区二区三区_| 久久九九热精品免费| 免费在线观看日本一区| 免费少妇av软件| 免费人成视频x8x8入口观看| 精品午夜福利视频在线观看一区| 黄色 视频免费看| 男女之事视频高清在线观看| 久久热在线av| 国产在线观看jvid| 麻豆国产av国片精品| 岛国在线观看网站| 日本黄色日本黄色录像| 国产激情久久老熟女| av天堂在线播放| 高清毛片免费观看视频网站 | 免费在线观看影片大全网站| 亚洲七黄色美女视频| 国产激情久久老熟女| 91字幕亚洲| 这个男人来自地球电影免费观看| 成人精品一区二区免费| 日韩欧美一区视频在线观看| 视频区图区小说| 久久精品亚洲熟妇少妇任你| 人人妻人人爽人人添夜夜欢视频| 欧美中文日本在线观看视频| 黄网站色视频无遮挡免费观看| 黑丝袜美女国产一区| www.熟女人妻精品国产| 神马国产精品三级电影在线观看 | 一进一出抽搐动态| 国产乱人伦免费视频| 亚洲人成77777在线视频| 成人18禁在线播放| 神马国产精品三级电影在线观看 | 亚洲一区二区三区色噜噜 | 欧美色视频一区免费| 色婷婷av一区二区三区视频| 侵犯人妻中文字幕一二三四区| 日韩视频一区二区在线观看| 久久影院123| 久久国产乱子伦精品免费另类| 一区在线观看完整版| 国产精品一区二区精品视频观看| 国产av精品麻豆| 欧美最黄视频在线播放免费 | 亚洲七黄色美女视频| 丰满人妻熟妇乱又伦精品不卡| 成人国产一区最新在线观看| 啪啪无遮挡十八禁网站| 色综合婷婷激情| 日韩欧美三级三区| 少妇的丰满在线观看| a级毛片黄视频| 一区二区日韩欧美中文字幕| 亚洲欧美一区二区三区黑人| 欧洲精品卡2卡3卡4卡5卡区| 黑人巨大精品欧美一区二区mp4| 日本 av在线| 人成视频在线观看免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲av片天天在线观看| 亚洲伊人色综图| 免费高清在线观看日韩| 性少妇av在线| 亚洲一区二区三区不卡视频| 涩涩av久久男人的天堂| 香蕉丝袜av| 成年女人毛片免费观看观看9| 成人永久免费在线观看视频| 亚洲国产看品久久| 麻豆av在线久日| 高清av免费在线| 亚洲va日本ⅴa欧美va伊人久久| 天天躁狠狠躁夜夜躁狠狠躁| 18禁国产床啪视频网站| 别揉我奶头~嗯~啊~动态视频| 免费av中文字幕在线| 麻豆成人av在线观看| 亚洲男人天堂网一区| 一级作爱视频免费观看| 91在线观看av| www.999成人在线观看| xxx96com| 91麻豆精品激情在线观看国产 | 亚洲专区中文字幕在线| 日韩高清综合在线| 欧美日韩精品网址| 亚洲成av片中文字幕在线观看| 久久久久精品国产欧美久久久| 欧美黑人精品巨大| 久久草成人影院| 免费看a级黄色片| 免费在线观看黄色视频的| 一级黄色大片毛片| 一个人观看的视频www高清免费观看 | 欧美激情久久久久久爽电影 | 淫秽高清视频在线观看| 国产精品电影一区二区三区| av欧美777| 国产精品久久电影中文字幕| 18禁观看日本| 99香蕉大伊视频| 亚洲精品国产区一区二| 欧美成狂野欧美在线观看| 午夜两性在线视频| 在线观看免费日韩欧美大片| 成人精品一区二区免费| 午夜福利免费观看在线| 一级毛片高清免费大全| 精品国产一区二区三区四区第35| 日本wwww免费看| 男人舔女人的私密视频| 超色免费av| 成人特级黄色片久久久久久久| 免费看十八禁软件| 黄网站色视频无遮挡免费观看| 亚洲五月天丁香| 国产精品1区2区在线观看.| 老鸭窝网址在线观看| 老熟妇乱子伦视频在线观看| 亚洲精品中文字幕一二三四区| 精品国产国语对白av| 日本黄色日本黄色录像| 国产精品电影一区二区三区| 国产一区二区激情短视频| 日日爽夜夜爽网站| 国产一区二区在线av高清观看| 真人做人爱边吃奶动态| 日韩欧美三级三区| 我的亚洲天堂| 深夜精品福利| 久久国产亚洲av麻豆专区| 国产黄a三级三级三级人| 国产99久久九九免费精品| 啦啦啦 在线观看视频| 国产99久久九九免费精品| 国产精品九九99| 99国产精品99久久久久| 久久精品人人爽人人爽视色| 热re99久久国产66热| 黄色视频,在线免费观看| 午夜91福利影院| 俄罗斯特黄特色一大片| 久久国产精品人妻蜜桃| 美女大奶头视频| 国产国语露脸激情在线看| 色老头精品视频在线观看| 成年人免费黄色播放视频| 欧洲精品卡2卡3卡4卡5卡区| 伊人久久大香线蕉亚洲五| 一级片免费观看大全| 成人永久免费在线观看视频| 99精品欧美一区二区三区四区| 国产单亲对白刺激| 男人舔女人的私密视频| 久久天躁狠狠躁夜夜2o2o| 麻豆一二三区av精品| 18禁国产床啪视频网站| 欧美一级毛片孕妇| 韩国精品一区二区三区| 这个男人来自地球电影免费观看| 久久精品国产综合久久久| 亚洲,欧美精品.| 首页视频小说图片口味搜索| 色哟哟哟哟哟哟| 国产成人精品无人区| 精品国产国语对白av| 久久精品影院6| 高清在线国产一区| 波多野结衣av一区二区av| 中文字幕人妻熟女乱码| 女同久久另类99精品国产91| 欧美激情高清一区二区三区| 久久热在线av| 少妇被粗大的猛进出69影院| 日本vs欧美在线观看视频| 亚洲欧美日韩另类电影网站| 性色av乱码一区二区三区2| 国产激情欧美一区二区| 18禁国产床啪视频网站| 成熟少妇高潮喷水视频| 精品人妻1区二区| 欧美人与性动交α欧美精品济南到| 国产精品1区2区在线观看.| 天堂中文最新版在线下载| 欧美乱色亚洲激情| 精品福利永久在线观看| 香蕉久久夜色| 欧美在线一区亚洲| 中文亚洲av片在线观看爽| 久9热在线精品视频| 好男人电影高清在线观看| 免费不卡黄色视频| 丁香欧美五月| 国产精品 欧美亚洲| 黄片小视频在线播放| 国产1区2区3区精品| 香蕉丝袜av| 亚洲欧美精品综合一区二区三区| 男人操女人黄网站| 国产av在哪里看| 精品久久久久久成人av|