• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-speed directly modulated distributed feedback laser based on detuned loading and photon–photon resonance effect

    2023-10-11 07:55:32YunShanZhang張?jiān)粕?/span>YiFanXu徐逸帆JiLinZheng鄭吉林LianYanLi李連艷TaoFang方濤andXiangFeiChen陳向飛
    Chinese Physics B 2023年9期
    關(guān)鍵詞:云山吉林

    Yun-Shan Zhang(張?jiān)粕?, Yi-Fan Xu(徐逸帆), Ji-Lin Zheng(鄭吉林), Lian-Yan Li(李連艷),Tao Fang(方濤), and Xiang-Fei Chen(陳向飛),?

    1College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Communications Engineering,PLA Army Engineering University,Nanjing 210007,China

    3College of Engineering and Applied Sciences,Nanjing University,Nanjing 210023,China

    Keywords: directly modulated laser(DML),detuned loading effect, photon–photon resonance(PPR)effect,reconstruction-equivalent-chirp(REC)technique

    1.Introduction

    Because of the explosive development of data communication services such as cloud computing, the data traffic over networks and the demands for large network bandwidth have been increasing rapidly.As the light sources of optical communication systems, high-speed modulated lasers are crucial in solving these problems.Compared with externally modulated lasers like electro-absorption modulator integrated lasers,[1,2]directly modulated lasers(DMLs)have the advantages of cost-effectiveness, small size, low power consumption,and high efficiency.Therefore,it is attractive to improve the modulation bandwidth of DML.

    In order to realize high-speed DML, it is essential to increase the relaxation oscillation frequency of the laser.For this purpose,AlGaInAs is usually used instead of InGaAsP in the active region of the DML to obtain high differential gain.[3]Besides, by using buried heterostructure[4,5]and shortening the cavity length of the lasers[6–9]to reduce the volume of the active region,the relaxation oscillation frequency can also be enhanced.However, the buried heterostructure brings about the problem of active region oxidation and increases the manufacturing cost.Moreover,in order to obtain an extremely short cavity length,it is usually necessary to combine various complex processes or structures.Through integrating a distributed feedback(DFB)laser with a passive waveguide[7,8]or passive distributed reflectors,[9]the length of the active region can be reduced beyond the limit of the cleaving process.While the necessary butt-joint regrowth process when fabricating these structures increases fabrication cost and difficulty.

    In addition to reducing the active region of the laser,other modulation bandwidth enhancement methods can be used to design high-speed DML.One of them is the detuned loading effect,[10]which is common in conventional distributed Bragg reflector (DBR) lasers.[11,12]When lasing occurs on the long wavelength flank of the DBR mirror, the detuned loading effect can increase the resonance frequency of the laser.[13]The photon–photon resonance(PPR)effect is also widely utilized to improve the bandwidth of DML.[14–16]The interaction between the main mode and an adjacent cavity mode can produce a second resonance peak with a much higher frequency than relaxation oscillation.In a passive feedback laser (PFL),[14]the DFB laser is integrated with a passive feedback section.The PPR effect is generated by injecting current into the feedback section to optimize the phase.The above two effects can coexist in both DBR laser[17]and distributed reflector (DR)laser.[18,19]Therefore, the combination of the two effects can further increase the modulation bandwidth.Similarly, the integration of the active section and the passive section increases the difficulty and cost of chip manufacturing.

    In this paper,we propose and demonstrate theoretically a two-section DFB(TS-DFB)laser with sampled Bragg gratings(SBGs).The TS-DFB laser consists of two sections:one plays a role of a general DFB laser,and the other acts as a grating reflector.For simplicity,they are called section I and section II,respectively.Both sections share the same active layer,so the butt-joint regrowth is not required.In order to enhance the modulation bandwidth of the laser, the grating period of the two sections needs to be controlled accurately to achieve the detuned loading effect and PPR effect.The SBGs in the TSDFB laser are used to realize the equivalent change of the period of the seed grating by using the reconstruction-equivalentchirp(REC)technique.[20–22]Consequently,the cost of manufacturing can be greatly reduced.The simulation results show that the direct modulation bandwidth of TS-DFB laser can be improved by 21 GHz or more compared with the conventional one-section DFB(OS-DFB)laser.

    2.Principle and model

    2.1.Principle of REC technique

    In order to improve the characteristics of the DFB lasers, various complicated grating structures (e.g.multiple phase shifts gratings, corrugation-pitch-modulated gratings,and asymmetric gratings)have been developed and used.Yet high-precision control mechanism is indispensable to the fabrication of these sophisticated gratings.Through changing the period or duty cycle of the SBGs,the REC technique can design equivalent subgratings with many complicated structures.Besides,the fabrication of SBGs only needs the conventional holographic exposure and photolithography technology with micrometer-level control accuracy.The principle of the REC technique will be briefly introduced below.[23,24]

    Mathematically, the index modulation changes Δn(z) of an SBG can be written as

    where,s(z) is a sampling function andΛis the period of the seed grating.Based on the Fourier series expansion,s(z)can be expressed as

    whereFmis them-th order Fourier coefficient corresponding to them-th order channel of the SBG, andPis the sampling period of the sampling function.So, equation (1) can be expressed as

    It can be obtained from Eq.(3)that the SBG is actually a superposition of many subgratings with different grating periods,and every subgrating has a spectral response corresponding to one of the multiple channels.These periods can be expressed as

    From Eq.(4), the channel spacing is determined by the sampling periodP.In actual design,the+1st or-1st subgrating is used as the working resonator.An appropriate sampling periodPshould be selected such that the +1st or-1st channel falls within the gain spectrum of the semiconductor material,while the others are located outside the gain region.As a result, the laser will lase at the wavelength within the +1st or-1st order channel of the SBG.

    Now, +1st channel is taken as an example.Based on Eq.(4),the period of seed gratingΛand the sampling periodPsatisfy

    whereneffis the effective refractive index,andλis the lasing wavelength.

    2.2.Model of the simulation

    The time-domain traveling-wave model consists of the time-dependent coupled-wave equations and the carrier rate equation to simulate the lasing characteristics of the proposed TS-DFB laser.[25,26]The electrical field in the waveguide can be described as

    whereφ(x,y)is the model function in the waveguide,F(z,t)andR(z,t) represent the forward wave and backward wave propagating in the waveguide respectively,β0is the propagation constant at Bragg frequency, andω0is the reference frequency corresponding to the Bragg wavelengthλ0.The fieldsF(z,t) andR(z,t) satisfy the time-dependent coupledwave equations:

    Here,vgis the group velocity.Gandδare the field gain and the detuning factor respectively, andκis the coupling coefficient between forward and backward waves.In this work,we consider only index coupling.ThesF(z,t)andsR(z,t)are the spontaneous emission noise coupled into the forward and backward fields.The noise terms each have a Gaussian distribution and the phase of the noise is assumed to change randomly.

    The carrier densityNis described by the time-dependent carrier rate equation as

    whereJis the current injection density,eis the electron charge,dis the thickness of the active layer,Ais the linear recombination coefficient,Bis the bimolecular recombination coefficient,Cis the Auger recombination coefficient,gis the gain coefficient,N0is the transparency carrier density,εis the gain compression factor,andSis the photon density which is related to the magnitude of the propagating wave amplitudes as

    The field gainGin Eqs.(7a)and(7b)is expressed as

    whereΓis the confinement factor of the active layer, andαis the waveguide loss caused by free electron scattering and absorption.

    The detuning factorδin Eqs.(7a)and(7b)represents the deviation from the Bragg condition due to the change of the refractive index in the waveguide and can be defined as

    whereneff0is the effective refractive index at transparency,Δnis the change of the refractive index and can be written as

    whereαHis the linewidth enhancement factor.

    Ifz=0 at the facet on the left-hand side, the boundary condition for the forward and backward propagating wave at the facet satisfies

    whererlandrrare the amplitude of the reflectivity at the facets on the left-and the right-hand sides,respectively,φl(shuí)andφrare the phase at the facets on the left-and the right-hand sides,andLis the laser cavity length.

    In this work, we focus on the DFB lasers fabricated by REC technology.Hence, the grating in the simulation is a sampled grating.In the part without change of the refractive index, we set the coupling coefficientκ=0.According to Eq.(5),it satisfies in our simulation that

    whereP1is the sampling period of section I and can be calculated from the Bragg wavelengthλ0and the period of seed gratingΛthrough Eq.(14).

    For section II,only the sampling period instead of the period of the seed gratingΛneeds to be changed,thereby reducing the difficulty of fabrication.

    3.Design principle and simulation results

    3.1.Design of TS-DFB laser

    The proposed structure of the TS-DFB laser is shown in Fig.1(a).It consists of two sections separated by electrical isolation.Therefore, two regions can be independently injected by different currentsI1andI2.Section I works as a general DFB laser, and the other serves as a detuned grating reflector.Moreover, the two sections share the same active layer,so the butt-joint regrowth process is avoidable.The facet of section I is high-reflection (HR) coated and the facet of section II is anti-reflection(AR)coated.The light is output after passing through the grating reflector.The reflectivity of the HR coating is set to 0.92.Figure 1(b)shows the grating structure fabricated by the REC technique in the two sections.The SBGs in the two sections have the identical coupling coefficientκand seed grating periodΛ.The only difference is that the gratings of the two sections have distinct sampling periods,denoted asP1andP2respectively.In the simulation,the equivalent normalized coupling coefficient of the SBGs is set to 1,where the duty cycle of the sampled gratings is considered.The duty cycle of the SBGs is 0.5.Other parameters used in the simulation are given in Table 1.

    Fig.1.Schematic diagram of(a)proposed TS-DFB laser and(b)grating structure of the TS-DFB laser.

    In order to make better use of the detuned loading and the PPR effects to enhance the modulation bandwidth of the TS-DFB laser, the SBGs in the two sections need different sampling periods,that is,detuning between the grating Bragg wavelengths in the two sections is realized.Figure 2 shows the reflection spectrum of the grating reflector and the round trip phase of the laser,which are calculated by the transfer matrix method[27,28]after the effective refractive index and gain distribution in the laser cavity have been obtained from the timedomain traveling-wave model.The detuning of the gratings can make the main mode fall on the long wavelength flank of the reflection spectrum.Under modulation,the frequency upchirp of the TS-DFB laser shifts the main mode to the Bragg peak of section II.The longitudinal confinement factor is increased.As a result, the detuned loading effect can increase the resonance frequency.[11]Moreover, the side mode which is close to the main mode can resonantly amplify the modulation sidebands.Thus,PPR effect can further improve the 3-dB bandwidth.

    Table 1.Parameters used in simulations.

    Fig.2.Reflection spectrum of detuned grating reflector and round trip phase of the laser,with the positions of the modes in profiles represented by circles.

    3.2.Static characteristics of the TS-DFB laser

    Figure 3(a)shows the longitudinal photon density distribution of the TS-DFB laser when the injection currentI1is 100 mA.Since the light of the TS-DFB laser is output from the grating reflector side, the photon density will be reduced due to the absorption loss and reflection, implying a lower output power.The bias currentI2can be added to the reflector section to compensate for the loss and increase the output.Thus, the photon density at the output facet of the TS-DFB laser will become higher.The light–current characteristics of the TS-DFB laser are shown in Fig.3(b).It can be seen that the bias currentI2has a great influence on the light–current characteristics of the TS-DFB laser.WhenI2increases, the threshold current decreases and the slope efficiency increases.The threshold currents of the TS-DFB laser are about 22 mA forI2=0 mA and 9 mA forI2=10 mA,and correspondingly the slope efficiencies are about 0.248 mW/mA and 0.277 mW/mA.

    Fig.3.(a)Calculated photon density distribution of TS-DFB laser with injection current of 100 mA and(b)light–current characteristics of TSDFB laser for I2=0 mA and 10 mA.

    The spectrum of the TS-DFB laser is shown in Fig.4,which is calculated based on the model proposed in Ref.[29].The side mode suppression ratio(SMSR)is 42 dB.Moreover,it can be seen that there is a side mode at about 0.2 nm off the main mode, which is named PPR mode.The PPR mode can improve the modulation bandwidth effectively, which is consistent with the laser design in Fig.2.

    Fig.4.Lasing spectrum of TS-DFB laser,with injection current being 100 mA.

    3.3.Dynamic characteristics of TS-DFB laser

    To calculate the small-signal modulation response of the TS-DFB laser, a small sinusoidal current is added to the bias current of section I.Figure 5 shows the response curves of the TS-DFB laser with different detunings of the grating Bragg wavelengths in the two sections.It is obvious that the detuning between the SBGs in the two sections has a significant influence on the modulation bandwidth of the TS-DFB laser.The larger detuning can make the main mode fall on the steeper Bragg wavelength flank of section II, which can enhance the detuned loading effect.Therefore,the resonance frequency is improved.Moreover, it can generate and strengthen the PPR mode, so that the PPR effect can better generate a resonance frequency at high frequency.

    Fig.5.Response curves of TS-DFB laser with different detunings between SBGs in the two sections,with I1 being 100 mA.

    The small-signal response curves of the TS-DFB laser with different values of injection currentI2are shown in Fig.6(a).For comparison, the response of the conventional OS-DFB laser with a cavity length of 400 μm is also given.The 3-dB modulation bandwidth of the OS-DFB laser is only about 16 GHz.However,for the TS-DFB laser,it can be seen that the detuned loading effect enhances the resonance frequency,and the PPR effect forms a second resonance peak on the response curve.The modulation bandwidth increases from 34 GHz to 37 GHz whenI2is tuned from 0 mA to 15 mA.The increase of the reflection of the grating reflector enhances the resonance strength of the PPR peak.WhenI2is 20 mA, the mode hops from the long wavelength flank of the Bragg peak to the short wavelength flank as shown in Fig.6(b).This is because with the increase ofI2, the effective index of section II decreases,and the reflection spectrum moves towards the short wavelength.In this situation,the detuned loading effect is absent.The mode spacing is too large, so the PPR effect does not work.Therefore, the modulation bandwidth is attenuated to 15.5 GHz.Hence, a current large than 20 mA only makes the effective refractive index smaller and cannot improve the direct modulation bandwidth.

    Fig.6.(a) Response curves of TS-DFB laser, with I1 being 100 mA and injection current I2 having different values, and (b) reflection spectrum of grating reflector and round trip phase of the laser,with I2 being 20 mA.

    Fig.7.Response curves of TS-DFB laser with different lengths of section II,with I1 being 100 mA and I2 being 10 mA.

    The influence of the grating reflector length on the modulation response is illustrated in Fig.7.

    The separation between the main mode and the PPR mode is determined by the cavity length of grating reflector.The longer the grating reflector,the closer the PPR mode is to the main mode,and the overlap between the two resonance peaks becomes more and more.As shown in Fig.7,when the cavity length of section II is 600 μm,the PPR mode is very close to the main mode,and the second resonance is very strong.When the length of section II is 400 μm,the spacing of the PPR mode from the main mode becomes larger,so the second resonance peak is at a higher frequency.However,the resonance strength is weaker,due to the weaker feedback of the shorter grating reflector.When the length is further reduced, the PPR mode is too far away and too weak to increase the modulation bandwidth.Therefore,the length of the grating reflector should be appropriately designed to maximize the enhancement of the modulation bandwidth brought by the PPR effect.

    In the above calculations,the random phase of the grating at the HR facet was set to 0.However, in practice, the phase randomness of the grating is uncontrollable.Therefore, facet phaseφis changed to study its effect on the high-speed modulation characteristics.Figure 8(a)shows the response curves of the TS-DFB laser whenφis varied from 0 to 0.8π.It can be seen that under certain phase conditions,mode hopping occurs and the modulation bandwidth is attenuated.Whenφis 0.6π,the 3-dB bandwidth is only 21 GHz.In order to study the effect of the random phase on mode hopping, the normalized threshold gain margin between the eigenmode at the shorter wavelength side and the lasing mode is calculated,and the results are shown in Fig.8(b).It can be seen that when the random phase is 0, the normalized threshold gain margin is less than 0.25.Therefore, when the current of the reflection section is too large,mode hopping occurs as shown in Fig.6.The normalized threshold gain margin is 0 when the random phase is changed from 0.7πto 0.9π,which means that the lasing occurs at the eigenmode on the shorter wavelength side.Thus,the small-signal modulation response deteriorates.

    Fig.8.(a) Response curves of TS-DFB laser with different values of facet phase φ with I1 being 100 mA and I2 being 15 mA.(b)Normalized threshold gain margin between the main mode and the eigenmode on the shorter wavelength side versus facet phase φ.

    Figure 9(a)shows the lasing spectrum whenφis 0.6π.It can be seen that the main mode lases within the stopband due to the random phase of the grating.As a result, the spacing between the main mode and the PPR mode becomes larger.As can be seen from Fig.9(b), the PPR frequency, in this case,is about 65 GHz,which is about 55 GHz larger than the first resonance peak.Because the two resonance peaks are too far apart, the response curve is attenuated below 3 dB before reaching the second resonance peak.Therefore,the PPR effect cannot improve the modulation bandwidth effectively.By increasing the currentI2,the loss of the grating reflector section is compensated for and the reflectivity is increased.Then the resonance strength of the PPR peak is enhanced,which counteracts the roll-off of the response.Consequently, the modulation bandwidth can reach around 73 GHz.Obviously,there are two PPR peaks in the response curves.The reason is that the multi-mode rate equation is used in the simulation,another resonance peak is caused by another side mode.

    Fig.9.(a) Lasing spectrum of TS-DFB laser, with φ being 0.6π.(b)Response curves of TS-DFB laser with I2 having different values, I1 being 100 mA,and φ being 0.6π.

    In order to better demonstrate the high-speed characteristics of the TS-DFB laser,the eye diagrams under direct modulation are calculated and compared.Figure 10 shows the eye diagrams of the TS-DFB laser and the OS-DFB laser under 25-Gb/s,40-Gb/s,and 55-Gb/s direct modulations.The lasers are biased at 100 mA and the modulation amplitude is 20 mA.The optimal bandwidth condition of the TS-DFB laser is selected,and the random phase of the grating is 0.It can be seen that the eye diagrams of the TS-DFB lasers have larger opening extent than those of the OS-DFB laser.Under 25-Gb/s direct modulation,the clear eye-openings of two kinds of DFB lasers can be obtained owing to the enough modulation bandwidths.Obviously, the OS-DFB laser cannot meet the higher modulation rates.In contrast, the TS-DFB laser can achieve clear eye-openings and large mask margins under all three modulation rates.These results are consistent with the calculations of their modulation bandwidth in Fig.6.

    Fig.10.Eye diagrams under direct modulation at 25 Gb/s,40 Gb/s,and 55 Gb/s by(a)conventional OS-DFB laser and(b)TS-DFB laser.

    4.Conclusions

    A directly modulated two-section DFB laser with sampled gratings is proposed and investigated theoretically.Since the two sections share the same active layer and the gratings are fabricated by the REC technique, the difficulty in manufacturing the lasers is greatly reduced.High-speed DML is realized by exploiting the detuned loading, and PPR effects.Compared with the OS-DFB laser,the TS-DFB laser has large direct modulation bandwidth.Therefore, the proposed laser can be used as a light source for high-speed optical communication systems.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2020YFB2205804),the National Natural Science Foundation of China (Grant Nos.61974165 and Grant 61975075), and the National Natural Science Foundation of China for the Youth,China(Grant No.62004105).

    猜你喜歡
    云山吉林
    13.吉林卷
    云山圖
    金秋(2020年16期)2020-12-09 01:41:48
    A Spring Coat for Sarah
    Accident Analysis and Emergency Response Effect Research of the Deep Foundation Pit in Taiyuan Metro
    云山萬(wàn)重歸故鄉(xiāng),疾風(fēng)千里嘆離愁
    吉林卷
    吉林卷
    解讀“吉林大米現(xiàn)象”
    云山的樹(shù)
    趙學(xué)敏書法作品《五云山》
    旅游縱覽(2015年6期)2015-06-29 09:10:51
    av福利片在线观看| 亚洲人成网站在线播| 夜夜看夜夜爽夜夜摸| 久久久久久国产a免费观看| 麻豆国产av国片精品| 国产乱人偷精品视频| 久久久久国产网址| 在线观看av片永久免费下载| 99热网站在线观看| 在线免费观看不下载黄p国产| 国产伦一二天堂av在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 成人高潮视频无遮挡免费网站| 成人漫画全彩无遮挡| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产精品sss在线观看| 一夜夜www| 精品久久久噜噜| 草草在线视频免费看| 亚洲成a人片在线一区二区| 国产女主播在线喷水免费视频网站 | 少妇的逼好多水| 国产久久久一区二区三区| 国产男靠女视频免费网站| 99久久无色码亚洲精品果冻| 小蜜桃在线观看免费完整版高清| 高清日韩中文字幕在线| 国产精品伦人一区二区| 一进一出抽搐gif免费好疼| 久久久成人免费电影| 国产人妻一区二区三区在| 日本成人三级电影网站| 一个人看视频在线观看www免费| 久久精品国产亚洲av天美| 国产精品久久久久久av不卡| 男女下面进入的视频免费午夜| 亚洲经典国产精华液单| 在线国产一区二区在线| 久久久久久大精品| 成人精品一区二区免费| 国产黄a三级三级三级人| 99热精品在线国产| 在线免费观看的www视频| 又爽又黄a免费视频| 国产av一区在线观看免费| 欧美丝袜亚洲另类| 97热精品久久久久久| 国产精品,欧美在线| 日本成人三级电影网站| 在线a可以看的网站| 99久久九九国产精品国产免费| 国产亚洲91精品色在线| 国内少妇人妻偷人精品xxx网站| 国产女主播在线喷水免费视频网站 | 少妇猛男粗大的猛烈进出视频 | 午夜免费激情av| 少妇裸体淫交视频免费看高清| 久久久精品欧美日韩精品| 深爱激情五月婷婷| 欧美日韩乱码在线| 18禁在线无遮挡免费观看视频 | 淫妇啪啪啪对白视频| 99热这里只有是精品50| 亚洲欧美日韩高清在线视频| 国产91av在线免费观看| 九九爱精品视频在线观看| 欧美成人精品欧美一级黄| 精品无人区乱码1区二区| 久久精品夜色国产| 成熟少妇高潮喷水视频| 国内久久婷婷六月综合欲色啪| 成人美女网站在线观看视频| 国产亚洲精品av在线| 又黄又爽又免费观看的视频| 国产精品乱码一区二三区的特点| 国产伦在线观看视频一区| 少妇的逼水好多| 尾随美女入室| 亚洲经典国产精华液单| 中文字幕av在线有码专区| 久久午夜亚洲精品久久| 能在线免费观看的黄片| 国产69精品久久久久777片| 在线免费观看不下载黄p国产| 国产69精品久久久久777片| 日本在线视频免费播放| 日韩成人伦理影院| 免费无遮挡裸体视频| 国产一级毛片七仙女欲春2| 欧美日韩综合久久久久久| 亚洲电影在线观看av| 成人特级黄色片久久久久久久| 99视频精品全部免费 在线| 悠悠久久av| 日本五十路高清| 色在线成人网| 九九久久精品国产亚洲av麻豆| 免费不卡的大黄色大毛片视频在线观看 | 搞女人的毛片| 国产高清不卡午夜福利| 国产高清视频在线播放一区| 久久精品国产自在天天线| 国产一区二区在线av高清观看| 一个人免费在线观看电影| 韩国av在线不卡| 日韩一区二区视频免费看| 色哟哟哟哟哟哟| 国产私拍福利视频在线观看| 麻豆国产av国片精品| 国产视频内射| 亚洲久久久久久中文字幕| 综合色av麻豆| 18禁在线无遮挡免费观看视频 | 中国美白少妇内射xxxbb| 尾随美女入室| 在线观看免费视频日本深夜| 日日啪夜夜撸| 亚洲精品色激情综合| 日日干狠狠操夜夜爽| 国内精品宾馆在线| 午夜免费激情av| 最近2019中文字幕mv第一页| 夜夜夜夜夜久久久久| 老司机福利观看| 国产片特级美女逼逼视频| 最新在线观看一区二区三区| 亚洲丝袜综合中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 国产高清视频在线播放一区| 亚洲国产精品sss在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利视频1000在线观看| 亚洲精品久久国产高清桃花| 精品人妻熟女av久视频| 亚洲av电影不卡..在线观看| 亚洲欧美成人精品一区二区| 国产亚洲精品久久久久久毛片| 日韩强制内射视频| 国产一区亚洲一区在线观看| 亚洲av美国av| 男女做爰动态图高潮gif福利片| 日韩制服骚丝袜av| 亚洲熟妇中文字幕五十中出| 免费看美女性在线毛片视频| 麻豆成人午夜福利视频| 亚洲国产精品合色在线| 三级男女做爰猛烈吃奶摸视频| 男女啪啪激烈高潮av片| av天堂在线播放| 国产真实伦视频高清在线观看| 欧美bdsm另类| 五月玫瑰六月丁香| 中国国产av一级| 毛片一级片免费看久久久久| 中文字幕精品亚洲无线码一区| 啦啦啦啦在线视频资源| 精品人妻一区二区三区麻豆 | 日日摸夜夜添夜夜添av毛片| 日本成人三级电影网站| 国产精品福利在线免费观看| 亚洲熟妇中文字幕五十中出| 女人十人毛片免费观看3o分钟| 中国美女看黄片| 亚洲美女搞黄在线观看 | 一区二区三区高清视频在线| eeuss影院久久| 亚洲国产欧美人成| 天美传媒精品一区二区| 给我免费播放毛片高清在线观看| 麻豆av噜噜一区二区三区| 91精品国产九色| 亚洲av电影不卡..在线观看| 亚洲在线观看片| 久久久久久久亚洲中文字幕| 中文资源天堂在线| 九九在线视频观看精品| 亚洲乱码一区二区免费版| 国产精品国产三级国产av玫瑰| 91在线精品国自产拍蜜月| 精品无人区乱码1区二区| 国产综合懂色| 搞女人的毛片| 欧美又色又爽又黄视频| 黑人高潮一二区| 欧美在线一区亚洲| 国产精品嫩草影院av在线观看| 国产精品伦人一区二区| 黄色欧美视频在线观看| av福利片在线观看| 亚洲国产精品sss在线观看| 亚洲无线在线观看| 亚洲精品久久国产高清桃花| 又爽又黄无遮挡网站| 青春草视频在线免费观看| av在线亚洲专区| 亚洲人成网站在线播放欧美日韩| or卡值多少钱| 美女高潮的动态| 少妇高潮的动态图| 亚州av有码| 三级毛片av免费| 不卡视频在线观看欧美| 国产一区亚洲一区在线观看| 91精品国产九色| av福利片在线观看| 成年女人永久免费观看视频| 精品久久久久久成人av| 一进一出抽搐gif免费好疼| 色综合站精品国产| 精品久久久久久成人av| 日本免费一区二区三区高清不卡| 免费大片18禁| 最近最新中文字幕大全电影3| 亚洲成人久久性| av在线天堂中文字幕| 色av中文字幕| 精品一区二区三区视频在线观看免费| 综合色丁香网| 99热这里只有是精品50| 亚洲精品成人久久久久久| 午夜老司机福利剧场| 天堂av国产一区二区熟女人妻| 少妇人妻一区二区三区视频| 麻豆成人午夜福利视频| 婷婷亚洲欧美| 国产黄a三级三级三级人| 亚洲一区高清亚洲精品| 女同久久另类99精品国产91| 麻豆国产97在线/欧美| 国产亚洲欧美98| 精品福利观看| 精品久久久久久久久av| 久久久久精品国产欧美久久久| ponron亚洲| 一个人免费在线观看电影| 一本精品99久久精品77| 精品人妻视频免费看| 中国美女看黄片| 美女被艹到高潮喷水动态| 欧美日韩在线观看h| 99久久无色码亚洲精品果冻| 在线播放无遮挡| 久久久成人免费电影| 国产黄色视频一区二区在线观看 | 97在线视频观看| 欧美成人一区二区免费高清观看| 色av中文字幕| 小蜜桃在线观看免费完整版高清| 国内少妇人妻偷人精品xxx网站| 色哟哟·www| 国产精品伦人一区二区| 久久久久久九九精品二区国产| 日韩成人av中文字幕在线观看 | 亚洲无线在线观看| 乱码一卡2卡4卡精品| 亚洲av中文av极速乱| 亚洲五月天丁香| 免费一级毛片在线播放高清视频| 久久婷婷人人爽人人干人人爱| 一进一出抽搐动态| 亚洲精品一卡2卡三卡4卡5卡| 97在线视频观看| 久久精品国产亚洲av天美| 久久热精品热| 国产成人影院久久av| 亚洲中文日韩欧美视频| 免费电影在线观看免费观看| 人妻久久中文字幕网| 日本-黄色视频高清免费观看| 18禁在线播放成人免费| 人妻丰满熟妇av一区二区三区| 国产 一区精品| 午夜免费激情av| 国产精品亚洲美女久久久| 亚洲美女视频黄频| 成人二区视频| 99久久久亚洲精品蜜臀av| 亚洲国产精品成人综合色| 日韩一区二区视频免费看| 精品国产三级普通话版| 亚洲成a人片在线一区二区| 成人亚洲欧美一区二区av| av在线天堂中文字幕| 国产高清三级在线| 国产伦精品一区二区三区视频9| 别揉我奶头~嗯~啊~动态视频| 国产精品不卡视频一区二区| 国产三级中文精品| 我要看日韩黄色一级片| 老司机午夜福利在线观看视频| 中国美白少妇内射xxxbb| 波多野结衣高清无吗| a级毛片免费高清观看在线播放| 国产精品一区www在线观看| 久久久精品大字幕| 成人av一区二区三区在线看| 九九热线精品视视频播放| 韩国av在线不卡| 欧美人与善性xxx| 美女大奶头视频| 欧美一区二区亚洲| 国产精品伦人一区二区| 老熟妇乱子伦视频在线观看| 日韩制服骚丝袜av| 亚洲四区av| 精品久久久久久久人妻蜜臀av| av在线观看视频网站免费| 一级毛片久久久久久久久女| 亚洲av不卡在线观看| 亚洲经典国产精华液单| 噜噜噜噜噜久久久久久91| 亚洲一区高清亚洲精品| 高清午夜精品一区二区三区 | 成年免费大片在线观看| 91久久精品电影网| 亚洲最大成人手机在线| 九九在线视频观看精品| 一个人观看的视频www高清免费观看| 精品久久久久久久人妻蜜臀av| 国产私拍福利视频在线观看| 尤物成人国产欧美一区二区三区| av国产免费在线观看| 日本撒尿小便嘘嘘汇集6| 身体一侧抽搐| 久久九九热精品免费| 亚洲色图av天堂| 观看美女的网站| 99精品在免费线老司机午夜| 五月玫瑰六月丁香| 精品一区二区三区av网在线观看| 国产精品国产高清国产av| 日韩中字成人| 别揉我奶头~嗯~啊~动态视频| 在线观看免费视频日本深夜| 97热精品久久久久久| 国产精品乱码一区二三区的特点| 露出奶头的视频| 国产精品一区二区免费欧美| 国产一区亚洲一区在线观看| 久久久a久久爽久久v久久| 久久99热这里只有精品18| 桃色一区二区三区在线观看| 久久欧美精品欧美久久欧美| 久久精品夜色国产| 亚洲av中文av极速乱| 欧美色视频一区免费| av.在线天堂| 国产精品久久久久久av不卡| 国产免费男女视频| 观看美女的网站| 中文资源天堂在线| 我要看日韩黄色一级片| 亚洲无线观看免费| 欧美性猛交╳xxx乱大交人| 国内精品久久久久精免费| 国产精品免费一区二区三区在线| 国产av一区在线观看免费| 热99在线观看视频| 九九爱精品视频在线观看| 婷婷色综合大香蕉| 国内精品宾馆在线| 91在线观看av| 男女做爰动态图高潮gif福利片| 国产成人aa在线观看| 搞女人的毛片| 亚州av有码| 国产视频内射| 中文亚洲av片在线观看爽| 欧美性感艳星| 亚洲精品乱码久久久v下载方式| 不卡一级毛片| 天美传媒精品一区二区| 别揉我奶头 嗯啊视频| 99久久久亚洲精品蜜臀av| 听说在线观看完整版免费高清| 一本精品99久久精品77| 老熟妇仑乱视频hdxx| 亚洲av一区综合| 久久精品国产鲁丝片午夜精品| 在线天堂最新版资源| 亚洲av成人av| 国产单亲对白刺激| 亚洲专区国产一区二区| 丰满人妻一区二区三区视频av| 别揉我奶头~嗯~啊~动态视频| 国产成人a区在线观看| 老司机福利观看| 日韩一本色道免费dvd| 久久中文看片网| 成人av在线播放网站| 久久精品久久久久久噜噜老黄 | 成人漫画全彩无遮挡| 久久精品国产99精品国产亚洲性色| 亚洲,欧美,日韩| 免费av毛片视频| av卡一久久| 一级黄片播放器| 国产视频一区二区在线看| 一级毛片电影观看 | 日韩欧美国产在线观看| 一个人看视频在线观看www免费| 久久久久久久久久黄片| 全区人妻精品视频| 黄片wwwwww| 精品久久久久久久末码| 亚洲精品456在线播放app| 黄色一级大片看看| 精品国产三级普通话版| 无遮挡黄片免费观看| 俺也久久电影网| 欧美极品一区二区三区四区| 国产久久久一区二区三区| 12—13女人毛片做爰片一| 俄罗斯特黄特色一大片| 干丝袜人妻中文字幕| 三级男女做爰猛烈吃奶摸视频| 日韩精品有码人妻一区| 狂野欧美白嫩少妇大欣赏| 尾随美女入室| 日韩欧美三级三区| 禁无遮挡网站| 在线播放无遮挡| 日韩人妻高清精品专区| 日韩欧美三级三区| 内地一区二区视频在线| 久久久成人免费电影| 国产麻豆成人av免费视频| 91久久精品电影网| 热99re8久久精品国产| 免费无遮挡裸体视频| 丰满乱子伦码专区| 久久精品国产亚洲av天美| 久久精品夜夜夜夜夜久久蜜豆| 一进一出抽搐动态| 久久热精品热| 免费人成视频x8x8入口观看| 男女那种视频在线观看| 亚洲精品日韩av片在线观看| av女优亚洲男人天堂| 国产色婷婷99| 床上黄色一级片| 中文字幕av在线有码专区| 精品乱码久久久久久99久播| 男女那种视频在线观看| 国产成人福利小说| 国产在线男女| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 听说在线观看完整版免费高清| 国产大屁股一区二区在线视频| 搡老岳熟女国产| 热99re8久久精品国产| 中文亚洲av片在线观看爽| 亚洲av一区综合| 国产伦在线观看视频一区| 国产黄a三级三级三级人| 赤兔流量卡办理| 日韩欧美免费精品| 小蜜桃在线观看免费完整版高清| 免费看美女性在线毛片视频| 又爽又黄a免费视频| 99久久精品热视频| 久久人妻av系列| 悠悠久久av| 一级毛片我不卡| 日韩在线高清观看一区二区三区| 97在线视频观看| 亚洲欧美成人精品一区二区| 丝袜美腿在线中文| 亚洲人成网站在线观看播放| 欧美性猛交╳xxx乱大交人| 国产探花极品一区二区| 观看美女的网站| 99久久九九国产精品国产免费| 18禁裸乳无遮挡免费网站照片| 久久久久国产精品人妻aⅴ院| 一区二区三区免费毛片| 1000部很黄的大片| 国产淫片久久久久久久久| 国内少妇人妻偷人精品xxx网站| 亚洲av免费高清在线观看| 真实男女啪啪啪动态图| 日本在线视频免费播放| 欧美又色又爽又黄视频| 观看美女的网站| 成年女人毛片免费观看观看9| 欧美日韩综合久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 国产高清视频在线观看网站| 女的被弄到高潮叫床怎么办| 久久精品91蜜桃| 卡戴珊不雅视频在线播放| av在线老鸭窝| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲在线自拍视频| 一进一出好大好爽视频| 给我免费播放毛片高清在线观看| 国产视频一区二区在线看| 免费观看的影片在线观看| 看免费成人av毛片| 日本一二三区视频观看| 蜜臀久久99精品久久宅男| 国产v大片淫在线免费观看| 国产私拍福利视频在线观看| 乱码一卡2卡4卡精品| 免费不卡的大黄色大毛片视频在线观看 | 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩无卡精品| 色av中文字幕| 亚洲欧美成人综合另类久久久 | 午夜精品在线福利| 在线观看66精品国产| 99久国产av精品国产电影| 欧美+亚洲+日韩+国产| 国产黄色视频一区二区在线观看 | 99热这里只有精品一区| 国产成年人精品一区二区| 亚洲中文日韩欧美视频| 淫秽高清视频在线观看| 免费看光身美女| 99久久精品国产国产毛片| 国产精品一区二区三区四区免费观看 | 免费观看精品视频网站| 国产成年人精品一区二区| 91狼人影院| 久久午夜福利片| 在线天堂最新版资源| 热99re8久久精品国产| 日韩精品有码人妻一区| 99久久成人亚洲精品观看| 欧美性猛交黑人性爽| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av熟女| 成人特级黄色片久久久久久久| 在线看三级毛片| 久久久午夜欧美精品| 亚洲精品乱码久久久v下载方式| 免费高清视频大片| 黄色欧美视频在线观看| 日本免费a在线| 国产亚洲精品久久久久久毛片| 久久国内精品自在自线图片| 国产一区二区三区av在线 | 欧美高清成人免费视频www| АⅤ资源中文在线天堂| 国产成人a区在线观看| 日韩欧美免费精品| 高清午夜精品一区二区三区 | aaaaa片日本免费| 搡女人真爽免费视频火全软件 | 国产成人91sexporn| 啦啦啦观看免费观看视频高清| 校园人妻丝袜中文字幕| 亚洲国产高清在线一区二区三| 桃色一区二区三区在线观看| 国产成人91sexporn| 午夜日韩欧美国产| 欧美在线一区亚洲| 在线观看av片永久免费下载| 91精品国产九色| 国产一区亚洲一区在线观看| 久久精品国产亚洲av涩爱 | 日本黄大片高清| 亚洲熟妇中文字幕五十中出| 国产精品一区www在线观看| 亚洲中文字幕日韩| 亚洲欧美日韩高清专用| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线| 免费观看在线日韩| 国产黄色小视频在线观看| 国产探花极品一区二区| а√天堂www在线а√下载| 啦啦啦韩国在线观看视频| 日韩精品有码人妻一区| 国产午夜福利久久久久久| 亚洲成人中文字幕在线播放| 精品欧美国产一区二区三| 三级经典国产精品| 国产黄a三级三级三级人| 麻豆一二三区av精品| 99久久中文字幕三级久久日本| 观看免费一级毛片| 国产精品av视频在线免费观看| 免费人成在线观看视频色| 毛片一级片免费看久久久久| av福利片在线观看| 最新在线观看一区二区三区| 在线免费观看的www视频| 亚洲国产精品国产精品| 精品午夜福利在线看| 色5月婷婷丁香| 好男人在线观看高清免费视频| 嫩草影视91久久| 级片在线观看| 国产精品女同一区二区软件| 18+在线观看网站| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线观看二区| 观看免费一级毛片| 一级毛片电影观看 | 最好的美女福利视频网| 国产成人freesex在线 | 天堂网av新在线| 国产高清视频在线观看网站| 美女被艹到高潮喷水动态| 亚洲国产欧美人成| 中文字幕久久专区| 亚洲av第一区精品v没综合| 久久鲁丝午夜福利片| 美女cb高潮喷水在线观看| 日本与韩国留学比较| 99热这里只有精品一区| 淫秽高清视频在线观看| 中文亚洲av片在线观看爽|