• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-speed directly modulated distributed feedback laser based on detuned loading and photon–photon resonance effect

    2023-10-11 07:55:32YunShanZhang張?jiān)粕?/span>YiFanXu徐逸帆JiLinZheng鄭吉林LianYanLi李連艷TaoFang方濤andXiangFeiChen陳向飛
    Chinese Physics B 2023年9期
    關(guān)鍵詞:云山吉林

    Yun-Shan Zhang(張?jiān)粕?, Yi-Fan Xu(徐逸帆), Ji-Lin Zheng(鄭吉林), Lian-Yan Li(李連艷),Tao Fang(方濤), and Xiang-Fei Chen(陳向飛),?

    1College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Communications Engineering,PLA Army Engineering University,Nanjing 210007,China

    3College of Engineering and Applied Sciences,Nanjing University,Nanjing 210023,China

    Keywords: directly modulated laser(DML),detuned loading effect, photon–photon resonance(PPR)effect,reconstruction-equivalent-chirp(REC)technique

    1.Introduction

    Because of the explosive development of data communication services such as cloud computing, the data traffic over networks and the demands for large network bandwidth have been increasing rapidly.As the light sources of optical communication systems, high-speed modulated lasers are crucial in solving these problems.Compared with externally modulated lasers like electro-absorption modulator integrated lasers,[1,2]directly modulated lasers(DMLs)have the advantages of cost-effectiveness, small size, low power consumption,and high efficiency.Therefore,it is attractive to improve the modulation bandwidth of DML.

    In order to realize high-speed DML, it is essential to increase the relaxation oscillation frequency of the laser.For this purpose,AlGaInAs is usually used instead of InGaAsP in the active region of the DML to obtain high differential gain.[3]Besides, by using buried heterostructure[4,5]and shortening the cavity length of the lasers[6–9]to reduce the volume of the active region,the relaxation oscillation frequency can also be enhanced.However, the buried heterostructure brings about the problem of active region oxidation and increases the manufacturing cost.Moreover,in order to obtain an extremely short cavity length,it is usually necessary to combine various complex processes or structures.Through integrating a distributed feedback(DFB)laser with a passive waveguide[7,8]or passive distributed reflectors,[9]the length of the active region can be reduced beyond the limit of the cleaving process.While the necessary butt-joint regrowth process when fabricating these structures increases fabrication cost and difficulty.

    In addition to reducing the active region of the laser,other modulation bandwidth enhancement methods can be used to design high-speed DML.One of them is the detuned loading effect,[10]which is common in conventional distributed Bragg reflector (DBR) lasers.[11,12]When lasing occurs on the long wavelength flank of the DBR mirror, the detuned loading effect can increase the resonance frequency of the laser.[13]The photon–photon resonance(PPR)effect is also widely utilized to improve the bandwidth of DML.[14–16]The interaction between the main mode and an adjacent cavity mode can produce a second resonance peak with a much higher frequency than relaxation oscillation.In a passive feedback laser (PFL),[14]the DFB laser is integrated with a passive feedback section.The PPR effect is generated by injecting current into the feedback section to optimize the phase.The above two effects can coexist in both DBR laser[17]and distributed reflector (DR)laser.[18,19]Therefore, the combination of the two effects can further increase the modulation bandwidth.Similarly, the integration of the active section and the passive section increases the difficulty and cost of chip manufacturing.

    In this paper,we propose and demonstrate theoretically a two-section DFB(TS-DFB)laser with sampled Bragg gratings(SBGs).The TS-DFB laser consists of two sections:one plays a role of a general DFB laser,and the other acts as a grating reflector.For simplicity,they are called section I and section II,respectively.Both sections share the same active layer,so the butt-joint regrowth is not required.In order to enhance the modulation bandwidth of the laser, the grating period of the two sections needs to be controlled accurately to achieve the detuned loading effect and PPR effect.The SBGs in the TSDFB laser are used to realize the equivalent change of the period of the seed grating by using the reconstruction-equivalentchirp(REC)technique.[20–22]Consequently,the cost of manufacturing can be greatly reduced.The simulation results show that the direct modulation bandwidth of TS-DFB laser can be improved by 21 GHz or more compared with the conventional one-section DFB(OS-DFB)laser.

    2.Principle and model

    2.1.Principle of REC technique

    In order to improve the characteristics of the DFB lasers, various complicated grating structures (e.g.multiple phase shifts gratings, corrugation-pitch-modulated gratings,and asymmetric gratings)have been developed and used.Yet high-precision control mechanism is indispensable to the fabrication of these sophisticated gratings.Through changing the period or duty cycle of the SBGs,the REC technique can design equivalent subgratings with many complicated structures.Besides,the fabrication of SBGs only needs the conventional holographic exposure and photolithography technology with micrometer-level control accuracy.The principle of the REC technique will be briefly introduced below.[23,24]

    Mathematically, the index modulation changes Δn(z) of an SBG can be written as

    where,s(z) is a sampling function andΛis the period of the seed grating.Based on the Fourier series expansion,s(z)can be expressed as

    whereFmis them-th order Fourier coefficient corresponding to them-th order channel of the SBG, andPis the sampling period of the sampling function.So, equation (1) can be expressed as

    It can be obtained from Eq.(3)that the SBG is actually a superposition of many subgratings with different grating periods,and every subgrating has a spectral response corresponding to one of the multiple channels.These periods can be expressed as

    From Eq.(4), the channel spacing is determined by the sampling periodP.In actual design,the+1st or-1st subgrating is used as the working resonator.An appropriate sampling periodPshould be selected such that the +1st or-1st channel falls within the gain spectrum of the semiconductor material,while the others are located outside the gain region.As a result, the laser will lase at the wavelength within the +1st or-1st order channel of the SBG.

    Now, +1st channel is taken as an example.Based on Eq.(4),the period of seed gratingΛand the sampling periodPsatisfy

    whereneffis the effective refractive index,andλis the lasing wavelength.

    2.2.Model of the simulation

    The time-domain traveling-wave model consists of the time-dependent coupled-wave equations and the carrier rate equation to simulate the lasing characteristics of the proposed TS-DFB laser.[25,26]The electrical field in the waveguide can be described as

    whereφ(x,y)is the model function in the waveguide,F(z,t)andR(z,t) represent the forward wave and backward wave propagating in the waveguide respectively,β0is the propagation constant at Bragg frequency, andω0is the reference frequency corresponding to the Bragg wavelengthλ0.The fieldsF(z,t) andR(z,t) satisfy the time-dependent coupledwave equations:

    Here,vgis the group velocity.Gandδare the field gain and the detuning factor respectively, andκis the coupling coefficient between forward and backward waves.In this work,we consider only index coupling.ThesF(z,t)andsR(z,t)are the spontaneous emission noise coupled into the forward and backward fields.The noise terms each have a Gaussian distribution and the phase of the noise is assumed to change randomly.

    The carrier densityNis described by the time-dependent carrier rate equation as

    whereJis the current injection density,eis the electron charge,dis the thickness of the active layer,Ais the linear recombination coefficient,Bis the bimolecular recombination coefficient,Cis the Auger recombination coefficient,gis the gain coefficient,N0is the transparency carrier density,εis the gain compression factor,andSis the photon density which is related to the magnitude of the propagating wave amplitudes as

    The field gainGin Eqs.(7a)and(7b)is expressed as

    whereΓis the confinement factor of the active layer, andαis the waveguide loss caused by free electron scattering and absorption.

    The detuning factorδin Eqs.(7a)and(7b)represents the deviation from the Bragg condition due to the change of the refractive index in the waveguide and can be defined as

    whereneff0is the effective refractive index at transparency,Δnis the change of the refractive index and can be written as

    whereαHis the linewidth enhancement factor.

    Ifz=0 at the facet on the left-hand side, the boundary condition for the forward and backward propagating wave at the facet satisfies

    whererlandrrare the amplitude of the reflectivity at the facets on the left-and the right-hand sides,respectively,φl(shuí)andφrare the phase at the facets on the left-and the right-hand sides,andLis the laser cavity length.

    In this work, we focus on the DFB lasers fabricated by REC technology.Hence, the grating in the simulation is a sampled grating.In the part without change of the refractive index, we set the coupling coefficientκ=0.According to Eq.(5),it satisfies in our simulation that

    whereP1is the sampling period of section I and can be calculated from the Bragg wavelengthλ0and the period of seed gratingΛthrough Eq.(14).

    For section II,only the sampling period instead of the period of the seed gratingΛneeds to be changed,thereby reducing the difficulty of fabrication.

    3.Design principle and simulation results

    3.1.Design of TS-DFB laser

    The proposed structure of the TS-DFB laser is shown in Fig.1(a).It consists of two sections separated by electrical isolation.Therefore, two regions can be independently injected by different currentsI1andI2.Section I works as a general DFB laser, and the other serves as a detuned grating reflector.Moreover, the two sections share the same active layer,so the butt-joint regrowth process is avoidable.The facet of section I is high-reflection (HR) coated and the facet of section II is anti-reflection(AR)coated.The light is output after passing through the grating reflector.The reflectivity of the HR coating is set to 0.92.Figure 1(b)shows the grating structure fabricated by the REC technique in the two sections.The SBGs in the two sections have the identical coupling coefficientκand seed grating periodΛ.The only difference is that the gratings of the two sections have distinct sampling periods,denoted asP1andP2respectively.In the simulation,the equivalent normalized coupling coefficient of the SBGs is set to 1,where the duty cycle of the sampled gratings is considered.The duty cycle of the SBGs is 0.5.Other parameters used in the simulation are given in Table 1.

    Fig.1.Schematic diagram of(a)proposed TS-DFB laser and(b)grating structure of the TS-DFB laser.

    In order to make better use of the detuned loading and the PPR effects to enhance the modulation bandwidth of the TS-DFB laser, the SBGs in the two sections need different sampling periods,that is,detuning between the grating Bragg wavelengths in the two sections is realized.Figure 2 shows the reflection spectrum of the grating reflector and the round trip phase of the laser,which are calculated by the transfer matrix method[27,28]after the effective refractive index and gain distribution in the laser cavity have been obtained from the timedomain traveling-wave model.The detuning of the gratings can make the main mode fall on the long wavelength flank of the reflection spectrum.Under modulation,the frequency upchirp of the TS-DFB laser shifts the main mode to the Bragg peak of section II.The longitudinal confinement factor is increased.As a result, the detuned loading effect can increase the resonance frequency.[11]Moreover, the side mode which is close to the main mode can resonantly amplify the modulation sidebands.Thus,PPR effect can further improve the 3-dB bandwidth.

    Table 1.Parameters used in simulations.

    Fig.2.Reflection spectrum of detuned grating reflector and round trip phase of the laser,with the positions of the modes in profiles represented by circles.

    3.2.Static characteristics of the TS-DFB laser

    Figure 3(a)shows the longitudinal photon density distribution of the TS-DFB laser when the injection currentI1is 100 mA.Since the light of the TS-DFB laser is output from the grating reflector side, the photon density will be reduced due to the absorption loss and reflection, implying a lower output power.The bias currentI2can be added to the reflector section to compensate for the loss and increase the output.Thus, the photon density at the output facet of the TS-DFB laser will become higher.The light–current characteristics of the TS-DFB laser are shown in Fig.3(b).It can be seen that the bias currentI2has a great influence on the light–current characteristics of the TS-DFB laser.WhenI2increases, the threshold current decreases and the slope efficiency increases.The threshold currents of the TS-DFB laser are about 22 mA forI2=0 mA and 9 mA forI2=10 mA,and correspondingly the slope efficiencies are about 0.248 mW/mA and 0.277 mW/mA.

    Fig.3.(a)Calculated photon density distribution of TS-DFB laser with injection current of 100 mA and(b)light–current characteristics of TSDFB laser for I2=0 mA and 10 mA.

    The spectrum of the TS-DFB laser is shown in Fig.4,which is calculated based on the model proposed in Ref.[29].The side mode suppression ratio(SMSR)is 42 dB.Moreover,it can be seen that there is a side mode at about 0.2 nm off the main mode, which is named PPR mode.The PPR mode can improve the modulation bandwidth effectively, which is consistent with the laser design in Fig.2.

    Fig.4.Lasing spectrum of TS-DFB laser,with injection current being 100 mA.

    3.3.Dynamic characteristics of TS-DFB laser

    To calculate the small-signal modulation response of the TS-DFB laser, a small sinusoidal current is added to the bias current of section I.Figure 5 shows the response curves of the TS-DFB laser with different detunings of the grating Bragg wavelengths in the two sections.It is obvious that the detuning between the SBGs in the two sections has a significant influence on the modulation bandwidth of the TS-DFB laser.The larger detuning can make the main mode fall on the steeper Bragg wavelength flank of section II, which can enhance the detuned loading effect.Therefore,the resonance frequency is improved.Moreover, it can generate and strengthen the PPR mode, so that the PPR effect can better generate a resonance frequency at high frequency.

    Fig.5.Response curves of TS-DFB laser with different detunings between SBGs in the two sections,with I1 being 100 mA.

    The small-signal response curves of the TS-DFB laser with different values of injection currentI2are shown in Fig.6(a).For comparison, the response of the conventional OS-DFB laser with a cavity length of 400 μm is also given.The 3-dB modulation bandwidth of the OS-DFB laser is only about 16 GHz.However,for the TS-DFB laser,it can be seen that the detuned loading effect enhances the resonance frequency,and the PPR effect forms a second resonance peak on the response curve.The modulation bandwidth increases from 34 GHz to 37 GHz whenI2is tuned from 0 mA to 15 mA.The increase of the reflection of the grating reflector enhances the resonance strength of the PPR peak.WhenI2is 20 mA, the mode hops from the long wavelength flank of the Bragg peak to the short wavelength flank as shown in Fig.6(b).This is because with the increase ofI2, the effective index of section II decreases,and the reflection spectrum moves towards the short wavelength.In this situation,the detuned loading effect is absent.The mode spacing is too large, so the PPR effect does not work.Therefore, the modulation bandwidth is attenuated to 15.5 GHz.Hence, a current large than 20 mA only makes the effective refractive index smaller and cannot improve the direct modulation bandwidth.

    Fig.6.(a) Response curves of TS-DFB laser, with I1 being 100 mA and injection current I2 having different values, and (b) reflection spectrum of grating reflector and round trip phase of the laser,with I2 being 20 mA.

    Fig.7.Response curves of TS-DFB laser with different lengths of section II,with I1 being 100 mA and I2 being 10 mA.

    The influence of the grating reflector length on the modulation response is illustrated in Fig.7.

    The separation between the main mode and the PPR mode is determined by the cavity length of grating reflector.The longer the grating reflector,the closer the PPR mode is to the main mode,and the overlap between the two resonance peaks becomes more and more.As shown in Fig.7,when the cavity length of section II is 600 μm,the PPR mode is very close to the main mode,and the second resonance is very strong.When the length of section II is 400 μm,the spacing of the PPR mode from the main mode becomes larger,so the second resonance peak is at a higher frequency.However,the resonance strength is weaker,due to the weaker feedback of the shorter grating reflector.When the length is further reduced, the PPR mode is too far away and too weak to increase the modulation bandwidth.Therefore,the length of the grating reflector should be appropriately designed to maximize the enhancement of the modulation bandwidth brought by the PPR effect.

    In the above calculations,the random phase of the grating at the HR facet was set to 0.However, in practice, the phase randomness of the grating is uncontrollable.Therefore, facet phaseφis changed to study its effect on the high-speed modulation characteristics.Figure 8(a)shows the response curves of the TS-DFB laser whenφis varied from 0 to 0.8π.It can be seen that under certain phase conditions,mode hopping occurs and the modulation bandwidth is attenuated.Whenφis 0.6π,the 3-dB bandwidth is only 21 GHz.In order to study the effect of the random phase on mode hopping, the normalized threshold gain margin between the eigenmode at the shorter wavelength side and the lasing mode is calculated,and the results are shown in Fig.8(b).It can be seen that when the random phase is 0, the normalized threshold gain margin is less than 0.25.Therefore, when the current of the reflection section is too large,mode hopping occurs as shown in Fig.6.The normalized threshold gain margin is 0 when the random phase is changed from 0.7πto 0.9π,which means that the lasing occurs at the eigenmode on the shorter wavelength side.Thus,the small-signal modulation response deteriorates.

    Fig.8.(a) Response curves of TS-DFB laser with different values of facet phase φ with I1 being 100 mA and I2 being 15 mA.(b)Normalized threshold gain margin between the main mode and the eigenmode on the shorter wavelength side versus facet phase φ.

    Figure 9(a)shows the lasing spectrum whenφis 0.6π.It can be seen that the main mode lases within the stopband due to the random phase of the grating.As a result, the spacing between the main mode and the PPR mode becomes larger.As can be seen from Fig.9(b), the PPR frequency, in this case,is about 65 GHz,which is about 55 GHz larger than the first resonance peak.Because the two resonance peaks are too far apart, the response curve is attenuated below 3 dB before reaching the second resonance peak.Therefore,the PPR effect cannot improve the modulation bandwidth effectively.By increasing the currentI2,the loss of the grating reflector section is compensated for and the reflectivity is increased.Then the resonance strength of the PPR peak is enhanced,which counteracts the roll-off of the response.Consequently, the modulation bandwidth can reach around 73 GHz.Obviously,there are two PPR peaks in the response curves.The reason is that the multi-mode rate equation is used in the simulation,another resonance peak is caused by another side mode.

    Fig.9.(a) Lasing spectrum of TS-DFB laser, with φ being 0.6π.(b)Response curves of TS-DFB laser with I2 having different values, I1 being 100 mA,and φ being 0.6π.

    In order to better demonstrate the high-speed characteristics of the TS-DFB laser,the eye diagrams under direct modulation are calculated and compared.Figure 10 shows the eye diagrams of the TS-DFB laser and the OS-DFB laser under 25-Gb/s,40-Gb/s,and 55-Gb/s direct modulations.The lasers are biased at 100 mA and the modulation amplitude is 20 mA.The optimal bandwidth condition of the TS-DFB laser is selected,and the random phase of the grating is 0.It can be seen that the eye diagrams of the TS-DFB lasers have larger opening extent than those of the OS-DFB laser.Under 25-Gb/s direct modulation,the clear eye-openings of two kinds of DFB lasers can be obtained owing to the enough modulation bandwidths.Obviously, the OS-DFB laser cannot meet the higher modulation rates.In contrast, the TS-DFB laser can achieve clear eye-openings and large mask margins under all three modulation rates.These results are consistent with the calculations of their modulation bandwidth in Fig.6.

    Fig.10.Eye diagrams under direct modulation at 25 Gb/s,40 Gb/s,and 55 Gb/s by(a)conventional OS-DFB laser and(b)TS-DFB laser.

    4.Conclusions

    A directly modulated two-section DFB laser with sampled gratings is proposed and investigated theoretically.Since the two sections share the same active layer and the gratings are fabricated by the REC technique, the difficulty in manufacturing the lasers is greatly reduced.High-speed DML is realized by exploiting the detuned loading, and PPR effects.Compared with the OS-DFB laser,the TS-DFB laser has large direct modulation bandwidth.Therefore, the proposed laser can be used as a light source for high-speed optical communication systems.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2020YFB2205804),the National Natural Science Foundation of China (Grant Nos.61974165 and Grant 61975075), and the National Natural Science Foundation of China for the Youth,China(Grant No.62004105).

    猜你喜歡
    云山吉林
    13.吉林卷
    云山圖
    金秋(2020年16期)2020-12-09 01:41:48
    A Spring Coat for Sarah
    Accident Analysis and Emergency Response Effect Research of the Deep Foundation Pit in Taiyuan Metro
    云山萬(wàn)重歸故鄉(xiāng),疾風(fēng)千里嘆離愁
    吉林卷
    吉林卷
    解讀“吉林大米現(xiàn)象”
    云山的樹(shù)
    趙學(xué)敏書法作品《五云山》
    旅游縱覽(2015年6期)2015-06-29 09:10:51
    久久婷婷人人爽人人干人人爱| 手机成人av网站| 国产亚洲精品综合一区在线观看| 亚洲国产欧美网| 亚洲欧美日韩东京热| 黄色成人免费大全| 中文字幕av在线有码专区| 中文字幕av在线有码专区| 国产精品98久久久久久宅男小说| 窝窝影院91人妻| 三级男女做爰猛烈吃奶摸视频| 成人三级黄色视频| 国产午夜精品久久久久久| 两性夫妻黄色片| 国产精品久久电影中文字幕| 亚洲最大成人中文| 99re在线观看精品视频| 精品国产乱码久久久久久男人| 国产成人一区二区三区免费视频网站| 日韩大尺度精品在线看网址| 久久久久久人人人人人| 女生性感内裤真人,穿戴方法视频| 久久九九热精品免费| 欧美国产日韩亚洲一区| 日本成人三级电影网站| 国产免费av片在线观看野外av| 两个人视频免费观看高清| 夜夜夜夜夜久久久久| 99精品在免费线老司机午夜| 白带黄色成豆腐渣| 熟女电影av网| 91麻豆精品激情在线观看国产| 我的老师免费观看完整版| 亚洲美女黄片视频| www.999成人在线观看| 我要搜黄色片| 国产淫片久久久久久久久 | 亚洲九九香蕉| 久久99热这里只有精品18| 国产主播在线观看一区二区| 黄色 视频免费看| 我的老师免费观看完整版| 色在线成人网| 黄色成人免费大全| 在线国产一区二区在线| 国产成人啪精品午夜网站| 三级毛片av免费| 日本一本二区三区精品| 国产精品亚洲美女久久久| 一个人看视频在线观看www免费 | 国产精品99久久久久久久久| 99视频精品全部免费 在线 | 99精品久久久久人妻精品| 欧美中文综合在线视频| 色综合婷婷激情| 日韩中文字幕欧美一区二区| 无遮挡黄片免费观看| 国产一区二区在线av高清观看| 中亚洲国语对白在线视频| 给我免费播放毛片高清在线观看| 免费在线观看亚洲国产| 啦啦啦观看免费观看视频高清| 亚洲午夜精品一区,二区,三区| 日韩人妻高清精品专区| 精品国产三级普通话版| a级毛片a级免费在线| 久久九九热精品免费| 午夜成年电影在线免费观看| 亚洲成av人片在线播放无| 国产午夜福利久久久久久| 一a级毛片在线观看| 九色成人免费人妻av| 在线观看午夜福利视频| 老司机午夜十八禁免费视频| 99热精品在线国产| 午夜两性在线视频| 亚洲片人在线观看| 久久中文字幕一级| 禁无遮挡网站| 成人三级做爰电影| 国产伦在线观看视频一区| 国产一级毛片七仙女欲春2| 成人三级黄色视频| 一个人免费在线观看的高清视频| 香蕉丝袜av| 一本久久中文字幕| 国产单亲对白刺激| 欧美一级a爱片免费观看看| 亚洲av五月六月丁香网| 婷婷精品国产亚洲av在线| 91麻豆精品激情在线观看国产| 国产亚洲精品一区二区www| 国产乱人伦免费视频| 亚洲专区中文字幕在线| 他把我摸到了高潮在线观看| 在线观看美女被高潮喷水网站 | 成人av一区二区三区在线看| 久久精品aⅴ一区二区三区四区| 国内毛片毛片毛片毛片毛片| 在线观看免费午夜福利视频| 一本精品99久久精品77| 99国产精品一区二区三区| 大型黄色视频在线免费观看| 色吧在线观看| 亚洲国产精品成人综合色| 最新在线观看一区二区三区| 丁香六月欧美| 日韩中文字幕欧美一区二区| 精品国产三级普通话版| 最近最新中文字幕大全免费视频| 99精品久久久久人妻精品| 制服人妻中文乱码| 一个人看视频在线观看www免费 | 99国产极品粉嫩在线观看| 国产三级黄色录像| 国产精品美女特级片免费视频播放器 | 禁无遮挡网站| 国产v大片淫在线免费观看| 首页视频小说图片口味搜索| 日韩大尺度精品在线看网址| 一个人看视频在线观看www免费 | 国产精品久久久人人做人人爽| 亚洲av电影在线进入| 国产精品美女特级片免费视频播放器 | 国产精品久久久久久久电影 | 热99在线观看视频| 亚洲九九香蕉| 国产亚洲欧美98| 淫妇啪啪啪对白视频| 色哟哟哟哟哟哟| 日本精品一区二区三区蜜桃| 中亚洲国语对白在线视频| 亚洲第一电影网av| 欧美日韩综合久久久久久 | 极品教师在线免费播放| 91在线精品国自产拍蜜月 | 高潮久久久久久久久久久不卡| 国产精品亚洲一级av第二区| 人人妻人人澡欧美一区二区| 女生性感内裤真人,穿戴方法视频| 国产成人一区二区三区免费视频网站| 韩国av一区二区三区四区| 国产高清视频在线播放一区| www.999成人在线观看| 日韩有码中文字幕| 一级毛片高清免费大全| 悠悠久久av| 国产高清视频在线观看网站| 国产精华一区二区三区| 日韩欧美国产在线观看| 国产精品亚洲美女久久久| 国产精品久久久av美女十八| 五月玫瑰六月丁香| 18禁裸乳无遮挡免费网站照片| 99热这里只有精品一区 | 亚洲欧美日韩东京热| 国产又色又爽无遮挡免费看| 亚洲黑人精品在线| 在线播放国产精品三级| 亚洲成人免费电影在线观看| 不卡一级毛片| 久久中文看片网| 成年女人永久免费观看视频| 嫩草影院入口| 99久久成人亚洲精品观看| 可以在线观看的亚洲视频| 男女那种视频在线观看| 99视频精品全部免费 在线 | 国产精品电影一区二区三区| 久久久久久人人人人人| 露出奶头的视频| 久久久久性生活片| 少妇的逼水好多| 亚洲真实伦在线观看| 欧美一区二区国产精品久久精品| 中亚洲国语对白在线视频| 国产成人啪精品午夜网站| 国产毛片a区久久久久| 欧美又色又爽又黄视频| 亚洲精品美女久久av网站| 美女cb高潮喷水在线观看 | 1024香蕉在线观看| 丝袜人妻中文字幕| 色综合欧美亚洲国产小说| 久久精品国产综合久久久| 精品电影一区二区在线| 俄罗斯特黄特色一大片| 免费在线观看亚洲国产| 免费看光身美女| 久久精品aⅴ一区二区三区四区| 在线观看午夜福利视频| 国产亚洲欧美98| 亚洲成av人片在线播放无| 99国产极品粉嫩在线观看| 久久久久久国产a免费观看| 三级毛片av免费| 在线观看舔阴道视频| 麻豆久久精品国产亚洲av| 国产野战对白在线观看| 99热只有精品国产| 在线观看午夜福利视频| 亚洲欧美精品综合久久99| 亚洲中文日韩欧美视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品456在线播放app | 亚洲 国产 在线| 成人特级av手机在线观看| 午夜激情欧美在线| 搡老熟女国产l中国老女人| 国产男靠女视频免费网站| 90打野战视频偷拍视频| 女警被强在线播放| 色综合婷婷激情| 日韩欧美精品v在线| 亚洲七黄色美女视频| 特大巨黑吊av在线直播| 国产亚洲精品av在线| 免费看a级黄色片| 欧美xxxx黑人xx丫x性爽| 中文字幕高清在线视频| 精华霜和精华液先用哪个| 国产欧美日韩一区二区精品| 亚洲最大成人中文| 嫩草影院精品99| 中文在线观看免费www的网站| 免费看a级黄色片| 男插女下体视频免费在线播放| 亚洲专区字幕在线| 国产一区二区在线av高清观看| 亚洲精品乱码久久久v下载方式 | 国产高清有码在线观看视频| 可以在线观看毛片的网站| 国内揄拍国产精品人妻在线| 精品无人区乱码1区二区| 九九在线视频观看精品| 欧美激情在线99| 窝窝影院91人妻| 草草在线视频免费看| 精品熟女少妇八av免费久了| 精品福利观看| 午夜亚洲福利在线播放| 在线国产一区二区在线| 久久精品影院6| 成熟少妇高潮喷水视频| 亚洲真实伦在线观看| 久久性视频一级片| 亚洲国产精品合色在线| 成人特级av手机在线观看| 国产人伦9x9x在线观看| 精品久久久久久,| 给我免费播放毛片高清在线观看| 一二三四在线观看免费中文在| 露出奶头的视频| 久久热在线av| 精品国产美女av久久久久小说| 美女高潮的动态| 我的老师免费观看完整版| 免费搜索国产男女视频| 无限看片的www在线观看| 哪里可以看免费的av片| 色视频www国产| 国产精品1区2区在线观看.| 欧美黄色片欧美黄色片| 久久中文字幕人妻熟女| 欧美av亚洲av综合av国产av| 日韩欧美三级三区| 国产淫片久久久久久久久 | 国产乱人视频| 精品乱码久久久久久99久播| 亚洲欧美激情综合另类| 免费在线观看视频国产中文字幕亚洲| 少妇丰满av| 国产淫片久久久久久久久 | 免费在线观看亚洲国产| 久久久久精品国产欧美久久久| 亚洲无线观看免费| 亚洲乱码一区二区免费版| 国产精品爽爽va在线观看网站| 日本黄色片子视频| 免费无遮挡裸体视频| 视频区欧美日本亚洲| 久久久久精品国产欧美久久久| 此物有八面人人有两片| 18禁裸乳无遮挡免费网站照片| 日韩欧美在线乱码| 国产精品久久久av美女十八| 18美女黄网站色大片免费观看| 99久久精品一区二区三区| 日韩人妻高清精品专区| 亚洲精品粉嫩美女一区| 欧美黄色淫秽网站| 一级黄色大片毛片| avwww免费| 国产成人精品无人区| www国产在线视频色| 国产探花在线观看一区二区| 欧美黄色淫秽网站| 国产亚洲欧美98| xxxwww97欧美| 搡老熟女国产l中国老女人| 午夜a级毛片| 国产精品 国内视频| 99久久成人亚洲精品观看| 男人舔女人的私密视频| 色精品久久人妻99蜜桃| 亚洲成av人片在线播放无| 久久久成人免费电影| 免费在线观看成人毛片| 成人特级黄色片久久久久久久| 搡老妇女老女人老熟妇| 欧美最黄视频在线播放免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人久久爱视频| 婷婷精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 国产aⅴ精品一区二区三区波| 亚洲成人精品中文字幕电影| 最近在线观看免费完整版| 国产精品99久久99久久久不卡| 露出奶头的视频| 91老司机精品| 国产精品av视频在线免费观看| 久久这里只有精品19| 曰老女人黄片| 一进一出好大好爽视频| 午夜激情欧美在线| 一个人看的www免费观看视频| 香蕉av资源在线| 性色avwww在线观看| 黑人操中国人逼视频| 精品国产三级普通话版| 桃红色精品国产亚洲av| 99久久精品一区二区三区| 亚洲 国产 在线| 舔av片在线| 亚洲精品456在线播放app | 黑人欧美特级aaaaaa片| 国内精品美女久久久久久| 国产一区二区三区在线臀色熟女| 精品熟女少妇八av免费久了| 精品久久久久久久人妻蜜臀av| 亚洲 国产 在线| 欧美性猛交╳xxx乱大交人| 色视频www国产| www日本在线高清视频| 亚洲片人在线观看| 18美女黄网站色大片免费观看| 九色国产91popny在线| 国产一级毛片七仙女欲春2| 国产精品九九99| 久久久久性生活片| 亚洲熟女毛片儿| 久久香蕉国产精品| 欧美中文日本在线观看视频| 亚洲国产高清在线一区二区三| 免费高清视频大片| 狂野欧美激情性xxxx| 午夜福利在线观看免费完整高清在 | 一夜夜www| 高潮久久久久久久久久久不卡| 一级a爱片免费观看的视频| 久久午夜亚洲精品久久| 久久精品亚洲精品国产色婷小说| 岛国视频午夜一区免费看| 亚洲一区高清亚洲精品| 不卡一级毛片| 久久久久久久精品吃奶| 天堂av国产一区二区熟女人妻| 国产精品av视频在线免费观看| 精品一区二区三区四区五区乱码| 全区人妻精品视频| 日本免费a在线| 中文字幕久久专区| 久久亚洲精品不卡| 热99re8久久精品国产| 国产精品亚洲一级av第二区| 极品教师在线免费播放| xxx96com| 久久人人精品亚洲av| 亚洲av第一区精品v没综合| xxx96com| 男人舔奶头视频| 一个人免费在线观看电影 | 国产精品免费一区二区三区在线| 校园春色视频在线观看| 久久人人精品亚洲av| 欧美日韩一级在线毛片| 成人鲁丝片一二三区免费| 我的老师免费观看完整版| cao死你这个sao货| 99精品在免费线老司机午夜| 精品国产美女av久久久久小说| 色av中文字幕| 国产高潮美女av| 后天国语完整版免费观看| 婷婷精品国产亚洲av| 69av精品久久久久久| 欧美日韩国产亚洲二区| 久久香蕉国产精品| 亚洲欧洲精品一区二区精品久久久| 久久亚洲精品不卡| 欧美成人免费av一区二区三区| 亚洲美女黄片视频| 日韩有码中文字幕| 精品国产亚洲在线| 中亚洲国语对白在线视频| 国产精品乱码一区二三区的特点| 久久精品影院6| 欧美大码av| avwww免费| 欧美3d第一页| 亚洲成人久久性| 亚洲国产精品成人综合色| 亚洲av片天天在线观看| 中文字幕人妻丝袜一区二区| 成人三级做爰电影| 亚洲精品一区av在线观看| 亚洲欧美日韩高清专用| 黄色日韩在线| 免费观看人在逋| 中文字幕av在线有码专区| 中文字幕人妻丝袜一区二区| svipshipincom国产片| 亚洲自拍偷在线| 99久久国产精品久久久| 亚洲 欧美 日韩 在线 免费| 一个人观看的视频www高清免费观看 | 中文字幕高清在线视频| 亚洲精品色激情综合| www.熟女人妻精品国产| 一a级毛片在线观看| 三级毛片av免费| 日本免费一区二区三区高清不卡| 97超级碰碰碰精品色视频在线观看| 无遮挡黄片免费观看| 欧美一级毛片孕妇| 在线永久观看黄色视频| 国产高清三级在线| 国产三级黄色录像| 超碰成人久久| 午夜福利在线观看吧| 亚洲成人免费电影在线观看| 最近在线观看免费完整版| 12—13女人毛片做爰片一| 免费在线观看亚洲国产| 国内揄拍国产精品人妻在线| 国产 一区 欧美 日韩| 国产精品久久久av美女十八| 中文字幕最新亚洲高清| 国产黄a三级三级三级人| 韩国av一区二区三区四区| 黄频高清免费视频| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久爱视频| 精品久久久久久,| 国产精品 欧美亚洲| 深夜精品福利| 日韩欧美在线乱码| 色播亚洲综合网| 成人特级黄色片久久久久久久| 亚洲成人久久爱视频| 少妇人妻一区二区三区视频| 国内久久婷婷六月综合欲色啪| 88av欧美| 国产午夜精品论理片| 亚洲欧美一区二区三区黑人| 亚洲成人免费电影在线观看| 在线免费观看不下载黄p国产 | 国产在线精品亚洲第一网站| 亚洲精品粉嫩美女一区| 国产精品乱码一区二三区的特点| 亚洲五月天丁香| 动漫黄色视频在线观看| 99热6这里只有精品| 一a级毛片在线观看| 国产综合懂色| 深夜精品福利| 少妇的逼水好多| 18禁美女被吸乳视频| 一级黄色大片毛片| 狂野欧美白嫩少妇大欣赏| 巨乳人妻的诱惑在线观看| 日本三级黄在线观看| 丰满的人妻完整版| 色尼玛亚洲综合影院| 在线永久观看黄色视频| 男女那种视频在线观看| 丁香欧美五月| bbb黄色大片| 黄色成人免费大全| 国内毛片毛片毛片毛片毛片| 国内精品久久久久精免费| 国产91精品成人一区二区三区| 午夜福利成人在线免费观看| 亚洲成人中文字幕在线播放| 国产日本99.免费观看| 日韩精品青青久久久久久| 亚洲色图 男人天堂 中文字幕| 中文亚洲av片在线观看爽| 欧美xxxx黑人xx丫x性爽| 久久国产精品影院| 国产精品久久久久久人妻精品电影| 国产精品亚洲美女久久久| 国内毛片毛片毛片毛片毛片| 国产熟女xx| 香蕉丝袜av| 国产免费男女视频| 精品免费久久久久久久清纯| 在线十欧美十亚洲十日本专区| 久久久久久久精品吃奶| 国产精品一区二区精品视频观看| 69av精品久久久久久| www日本在线高清视频| 久久亚洲真实| 黄色日韩在线| 中亚洲国语对白在线视频| 在线观看66精品国产| 俺也久久电影网| 国产精品亚洲一级av第二区| 毛片女人毛片| 国产高潮美女av| 国产成人av教育| 97碰自拍视频| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久国产a免费观看| 老熟妇乱子伦视频在线观看| 国产成人aa在线观看| 国产主播在线观看一区二区| 中文字幕高清在线视频| 麻豆av在线久日| 亚洲av成人不卡在线观看播放网| 国内久久婷婷六月综合欲色啪| 90打野战视频偷拍视频| 女同久久另类99精品国产91| 国内精品久久久久久久电影| 1024香蕉在线观看| 亚洲一区二区三区不卡视频| a在线观看视频网站| 亚洲乱码一区二区免费版| xxx96com| 亚洲七黄色美女视频| 12—13女人毛片做爰片一| 一卡2卡三卡四卡精品乱码亚洲| 麻豆国产97在线/欧美| 亚洲午夜精品一区,二区,三区| 欧美日韩一级在线毛片| 国产伦精品一区二区三区视频9 | 脱女人内裤的视频| 免费人成视频x8x8入口观看| 日本免费一区二区三区高清不卡| 亚洲精品乱码久久久v下载方式 | 国产单亲对白刺激| 88av欧美| 国产精品一区二区三区四区免费观看 | 最新在线观看一区二区三区| 欧美黄色片欧美黄色片| 亚洲最大成人中文| 久99久视频精品免费| 九九久久精品国产亚洲av麻豆 | 天堂动漫精品| 色老头精品视频在线观看| 后天国语完整版免费观看| 一a级毛片在线观看| 成人精品一区二区免费| a在线观看视频网站| 亚洲国产精品999在线| 亚洲 欧美一区二区三区| 一个人观看的视频www高清免费观看 | 午夜福利免费观看在线| 九九在线视频观看精品| 国产单亲对白刺激| 19禁男女啪啪无遮挡网站| 一二三四在线观看免费中文在| 亚洲成a人片在线一区二区| 亚洲18禁久久av| 欧美不卡视频在线免费观看| 热99re8久久精品国产| 免费电影在线观看免费观看| 亚洲一区二区三区不卡视频| 国产欧美日韩一区二区精品| 国产伦精品一区二区三区视频9 | 欧美三级亚洲精品| 很黄的视频免费| 精华霜和精华液先用哪个| 中文在线观看免费www的网站| 国产精品九九99| 99国产精品一区二区三区| 午夜免费激情av| 欧美又色又爽又黄视频| 校园春色视频在线观看| 中文字幕人妻丝袜一区二区| 亚洲午夜理论影院| 男女视频在线观看网站免费| 国产高潮美女av| 老司机福利观看| 国产欧美日韩精品亚洲av| 亚洲一区二区三区不卡视频| 国模一区二区三区四区视频 | 热99re8久久精品国产| 国产又色又爽无遮挡免费看| 淫妇啪啪啪对白视频| 国内毛片毛片毛片毛片毛片| 99视频精品全部免费 在线 | 免费看a级黄色片| www.熟女人妻精品国产| 国产一区二区激情短视频| 亚洲专区字幕在线| 国产精品久久视频播放| 亚洲专区中文字幕在线| 性欧美人与动物交配| 久久99热这里只有精品18| 日日夜夜操网爽| 18禁美女被吸乳视频| 精品国产亚洲在线| aaaaa片日本免费|