• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of sign-reversible Berry phase effect in 2D magneto-valley material

    2023-10-11 07:56:00YueTongHan韓曰通YuXianYang楊宇賢PingLi李萍andChangWenZhang張昌文
    Chinese Physics B 2023年9期
    關(guān)鍵詞:李萍

    Yue-Tong Han(韓曰通), Yu-Xian Yang(楊宇賢), Ping Li(李萍), and Chang-Wen Zhang(張昌文)

    School of Physics and Technology,University of Jinan,Jinan 250022,China

    Keywords: valley polarization,topological phase transition,half-valley semimetal,quantum anomalous valley Hall effect,first-principles calculations

    1.Introduction

    Valleytronics offers a versatile platform for fundamental and applied research for spintronics materials due to its additional valley degree of freedom, apart from charge and spin.[1–4]Two-dimensional (2D) hexagonal lattices such as transition-metal dichalcogenides (TMD) are promising valley materials to manipulate charge, spin, and valley degrees of freedom.[5–11]In such materials, owing to the breaking of the space-inversion symmetry (P), phenomena associated with valley contrasting feature can be explored such as valley Hall effect (VHE) and valley-controllable optical selection rules.[12,13]Recent advances in valleytronics focus on generating valley polarization by breaking timeinversion symmetry (T) and thus lifting the degeneracy ofK/K′valleys.[14]Several approaches have been proposed,like optical pumping,[15–17]magnetic doping,[18–20]magnetic proximity effect,[21–23]and applying an external magnetic field.[24–27]Nevertheless,the intrinsic properties have a higher priority than external tunability so as to reach widespread applications in valley-related physics.Hence, intrinsic valleyrelated materials hosting spontaneous valley-polarization are most desirable, thanks to its advantages of robustness, power efficiency,and simplicity in operation.

    Recently, break-through of the discovery of 2D ferrovalley (FV) materials,[28]such as 2H-VSe2,[28]VSSe,[29]LaBr2,[30]LaBrI,[31]GdCl2,[32]CeI2,[33]MXenes,[34]and VSi2N4,[35]may lay the foundation for a spin-valley composite paradigm induced by the integrated effects of ferromagnetic(FM)order and spin–orbit coupling(SOC),which could facilitate the observation of anomalous valley Hall effect(AVHE).Furthermore,considering the perspective of potential applications in valleytronics, except for AVHE, the exploration for magneto-valley materials with valley-related multiple Hall effect(MHE)is of significant importance,which can enrich the valley-related physics and emerging quantum states of matter.One exotic valley-related multiple Hall effect is the quantum anomalous valley Hall effect(QAVHE),[36–40]which possesses the interplay between valley and band topology and combines the valley index and quantum anomalous Hall effect(QAHE),[36]making it possible to realize high-performance quantum devices and thus raising an intensive interest in materials science.However,the realization of QAVHE[37]relies on the combination of SOC, band topology and magnetic ordering,which pose a great challenge for the research on potential high-performance valley-controllable quantum computational devices in 2D materials.

    Motivated by these challenges, based on first-principles calculations with DFT+Uapproach and strainedk·pmodel,[37]we have predicted single-layer(SL)RuCl2as an FV semiconductor,exhibiting intrinsic FM order and giant spontaneous valley polarization.Interestingly, we found that different electronic correlation strengths (U) and strains (ε)[41–44]make SL-RuCl2transition to different valley-controllable electronic states, including FV to half-valley[45]semimetal(HVS) to QAVHE to HVS to FV state.These different electronic states are connected with valley-controllable signreversible Berry curvature.Remarkably, QAVHE phase,which combines both the features of QAHE and AVHE, can be realized due to band inversions of dxy/dx2-y2and dz2orbitals atK/K′valleys.We further demonstrate that QAVHE phase of SL-RuCl2exists when electronic correlation strength(U) ranges from 2.19 eV to 2.29 eV.Even increasingUexceed this scope,takeU=2.4 eV,we can still observe QAVHE in the strain range of-2.3% and-1.1% by exerting biaxial compressive strain.Similar phase transition and QAVHE have also be reported in MBr2,[43]FeCl2, VSi2P4,[46]VN2X2Y2(X= group-III andY= group-IV elements).These results broaden the avenue for low-dissipation electronics devices,highly promising for valleytronics and quantum computational devices.

    2.Computational details

    First-principles calculations with spin polarization within DFT are performed by the Viennaab initiosimulation package (VASP).[47–50]The generalized gradient approximation(GGA) with the Perdew–Burke–Ernzerhof (PBE) realization is used to describe the exchange–correlation effect.[51]The energy cutoff is chosen as 550 eV for expanding the wave functions and the total energy convergence criterion of 10-6eV is adopted for static calculations.All the structural parameters are fully optimized until the force on each atom is converged to 0.01 eV/?A.Ak-mesh of 17×17×1 is used to sample the Brillouin zone and a vacuum layer about 20 ?A to avoid the interactions between adjacent direction.To describe the on-site Coulomb interactionUterms of strong correlated Ru 4d electrons,we employed the GGA+Umethod.[52,53]Phonon spectrum is calculated by using 5×5×1 supercell and 5×5×1qgrid based on the density functional perturbation theory(DFPT)approach.[54]The Berry curvatures are calculated using the WANNIER90 package.[55]The edge states are calculated by using the iterative Green function method.[56]

    3.Results and dicussion

    In analogy to the TMDs, SL-RuCl2possessPˉ6m2 symmetry with aD3hpoint group, which is composed of Cl–Ru–Cl sandwich layer,and each Ru atom has six nearest Cl neighbors,forming a triangular prism lattice,as shown in Fig.1(a).Thus, thePin SL-RuCl2is broken.Figure 1(b) displays the optimized lattice constants of SL-RuCl2with theUvalues ranging from 0 eV to 3 eV.We can see that the calculated constant increases from 3.46 ?A to 3.61 ?A withUincreasing from 0 eV to 3 eV.By calculating the phonon spectrum in Fig.1(c),no imaginary frequency modes are observed, which demonstrates SL-RuCl2is dynamically stable.In addition, we calculated the elastic constants to check the mechanical stability of SL-RuCl2.The elastic tensorCwith thePˉ6m2 point-group symmetry for SL-RuCl2can be reduced to

    The calculated results show thatC11andC12are 34.14 GPa and 14.66 GPa, respectively.The calculatedCijsatisfy the Born criteria for mechanical stability,[57]C11>0 andC11-C12>0,which confirms the mechanical stability of SL-RuCl2.

    Next, we turn our attention to the magnetic properties of SL-RuCl2.We consider three magnetic configurations,i.e.,nonmagnetic(NM)state,FM state,and antiferromagnetic(AFM) state, as shown in Fig.S1(a) in supporting information, The energy difference as a function ofUis shown in Fig.S1(b).It is clear to see that SL-RuCl2always prefers FM state withUranging from 0 eV to 3 eV,and the magnetic moment unit cell of FM phase is 4.0μBper Ru atom.According to the Mermin–Wagner theorem,[58]the FM order is generally prohibited by thermal fluctuation if 2D FM systems are isotropic.However, the recent discoveries of FM ordering in 2D CrI3[59]and Cr2Ge2Te6,[60,61]with the presence of spinwave excitation gap arising from magnetic anisotropy illustrate that FM ordering can exist at a finite temperature.Thus,to determine the magnetization easy axis of SL-RuCl2,we calculate the magnetic anisotropy energy(MAE)under differentU, as shown in Fig.S1(c).The MAE is defined as the energy difference between the systems with magnetization axis along in-plane (IP) and out-of-plane (OP) direction, namelyEMAE=E100-E001.We can find that SL-RuCl2prefers an OP-FM state whenU <2.41 eV, whenU >2.41 eV, it turns to IP-FM state.

    For 2D FM materials, electronic correlations play an important role in its magnetic, valley and topological properties.[62–65]Thus, we investigate the evolution of electronic band structures driven by electronic correlation (U) in SL-RuCl2and the representative electronic band structures without and with SOC are plotted in Fig.S2 and Fig.2,respectively.Also, the evolution mechanism of the energy bandgap induced by differentUis given in Fig.S3.

    For a smallU(U=0 eV),SL-RuCl2exhibits an indirect gap semiconductor.The conduction band minimum (CBM)atK/K′valleys are mainly contributed by dz2orbital with the spin-down channel, and the spin-up dxz/dyzorbitals form the valence band maximum(VBM)(Fig.2(a)and Fig.S2(a)).The opposite spin directions of VBM and CBM indicate SL-RuCl2possesses bipolar magnetic semiconductor (BMS) character.With increasingUbeforeU=2.19 eV, the global gap firstly increases and then decreases (Fig.S3(a)), and the orbitals of Ru-dxy/dx2-y2move up relative to Ru-dxzand Ru-dyzorbitals gradually(Figs.2(a)–2(d)).As shown in Fig.2(d),on account ofTandPbroken,both the CBM and VBM belong to the spindown channel,forming FV state with direct gap and the giant energy difference of band gap atKandK′valleys is 246.2 meV(Fig.S3(b)).

    AroundU=2.19 eV,as shown in Fig.2(e),the band gap atK′point gets closed,while still have a gap of 254.5 meV atKpoint.The gap closed atK′valley and opened atKvalley indicating an HVS state.Here,taking SOC into account,HVS state indicates the Dirac cone shaped linear dispersion with intrinsically 100%spin valley polarization,[66]highly promising for charge and spin transport due to the mass-free electron mobility.Then we further increaseU(U >2.19 eV),the band gap atK′valley reopens and Ru-dxy/dx2-y2bands continue to move up and thus exchange from VBM to CBM,the Ru-dz2component goes down and from CBM exchanges to VBM, correspondingly (Fig.2(f)).AroundU=2.29 eV, another HVS states inevitably encountered, with the band gap closing atKvalley,but the gap of about 247.1 meV atK′valley (Fig.2(g)).Continuing increasingU, the band gap atKvalley reopens and the CBM and VBM are apart from each other.From the perspective of orbital components, the Rudz2of CBM have been swapped with Ru-dxy/dx2-y2orbitals of VBM atKvalley.Hereafter SL-RuCl2returns to FV again.As can be seen from Fig.2(h), the valley-polarization of SLRuCl2distinctly occurs at the CBM and the giant energy difference of band gap atK/K′valleys is 240.3 meV(Fig.S3(b)).Thus, AVHE with an anomalous velocityva~-(e/ˉh)E×Ωcan be clearly observed(Fig.S4).WhenUis above 2.41 eV,SL-RuCl2turns to IP-FM state(Figs.2(i)and 2(j)).

    Fig.2.Orbital-projected band structures of SL-RuCl2 obtained from GGA+SOC+U (U varies from 0 eV to 3.0 eV).Blue circle represents components of Ru-dxy and Ru-dx2-y2 orbitals,red one is for component of Ru-dz2 orbital,and the green one represents Ru-dxz and Ru-dyz orbitals.

    Obviously, from the evolution of electronic band structures driven byUin SL-RuCl2, one can see that whenU <2.19 eV, VBM atK/K′valleys is primarily made up of Rudxy/dx2-y2orbitals,while the energy degeneracy between two valleys is lifted and valley polarization apparently occurs at VBM (Fig.2(d)).After the bandgap closing and reopening again atKandK′valleys,the Ru-dxy/dx2-y2orbitals exchange completely from VBM to CBM, and the energy difference of CBM betweenKandK′valleys is larger than VBM contributed by Ru-dz2orbital(Fig.2(h)).

    With regard to the spontaneous valley-polarization of SLRuCl2,the underlying physical mechanisms can be attributed to the combining effect of magnetic exchange interaction and SOC.We takeU=2 eV as an example, the degeneracy between spin-up and spin-down channel is broken due to the existence of FM ordering.Since the VBM and CBM are both occupied by electrons with identical spin,we can ignore the interaction between spin-up and spin-down states.Thus,the SOC only involves the interaction of same spin channels,which can be approximately expressed by[33]

    From Eq.(3), we can obtain ΔEv=4α.This indicates that valley polarization significantly occurs at VBM (Fig.2(d)).After the completely swapping of Ru-dxy/dx2-y2and Ru-dz2orbitals between VBM and CBM, as the case ofU=2.4 eV,we can infer that ΔEc=4α,thus valley polarization evidently occurs at CBM(Fig.2(h)).It is noteworthy that valley polarization can be reversed as the magnetization is reversed,which is confirmed by DFT results in Fig.S5.When the magnetization along the-zdirection, the spin and valley polarization of carriers is simultaneously switched.From a practical point of view,using intrinsic magnetism to generate valley polarization is more nonvolatile.Additionally,magnetism can be controlled in a fully electric manner,e.g.,by using current pulses through spin torques,[67]which is ideal for device applications.

    Our most prominent finding is that SL-RuCl2is an exotic magneto-valley material,which can host several quantum phase diagrams driven byUstarting from FV phase.Such an FV state is highly beneficial to generating, transporting, and manipulating spin currents in spin-valley spintronics.From the above discussion about the evolution of electronic band structures driven byU, we can observe that SL-RuCl2experienced two critical states, namely HVS state, appears atU=2.19 eV and 2.29 eV,where the band gap closes atK′orKvalley while another valley is still in semiconductor status.Along with the band gap reopening asUincreases,the components of VBM and CBM atK/K′valleys also exchanged.This gap close–reopen scenario and interchanging of orbital compositions indicate a transition from trivial to nontrivial topological phase.This topological phase transition is correlated with valley-controllable sign-reversible Berry curvature asUvariates.In order to investigate this phenomenon, the Berry curvatureΩ(k)of SL-RuCl2is calculated based on the Kubo formula,[68]which could be performed with the following expression:

    wherenandn′are the band indexes,vxandvyare velocity operators in thexandydirections, respectively.f(n) is the Fermi–Dirac distribution function.φnkandφn′kare the periodic part of Bloch wave function with eigenvalueEnandEn′,respectively.

    Figure 3 shows the Berry curvatures withU=2 eV (a),2.25 eV(b),2.4 eV(c),respectively.As shown in Fig.3(a),regarding FV state(U=2 eV),a nonzero Berry curvature occurs aroundK/K′valleys with opposite signs and different magnitudes.WhenU=2.19 eV, FV state experiences a topological phase transition into QAHVE state, bridged by an HVS state.ForU=2.25 eV, the sign ofΩ(k) atK′valley flips(Fig.3(b)).Further increasingU=2.29 eV,Kvalley also experiences a topological phase transition, akin to the case ofK′valley, resulting in the sign change ofΩ(k) atKvalley.With the increase ofU, it transforms from HVS to another FV state.By comparing these two FV states,the sign of Berry curvature atKandK′valleys are quite opposite(Figs.3(a)and 3(c)).Such dynamics of berry curvatureΩ(k)is bound to influence valley-related anomalous transport phenomena, such as AHVE, valley Nernst effect, valley magneto-optical Kerr effect,and valley magneto-optical Faraday effect.[69]

    It is remarkable that QAHVE phase in the range of 2.19 eV<U <2.29 eV can be demonstrated by the calculated Berry curvatures in BZ space (Fig.3(b)).Here, the Berry phase takes the same signs atKandK′valleys,but not the identical values.In this way, the edge spectrum calculated with WANNIER90 package shows a single gapless chiral state connecting the conduction and valence bands,consistent with an integer Chern number (C=1), as shown in Fig.4.Different from valley-polarized quantum anomalous Hall effect(VP-QAHE),the CBM,and VBM atK′/Kvalleys are all contributed by spin-down bands with full valley polarization(Fig.4(a)and Fig.S5(b)).When the magnetization is reversed,the edge state changes to the other valley,with an opposite spin and chiral directions,as shown in Fig.4(b),suggesting a very special behavior of the chiral-spin-valley locking for the obtained edge state.This novel quantum state can be detected by using the noncontact magneto-optical technique,[70]and thus highly promising for most practical applications in valleytronics.

    Fig.4.(a)The calculated nontrivial chiral edge states for a semi-infinite SLRuCl2 with U=2.25 eV.The 100%spin-polarized chiral state is locked with the valley index and spin direction.(b) The same as in panel (a), but the magnetization direction is along the-z direction.

    Yet for now, it is challenging to regulate the correlation effect (U), but we still hope that the various quantum phase diagram can be exhibited in practice.A crucial point is that the competition between kinetic and interaction energies could influence the strength of electronic correlation, which means we could exert epitaxial strain to manipulate the electronic and magnetic properties of 2D materials and thus probably achieve the same effect as changingU.Therefore, the biaxial strain is applied to the SL-RuCl2.The strain strength is defined asε=(a-a0)/a0, whereaanda0are the lattice constants of the system with and without strain, respectively.Hence, the system of SL-RuCl2can be possibly tuned into FV,HVS,and QAVHE states,even though the electronic correlation strengthUis larger than 2.19 eV.We useU=2.4 eV as an example to explore the quantum phase transitions by exerting external biaxial strain.To confirm the FM ground states, the total energy difference between FM and AFM ordering by using rectangle supercell is calculated as a function ofε, as shown in Fig.S6(a).In considered strain range, the magnetic ground states are always the FM states,And the magnetic anisotropy of SL-RuCl2prefers the OP state under the considered range,as is shown in Fig.S6(b).

    Fig.5.(a)The global energy band gap as a function of ε (0%~-4%).(b)The energy band gaps for the K and K′ valleys.

    The energy band gap and orbital-projected band structures of SL-RuCl2under various types of biaxial strain are presented in Figs.5 and 6,respectively.With increasing compressive biaxial strain,the gaps at two valleys decreases,whenε=-1.1%, the band gap atKvalley is closed, but it is still open atK′valley, transforming from FV to HVS state(Figs.5(b) and 6(b)).Further increasing compressive strain untilε=-2.3%,the gap atKvalley reopens and closes gradually atK′valley, and the other HVS state can be achieved,as is shown in Fig.6(d).Continuing increasing compressive biaxial strain, the band gap atK′valley will reopen and the system of SL-RuCl2will turn to the other FV state.

    In the process of applying biaxial compressive strain,the system of SL-RuCl2also encounters two different critical states, i.e., HVS state, with the band gap closes atKandK′valley, respectively.And the band gap reopening as compressiveεincreases along with the swapping of Ru-dxy/dx2-y2and Ru-dz2orbitals.This exotic transition probably suggests that QAVHE phases exist between the two HVS states.And this strain-induced phase transition mechanism for SL-RuCl2can be explained by constructing ak·pmodel.[35]In order to confirm QAVHE,we calculate the edge spectrum,as is shown in Fig.7.We can clearly observe that a single edge band for connecting the bulk conduction and valence bands,which verifies its nontrivial topology and also indicates a very special behavior of the chiral-spin-valley locking.The QAVHE can also be observed between the two HVS states.With increasing biaxial compressive strain, SL-RuCl2can transform from FV to HVS to QAVHE to HVS to FV state.

    Fig.6.Orbital-projected band structures of SL-RuCl2 with SOC under different biaxial strains.Blue circle represents components of Ru-dxy and Ru-dx2-y2 orbitals,red one is for component of Ru-dz2 orbital,and the green one represents Ru-dxz and Ru-dyz orbitals.

    Fig.7.(a) The calculated nontrivial chiral edge states for a semi-infinite SL-RuCl2 with ε =-1.5%.The 100%spin-polarized chiral state is locked with the valley index and spin direction.(b) The same as in panel (a), but the magnetization direction is along the-z direction.

    The valley-controllable sign-reversible Berry curvature is also related to the biaxial compressive strain,and we plot the Berry curvatures at some representativeεvalues in Fig.8.For a small compressive strain(ε=-0.7%),as shown in Fig.8(a),we find that a nonzero Berry curvature occurs aroundK/K′valleys with opposite signs and different magnitudes, consistent with the FV state.Under the strain of-1.1%, the sign of Berry curvature atKvalley firstly flips,and then the Berry curvature atK′valley change sign at aboutε=-2.3%.These topological phase transitions are also related to the band inversion of dxy/dx2-y2and dz2orbitals,being similar to variedU.Our understanding of the change of sign for the berry curvature at two valleys is that the opposite and half quantized Hall conductivitye2/2hand-e2/2h,respectively.The phase transition at two valleys happens at two different critical on-site Coulomb interactions:WhenU <2.19 eV,C=1/2-1/2=0;whenU >2.29 eV,C=-1/2+1/2=0, while in the case of 2.19 eV<U <2.29 eV, Berry curvature at one of the two valleys changes its sign and leads a total Chern number as 1/2+1/2=1.

    Fig.8.Berry curvature of SL-RuCl2 with ε =-0.7%(a),-1.5%(b),-2.5%(c)at U =2.4 eV.The top planes are contour maps of Berry curvature in the whole 2D BZ,the bottom planes are Berry curvatures along the high-symmetry points.

    Fig.9.The average magnetic moment and specific heat as a function of temperature with U =2 eV (a), 2.25 eV (b), and ε =0% (c), -4% (d) at U =2.4 eV.

    Both electronic correlation effects and compressive strain can effectively tune the strength of FM interaction, which can produce important effects on Curie temperatureTcof SLRuCl2.TheTcis estimated at representativeU(2 eV,2.25 eV,and 2.4 eV)andε(0%and-4%)values with the Wolf algorithm based on the Heisenberg model,which can be expressed as[71]

    whereJi,jrepresents the exchange parameters of the nearest neighbor, which could be calculated according to the energy difference between FM and AFM configurations.HereSi/Sjis the spin vector on each Ru,Aiis the anisotropy energy parameter per magnetic atom, andSziis thezcomponent of the spin vector.As the distance between Ru atoms and its second nearest neighboring Ru is more than 6.0 ?A, which is along enough to be ignored, only the nearestJis taken into account.[46]

    Thus

    On comparing with the energy results from first-principles calculations, the obtained model parameters are found to beJ=4.97 meV andA=117.5 μeV forU=2 eV,J=3.50 meV andA=62.3 μeV forU=2.25 eV,J=2.73 meV andA=0.188 μeV forU= 2.4 eV atε= 0%,J= 5.53 meV andA=158.9 μeV forU=2.4 eV atε=-4%.To make the FMparamagnetic transition clearer,we calculate the heat capacity(Cv)as follows:

    Here, ΔETis the change of the total energy as the temperature increases fromTtoT+ΔT.The Monte Carlo simulation is then performed to estimate the transition point of the ferromagnetism,and the results shown in Fig.9.The estimatedTcis about 211 K forU=2 eV,148 K forU=2.25 eV,116 K,and 234 K forU=2 eV atε=0%and-4%.Thus,it is very key for estimatingTcto use reasonableU.And it is found that the compressive strain can improveTc.

    4.Conclusions

    To summarize,based on first-principles calculations with DFT+Uapproach and ak·pmodel, we found that valleycontrolled quantum phase transitions can be driven by electronic correlation and compressive biaxial strain from FV to HVS to QAVHE to HVS to FV phase in SL-RuCl2.Remarkably, QAVHE and chiral spin-valley, which is induced by sign-reversible Berry curvature or band inversion between dxy/dx2-y2and dz2orbitals,can achieve complete spin and valley polarizations for low-dissipation electronics devices.We also find that this electron valley-polarization can be switched by reversing the magnetization direction, providing a new route of magnetic control of valley degree of freedom.Therefore,our findings not only enrich the research on QAVHE,but also broaden the horizon for the spintronics,valleytronics,and topological nanoelectronics applications.

    Acknowledgements

    Project supported by the Taishan Scholar Program of Shandong Province,China(Grant No.ts20190939),the Independent Cultivation Program of Innovation Team of Jinan City(Grant No.2021GXRC043),and the National Natural Science Founation of China(Grant No.52173283).

    猜你喜歡
    李萍
    婦科超聲見盆腔積液診斷探討
    Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface?
    天生一對
    故事會(2021年16期)2021-08-20 00:53:29
    海峽情
    黃河之聲(2020年13期)2020-09-12 16:52:54
    太陽第一家
    黃昏之戀
    SLA:ErroranalysisofthelearnersinvocationalcollegeundertheBlendedLearningModel
    《黃山奇松》(第二課時)教學(xué)設(shè)計
    怎么會這樣
    怎么會這樣
    小說月刊(2016年1期)2015-12-29 17:22:29
    日韩一卡2卡3卡4卡2021年| 久久久国产欧美日韩av| www.精华液| 久久免费观看电影| 亚洲精品第二区| 国产激情久久老熟女| 中文字幕人妻丝袜一区二区| 亚洲欧美日韩另类电影网站| 久久99热这里只频精品6学生| 免费人妻精品一区二区三区视频| 男女床上黄色一级片免费看| 亚洲精品国产av蜜桃| 午夜福利影视在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 大香蕉久久网| 亚洲成人免费av在线播放| 超碰成人久久| 黑人欧美特级aaaaaa片| 女警被强在线播放| 亚洲欧美一区二区三区黑人| 他把我摸到了高潮在线观看 | 啦啦啦视频在线资源免费观看| 老司机午夜十八禁免费视频| 国产一区二区三区在线臀色熟女 | 午夜视频精品福利| 老司机影院成人| 国产免费视频播放在线视频| 午夜成年电影在线免费观看| 国产一区二区三区av在线| 美女脱内裤让男人舔精品视频| 国产免费av片在线观看野外av| 精品一区二区三卡| 午夜视频精品福利| 9热在线视频观看99| 91精品伊人久久大香线蕉| 成人影院久久| 日韩大片免费观看网站| 电影成人av| 久久国产精品大桥未久av| 欧美激情极品国产一区二区三区| 欧美av亚洲av综合av国产av| 老汉色∧v一级毛片| 热99国产精品久久久久久7| 啦啦啦视频在线资源免费观看| 久久久久国产一级毛片高清牌| 免费在线观看黄色视频的| 亚洲精华国产精华精| 国产在线免费精品| 国产av一区二区精品久久| 午夜影院在线不卡| 麻豆乱淫一区二区| 99国产精品一区二区三区| 色视频在线一区二区三区| 国产精品欧美亚洲77777| 女人精品久久久久毛片| 一区在线观看完整版| 亚洲熟女精品中文字幕| 肉色欧美久久久久久久蜜桃| 亚洲精品粉嫩美女一区| 日韩视频在线欧美| 99国产极品粉嫩在线观看| 欧美性长视频在线观看| 国产人伦9x9x在线观看| 亚洲成国产人片在线观看| 亚洲欧美成人综合另类久久久| 日韩人妻精品一区2区三区| 久久国产精品大桥未久av| 亚洲av日韩精品久久久久久密| 欧美老熟妇乱子伦牲交| 欧美97在线视频| tube8黄色片| 97在线人人人人妻| 黑人巨大精品欧美一区二区mp4| 老司机影院成人| 王馨瑶露胸无遮挡在线观看| 大片免费播放器 马上看| 亚洲精品久久午夜乱码| 欧美精品av麻豆av| 免费久久久久久久精品成人欧美视频| 亚洲熟女精品中文字幕| 欧美人与性动交α欧美精品济南到| 欧美一级毛片孕妇| 亚洲欧美一区二区三区黑人| 五月开心婷婷网| 大香蕉久久网| 高清视频免费观看一区二区| 午夜影院在线不卡| 国产高清视频在线播放一区 | 中文字幕人妻丝袜一区二区| 成人国产一区最新在线观看| 下体分泌物呈黄色| 黑人操中国人逼视频| 久久影院123| 成年女人毛片免费观看观看9 | 首页视频小说图片口味搜索| 日本a在线网址| 在线精品无人区一区二区三| 亚洲精品久久成人aⅴ小说| 精品亚洲乱码少妇综合久久| 在线观看www视频免费| 777久久人妻少妇嫩草av网站| 精品国产国语对白av| 黄色a级毛片大全视频| 男女高潮啪啪啪动态图| 三级毛片av免费| 最新的欧美精品一区二区| 免费观看av网站的网址| 亚洲精品国产精品久久久不卡| 亚洲国产精品999| 在线观看免费视频网站a站| 女人高潮潮喷娇喘18禁视频| 老司机靠b影院| 精品少妇一区二区三区视频日本电影| 午夜福利影视在线免费观看| 久久 成人 亚洲| 国产成人欧美在线观看 | 天堂俺去俺来也www色官网| 成年人午夜在线观看视频| 人人妻人人添人人爽欧美一区卜| 国产日韩一区二区三区精品不卡| 中文字幕最新亚洲高清| 正在播放国产对白刺激| 久久国产精品人妻蜜桃| 国产一区二区 视频在线| 午夜久久久在线观看| 婷婷丁香在线五月| 老司机福利观看| 最新在线观看一区二区三区| 日韩制服骚丝袜av| 亚洲免费av在线视频| 19禁男女啪啪无遮挡网站| 亚洲av成人一区二区三| 99国产精品99久久久久| 热re99久久国产66热| 9191精品国产免费久久| 日韩免费高清中文字幕av| 99国产精品一区二区三区| 免费日韩欧美在线观看| 在线 av 中文字幕| 欧美激情久久久久久爽电影 | 亚洲黑人精品在线| 91精品三级在线观看| 自线自在国产av| 精品人妻1区二区| 韩国精品一区二区三区| 一个人免费看片子| av在线app专区| 十八禁人妻一区二区| 欧美精品亚洲一区二区| 国产成人精品在线电影| 天天躁日日躁夜夜躁夜夜| 欧美亚洲 丝袜 人妻 在线| 韩国高清视频一区二区三区| 日韩制服骚丝袜av| 老汉色av国产亚洲站长工具| 啦啦啦免费观看视频1| 老熟妇仑乱视频hdxx| 秋霞在线观看毛片| 久热爱精品视频在线9| 热99国产精品久久久久久7| 亚洲成人手机| 我的亚洲天堂| 欧美国产精品一级二级三级| 国产精品亚洲av一区麻豆| 在线av久久热| 日本vs欧美在线观看视频| 中国美女看黄片| 这个男人来自地球电影免费观看| 最近中文字幕2019免费版| 久久中文字幕一级| 91av网站免费观看| 香蕉丝袜av| 免费女性裸体啪啪无遮挡网站| 国产成人精品久久二区二区91| 天天添夜夜摸| 90打野战视频偷拍视频| 亚洲人成77777在线视频| 女性生殖器流出的白浆| 性高湖久久久久久久久免费观看| 美女福利国产在线| 亚洲成人手机| 国产在视频线精品| 国产精品熟女久久久久浪| 亚洲午夜精品一区,二区,三区| 美女福利国产在线| 欧美精品av麻豆av| 两个人看的免费小视频| 性少妇av在线| 免费看十八禁软件| 国产精品.久久久| 99re6热这里在线精品视频| 99re6热这里在线精品视频| 19禁男女啪啪无遮挡网站| av有码第一页| 日韩熟女老妇一区二区性免费视频| 老司机影院毛片| 亚洲九九香蕉| 亚洲av日韩在线播放| 电影成人av| 日韩人妻精品一区2区三区| 又大又爽又粗| 一区在线观看完整版| 午夜精品久久久久久毛片777| 欧美精品一区二区免费开放| av福利片在线| 高清在线国产一区| 久久久久久久久免费视频了| 久久影院123| 精品国内亚洲2022精品成人 | 久久青草综合色| 亚洲色图综合在线观看| 91精品伊人久久大香线蕉| 一本综合久久免费| 97人妻天天添夜夜摸| 一级a爱视频在线免费观看| 超碰97精品在线观看| 成人国产一区最新在线观看| 午夜影院在线不卡| 国产精品久久久人人做人人爽| 久久av网站| 一个人免费在线观看的高清视频 | 亚洲伊人久久精品综合| 久久久国产一区二区| 中国国产av一级| 亚洲色图综合在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品久久午夜乱码| 国产成人精品久久二区二区免费| 我要看黄色一级片免费的| 久久人人爽人人片av| 国产高清视频在线播放一区 | 女警被强在线播放| 老司机午夜福利在线观看视频 | 日韩人妻精品一区2区三区| 欧美人与性动交α欧美精品济南到| 一区二区av电影网| 欧美国产精品一级二级三级| 中文字幕av电影在线播放| av不卡在线播放| 欧美日韩av久久| 丝袜在线中文字幕| 久久久国产欧美日韩av| a级片在线免费高清观看视频| 国产精品九九99| 欧美激情高清一区二区三区| 最近最新免费中文字幕在线| 精品福利永久在线观看| 亚洲中文av在线| 在线观看免费视频网站a站| 欧美 日韩 精品 国产| 色老头精品视频在线观看| 久久久久久久精品精品| 婷婷丁香在线五月| 久9热在线精品视频| 天天操日日干夜夜撸| 亚洲国产日韩一区二区| 国产日韩欧美在线精品| 成人av一区二区三区在线看 | 99国产精品免费福利视频| 80岁老熟妇乱子伦牲交| 十八禁高潮呻吟视频| 久久久久久免费高清国产稀缺| 曰老女人黄片| 建设人人有责人人尽责人人享有的| 精品人妻一区二区三区麻豆| 一本一本久久a久久精品综合妖精| 欧美日韩亚洲综合一区二区三区_| 免费观看人在逋| 亚洲一卡2卡3卡4卡5卡精品中文| 国产激情久久老熟女| 精品高清国产在线一区| 秋霞在线观看毛片| 国产精品久久久av美女十八| 亚洲精品美女久久久久99蜜臀| 精品福利永久在线观看| 性少妇av在线| 亚洲欧美日韩高清在线视频 | 国产精品久久久久久精品电影小说| 中文字幕制服av| 久久久精品免费免费高清| 老司机影院毛片| 制服诱惑二区| 高清在线国产一区| 老司机深夜福利视频在线观看 | 中国美女看黄片| 亚洲第一欧美日韩一区二区三区 | 69精品国产乱码久久久| 亚洲精品乱久久久久久| 啦啦啦视频在线资源免费观看| 亚洲三区欧美一区| 免费黄频网站在线观看国产| 国产三级黄色录像| 肉色欧美久久久久久久蜜桃| 国产国语露脸激情在线看| 91大片在线观看| 久久久久精品国产欧美久久久 | 一本色道久久久久久精品综合| 久久青草综合色| 日韩一区二区三区影片| 免费少妇av软件| 丝袜在线中文字幕| 日韩欧美一区二区三区在线观看 | 熟女少妇亚洲综合色aaa.| 国产成人免费无遮挡视频| 亚洲欧美精品综合一区二区三区| 午夜影院在线不卡| 大陆偷拍与自拍| 欧美日韩一级在线毛片| 亚洲欧洲精品一区二区精品久久久| 老司机影院成人| 波多野结衣av一区二区av| 亚洲精品国产精品久久久不卡| 色精品久久人妻99蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 国产1区2区3区精品| 动漫黄色视频在线观看| 他把我摸到了高潮在线观看 | 大型av网站在线播放| 亚洲精品乱久久久久久| 黑人操中国人逼视频| 久久人人97超碰香蕉20202| 十八禁网站网址无遮挡| 国产色视频综合| 久久午夜综合久久蜜桃| 亚洲专区国产一区二区| 巨乳人妻的诱惑在线观看| 五月开心婷婷网| 香蕉国产在线看| 窝窝影院91人妻| 亚洲欧美激情在线| 日韩欧美国产一区二区入口| 欧美黑人精品巨大| 天堂中文最新版在线下载| 国产成人av教育| 欧美久久黑人一区二区| 欧美日韩精品网址| 涩涩av久久男人的天堂| 国产欧美日韩精品亚洲av| 99精品久久久久人妻精品| 色综合欧美亚洲国产小说| av在线播放精品| 一级黄色大片毛片| 久久久国产欧美日韩av| 捣出白浆h1v1| 69av精品久久久久久 | 叶爱在线成人免费视频播放| 69精品国产乱码久久久| av国产精品久久久久影院| 亚洲专区国产一区二区| 美女中出高潮动态图| 亚洲精品粉嫩美女一区| 91av网站免费观看| 免费观看a级毛片全部| 爱豆传媒免费全集在线观看| 50天的宝宝边吃奶边哭怎么回事| 搡老熟女国产l中国老女人| 精品国产超薄肉色丝袜足j| 极品少妇高潮喷水抽搐| 精品乱码久久久久久99久播| 亚洲欧美精品自产自拍| 美女主播在线视频| 国产人伦9x9x在线观看| 国产老妇伦熟女老妇高清| 久久精品国产a三级三级三级| 99精品欧美一区二区三区四区| 亚洲一码二码三码区别大吗| 亚洲欧美成人综合另类久久久| 国产高清videossex| 欧美性长视频在线观看| 91字幕亚洲| 亚洲性夜色夜夜综合| 日本撒尿小便嘘嘘汇集6| av电影中文网址| 丁香六月天网| 男女之事视频高清在线观看| 欧美一级毛片孕妇| 美国免费a级毛片| 亚洲全国av大片| 性高湖久久久久久久久免费观看| 亚洲欧美成人综合另类久久久| 精品卡一卡二卡四卡免费| 丁香六月天网| 高清黄色对白视频在线免费看| 熟女少妇亚洲综合色aaa.| av免费在线观看网站| a级片在线免费高清观看视频| 香蕉国产在线看| 啦啦啦视频在线资源免费观看| 99国产极品粉嫩在线观看| 午夜福利免费观看在线| 日本一区二区免费在线视频| 午夜91福利影院| 天天躁狠狠躁夜夜躁狠狠躁| 性色av乱码一区二区三区2| 女人精品久久久久毛片| 亚洲av片天天在线观看| 男女午夜视频在线观看| 99国产精品一区二区蜜桃av | 国产xxxxx性猛交| 亚洲激情五月婷婷啪啪| 淫妇啪啪啪对白视频 | 久久久水蜜桃国产精品网| 精品久久久久久电影网| 欧美性长视频在线观看| 久久毛片免费看一区二区三区| 亚洲美女黄色视频免费看| 国产免费视频播放在线视频| 免费黄频网站在线观看国产| 欧美在线一区亚洲| 久久人人爽av亚洲精品天堂| www.自偷自拍.com| 免费高清在线观看日韩| 成人三级做爰电影| 亚洲欧美精品综合一区二区三区| www.999成人在线观看| 亚洲国产av新网站| 欧美日韩国产mv在线观看视频| 国产精品久久久av美女十八| 亚洲精品日韩在线中文字幕| 窝窝影院91人妻| tube8黄色片| 久热爱精品视频在线9| 黑人巨大精品欧美一区二区蜜桃| 久久人妻福利社区极品人妻图片| 日本猛色少妇xxxxx猛交久久| 热re99久久精品国产66热6| 19禁男女啪啪无遮挡网站| 一本—道久久a久久精品蜜桃钙片| 成年人午夜在线观看视频| 久久av网站| 日本撒尿小便嘘嘘汇集6| 777久久人妻少妇嫩草av网站| 亚洲第一青青草原| 国产成人一区二区三区免费视频网站| 热99国产精品久久久久久7| 亚洲第一青青草原| 亚洲熟女毛片儿| 美女高潮喷水抽搐中文字幕| 精品一区二区三区四区五区乱码| 国产老妇伦熟女老妇高清| 一本一本久久a久久精品综合妖精| 操出白浆在线播放| 男人爽女人下面视频在线观看| 亚洲成av片中文字幕在线观看| 亚洲免费av在线视频| 午夜两性在线视频| 天天添夜夜摸| 久久久久精品国产欧美久久久 | 99国产精品免费福利视频| 欧美黄色淫秽网站| 日韩 亚洲 欧美在线| 五月开心婷婷网| www.精华液| 亚洲精品在线美女| 中文字幕另类日韩欧美亚洲嫩草| 91大片在线观看| 国产福利在线免费观看视频| 久久国产精品人妻蜜桃| 涩涩av久久男人的天堂| 亚洲精华国产精华精| 看免费av毛片| 亚洲欧美色中文字幕在线| 最新的欧美精品一区二区| 99久久综合免费| 国产主播在线观看一区二区| 日本一区二区免费在线视频| 午夜激情av网站| 国产亚洲欧美在线一区二区| 日韩大片免费观看网站| 另类精品久久| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 久久亚洲精品不卡| 久久这里只有精品19| 777久久人妻少妇嫩草av网站| 色94色欧美一区二区| 亚洲欧洲日产国产| 老熟妇仑乱视频hdxx| 久久天躁狠狠躁夜夜2o2o| 久久 成人 亚洲| 亚洲视频免费观看视频| 久久久久久亚洲精品国产蜜桃av| 妹子高潮喷水视频| 肉色欧美久久久久久久蜜桃| 亚洲精品久久午夜乱码| 一区福利在线观看| 欧美日韩福利视频一区二区| 丝袜脚勾引网站| 免费高清在线观看日韩| 黄片播放在线免费| 国产淫语在线视频| 男人操女人黄网站| 高清欧美精品videossex| www.av在线官网国产| 伦理电影免费视频| 国产在线观看jvid| 美女主播在线视频| 秋霞在线观看毛片| 久久精品国产亚洲av高清一级| 免费一级毛片在线播放高清视频 | 国产激情久久老熟女| 亚洲少妇的诱惑av| 国产精品成人在线| 丝袜脚勾引网站| 国产有黄有色有爽视频| 日日夜夜操网爽| 18禁国产床啪视频网站| 在线av久久热| 自线自在国产av| 汤姆久久久久久久影院中文字幕| 亚洲va日本ⅴa欧美va伊人久久 | tocl精华| 91九色精品人成在线观看| 日韩,欧美,国产一区二区三区| 国产亚洲午夜精品一区二区久久| 国产亚洲av片在线观看秒播厂| 欧美日韩一级在线毛片| 国产日韩欧美视频二区| 肉色欧美久久久久久久蜜桃| 99国产精品99久久久久| 中文字幕人妻丝袜一区二区| 男女高潮啪啪啪动态图| 免费黄频网站在线观看国产| 视频区图区小说| 黄色 视频免费看| 免费人妻精品一区二区三区视频| 国产精品久久久久久精品电影小说| 黄色视频,在线免费观看| 国精品久久久久久国模美| 另类亚洲欧美激情| 国产精品免费大片| 巨乳人妻的诱惑在线观看| 女人精品久久久久毛片| www.自偷自拍.com| 欧美日韩福利视频一区二区| 婷婷成人精品国产| 超色免费av| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 精品卡一卡二卡四卡免费| 黄色视频不卡| 免费在线观看日本一区| 国产高清视频在线播放一区 | 色婷婷久久久亚洲欧美| 91av网站免费观看| 久久精品国产综合久久久| 捣出白浆h1v1| 91老司机精品| 亚洲,欧美精品.| 久久ye,这里只有精品| 一区福利在线观看| av网站在线播放免费| 国产日韩欧美在线精品| 在线av久久热| 精品亚洲成a人片在线观看| 欧美日韩福利视频一区二区| 黄色 视频免费看| 国产欧美日韩一区二区精品| 久久久久久免费高清国产稀缺| 欧美日韩成人在线一区二区| 99热全是精品| 久久精品成人免费网站| 岛国在线观看网站| 亚洲国产精品一区二区三区在线| 一本久久精品| 91av网站免费观看| 老司机深夜福利视频在线观看 | 国产成人精品久久二区二区免费| 国产一区二区激情短视频 | 99精品欧美一区二区三区四区| 国产一区二区 视频在线| 久久久欧美国产精品| 欧美日韩亚洲国产一区二区在线观看 | 丁香六月天网| 成人国产av品久久久| 午夜日韩欧美国产| 美女高潮到喷水免费观看| 免费一级毛片在线播放高清视频 | 国产老妇伦熟女老妇高清| 国产成人精品久久二区二区91| a级毛片黄视频| 一级片免费观看大全| 久久国产精品影院| 超色免费av| 国产无遮挡羞羞视频在线观看| 久久精品亚洲av国产电影网| 欧美日韩黄片免| 美女主播在线视频| 成人国产一区最新在线观看| 亚洲伊人久久精品综合| 91成人精品电影| 国产男人的电影天堂91| 欧美黑人精品巨大| 中文字幕色久视频| 久久精品熟女亚洲av麻豆精品| 免费av中文字幕在线| 久久亚洲国产成人精品v| 国产日韩一区二区三区精品不卡| 深夜精品福利| 制服人妻中文乱码| 亚洲久久久国产精品| 久久 成人 亚洲| 国产av精品麻豆| 色婷婷久久久亚洲欧美| 最近最新免费中文字幕在线| 亚洲三区欧美一区| 99香蕉大伊视频| 免费少妇av软件| 亚洲av电影在线观看一区二区三区| 99国产精品免费福利视频| 丝袜美足系列| 黄频高清免费视频| 午夜激情av网站| 久久性视频一级片| 天天躁夜夜躁狠狠躁躁|