• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure

    2023-10-11 07:56:18YanQiWang王妍琪ChuanZhaoZhang張傳釗JinQuanZhang張金權(quán)SongLi李松MengJu巨濛WeiGuoSun孫偉國(guó)XiLongDou豆喜龍andYuanYuanJin金園園
    Chinese Physics B 2023年9期
    關(guān)鍵詞:李松

    Yan-Qi Wang(王妍琪), Chuan-Zhao Zhang(張傳釗), Jin-Quan Zhang(張金權(quán)), Song Li(李松),Meng Ju(巨濛), Wei-Guo Sun(孫偉國(guó)), Xi-Long Dou(豆喜龍), and Yuan-Yuan Jin(金園園),?

    1Department of Physics and Optoelectronic Engineering,Yangtze University,Jingzhou 434023,China

    2School of Physical Science and Technology,Southwest University,Chongqing 400715,China

    3College of Physics and Electronic Information,Luoyang Normal University,Luoyang 471022,China

    4Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    Keywords: transition metal dihydrogen,first principles,phase transition,superconducting transition temperature

    1.Introduction

    High pressure is an excellent external condition.Under high pressure, the volume of the material is compressed and the spacing between atoms or molecules in the material is gradually reduced, resulting in the overlap of electronic orbitals of adjacent atoms, resulting in the phase transition in the structure of the material.These new structures present distinctive physical and chemical properties.Kotmoolet al.[1]predicted the phase transition of the boride RuB4under high pressure with the transition sequence ofP63/mmc →C2/c →Immmand the corresponding transition pressures of 198 GPa and 388 GPa,respectively.Moreover,they also confirmed that the hardness value of theImmmphase (19.7 GPa) is much higher than that of theC2/cstructure (7.6 GPa).[1]In the oxide, Dekuraet al.[2]demonstrated that TiO2has a phase transition of cotunnite-type to Fe2P-type(P-62m)structure at 161 GPa through the x-ray diffraction measurement.There is a reduction of band gap from 3.0 eV to 1.9 eV across the phase change, which improves the photocatalytic activity of TiO2.[2]Xinet al.also verified the phase transition process ofPm-3→Cm →P1→I41mdunder high pressure in the nitride ZnN6and theI41mdphase has an excellent energy densities of 4.70 kJ/g.[3]In the meantime,there are also numerous interesting phase transitions in other compounds under high pressure.To better understand them,our attention has focused on other compounds.

    Metal hydrides exhibit peculiar electron–phonon coupling under high pressure, making them potential superconducting materials.The researches of metal hydride superconducting materials under high pressure can be mainly divided into two aspects.One to is to uncover new compounds with excellent superconductivity under high pressure.Recent theoretical and experimental studies suggest that LaH10,which has a face-centered cubicFm-3mstructure,exhibits superconducting at temperatures as high as 250 K.[4–7]The critical temperatures of YLuH12can reach 283 K at 120 GPa.[8]Besides, a large number of researches exhibited that CaH6,[9]YH10,[10]and HfH10,[11]have the estimatedTcof 220 K–235 K,303 K,and 213 K–234 K under high pressures, respectively.The other is to generate new structures through the pressureinduced phase transition for the hydrides,which can be stable at ambient pressure.It is evident that the superconductivity of these high-pressure new structures surpasses that observed under ambient pressure condition.For example, YH3crystal forms a semiconductor hcp-structured at ambient pressure,but the predictedTcfor the high-pressure structure fcc-YH3can achieve 40 K at 17.7 GPa.[12]Both aspects on the superconductivity of the metal hydrides aim to reveal the maximalTcof each metal hydrides,which is urgently for investigating theTcvariation process under increasing pressure.Some structures,such asP63/mmc-CrH3(76 GPa–200 GPa),[13]P6/mmm-VH5(125 GPa–250 GPa),[14]I4/mmm-FeH5(150 GPa–300 GPa),[15]I4/mmm-ScH4(120 GPa–250 GPa),[16]andFm-3m-ThH10(100 GPa–300 GPa),[17]exhibit a decreasing trend inTcwith pressure increasing.Some are the opposite (e.g.,R-3m-VH (150 GPa–250 GPa),[14]Immm-ScH8(300 GPa–400 GPa),[18]andIm-3m-MgH6(300 GPa–400 GPa)[19]).In addition, the pressure dependence ofTcof other metals is weak (e.g.,P6mm-WH5(230 GPa–300 GPa),[20]Fm-3m-YH10(250 GPa–350 GPa)[21]).The trend ofTcvariation upon further compression provides guidance for achieving maximalTcfor each metal hydride,thereby motivating us to explore theTcvariation trend with the increasing pressure for the novel structures of the metal hydrides under high pressure.

    Hafnium is a typical early transition metal element.Previous theoretical and experimental investigations have shown that HfH2is the only known hafnium hydride found to be stable under ambient conditions.[22–24]Through the research of the phase transition and superconducting properties of HfH2crystal at 0 GPa–300 GPa, Liuet al.[25]indicated that the phase transition of HfH2isI4/mmm →Cmma →P21/mat 180 GPa and 250 GPa,respectively.TheTcvalues ofI4/mmmat 1 atm (1 atm=1.01325×105Pa),Cmmaat 180 GPa, andP21/mat 260 GPa are 47 mK–193 mK, 5.99 K–8.16 K, and 10.62 K–12.8 K,respectively.[25]Later on,Dudaet al.calculatedTcvalues that are similar to each other.[26]However, it remains unclear whether new structures of HfH2emerge under higher pressure(>300 GPa)and what is the trend for the superconducting transition temperature of these new structures with pressure increasing.These two questions have promoted further investigation into HfH2material at higher pressures.

    In this work, we extend the research pressure range of HfH2material to 0 GPa–500 GPa and find that HfH2has a phase transition sequence ofI4/mmm →Cmma →P-3m1 at 220.21 GPa and 359.18 GPa, respectively.Among them, the freshP-3m1 structure is firstly discovered in transition metal dihydrides.The structural characteristics, dynamic stability,mechanical properties,hardness,electronic structure,bonding properties,and superconductivity of three stable structures of HfH2are systematically investigated.It is found that the coordination number of HfH2evolution process is 8→9→10 with pressure increasing.The calculatedTcofP-3m1 at 500 GPa is 19.737 K.It is worthy noting that the values ofTcexhibit an upward trend with pressure further increasing.

    2.Methods

    In order to extensively explore the highpressure phases of HfH2, we employed the CALYPSO code,[27,28]an unbiased structure prediction method based on the particle swarm optimization algorithm.Structure searches are conducted by using unit cells containing up to six formula units(f.u.) in the pressure range of 0 GPa–500 GPa.The superior efficiency of this method has been proved in various systems.[29–35]The followup structural optimizations and electronic structure calculations under different pressures were performed within density functional theory in the Viennaab initiosimulation package (VASP).[36]We utilized the Perdew–Burke–Ernzerhof(PBE) exchange–correlation function in generalized gradient approximation (GGA)[37,38]by using plane wave basis set and projection augmented wave (PAW)[39]method.Moreover,functional was used with valence electrons of 5p66s25d2and 1s1and cutoff radii of 2.5 a.u.and 0.8 a.u.to deal with Hf and H atoms,respectively.The cutoff energy of 800 eV for the plane-wave basis expansion of the electronic wave functions and a densek-point sampling with the grid spacing less than 2π×0.03 ?A-1in the Brillouin zone were selected to ensure that all the enthalpy calculations are well converged to better than 1 meV/atom.The electron localization functions(ELF)[40,41]were also computed by using VASP with ELF diagrams plotted in Visualization for Electronic and STructural Analysis (VESTA).[42]For Bader charge transfer analysis, the Bader’s quantum theory of atoms in molecules analysis method[43]was utilized.The phonon dispersion were computed by using the PHONOPY code with the supercell and finite displacement method.[44,45]The electron–phonon coupling(EPC)were computed within the linear response theory through the QUANTUM ESPRESSO package[46]with a kinetic energy cutoff of 80 Ry (1 Ry=13.6056923 eV).In the first Brillouin zone, theq-point mesh of the electron–phonon interaction matrix elements adopted 4×4×4 for each considered structure.

    3.Results and discussion

    3.1.Crystal structure and structural phase transition

    Firstly,based on the CALYPSO method for crystal structure prediction with 1–6 formula units (f.u.) per simulation cell,seven low-energy candidate HfH2structures(Cmma,P4/nmm,I4/mmm,P-3m1,R-3m,Fm-3m, andP21/m) are predicted over a wide pressure range of 0 GPa–500 GPa.The crystal structures and structural parameters of the above seven low-energy structures under ambient pressure are summarized in Fig.S1 and Table S1 of supplementary information.A series of the earlier known HfH2structures (e.g.,Fm-3m,Cmma,P4/nmm, andI4/mmm)[47–51]is successfully replicated within a specific pressure range, which demonstrates the effectiveness of the CALYPSO method adopted in structure search of HfH2.To further clarify the high-pressure structural phase transition of HfH2, we plot the enthalpy–pressure curve (relative to the reference phaseI4/mmm) in Fig.1(a).As shown in Fig.1(a),the tetragonalI4/mmmphase is the most stable structure under ambient pressure, which is also the common ground-state configuration of the group IVB of dihydrides (HfH2, ZrH2, and TiH2)[25,47,52–54]and contrary to other transitionmetal dihydrides (VH2, NbH2, CrH2,CoH2)[14,49–51,55,56]whose ground-state configuration adopts the cubicFm-3mstructure.With the increase of pressure,theI4/mmmphase is no longer stable until the first phase transition occurs at 220.21 GPa.The orthorhombicCmmaphase becomes an energetically advantageous structure over the pressure range of 220.21 GPa–359.18 GPa, identical to the highpressure phase raised by Liuet al.[25]Above a higher pressure of 359.18 GPa,an extraordinary trigonalP-3m1 phase is the most energetically favorable and maintained at least up to 500 GPa.Hence,we can conclude that the phase transition sequence of HfH2under high pressure isI4/mmm →Cmma →P-3m1 with the respective transition pressures of 220.21 GPa and 359.18 GPa.This structural transformation can be further verified by the volume–pressure curve of HfH2under the pressure range of 0 GPa–500 GPa, as displayed in Fig.1(b).Herein, obvious volume collapses of 0.5% and 0.9% are uncovered at the transformation pressures of 220.21 GPa and 359.18 GPa, respectively.Subsequently, we focus our attention mainly on the novelP-3m1 crystal to show its particularly structural characteristics, electronic structure, and superconductivity while also discussing the similar properties for the previously proposedI4/mmmandCmmastructures.

    Fig.1.(a) Enthalpy–pressure curves of HfH2 with respect to the I4/mmm phase and(b)volume–pressure relations for HfH2.

    3.2.Structural characteristics and coordination number

    To elucidate the structural features and the coordination environments for theI4/mmmphase at 1 atm, theCmmaphase at 300 GPa,and theP-3m1 phase at 400 GPa,we depict their structure diagrams in Fig.2 and summarize the structural parameters in Table S2.Based on Table S2, the lattice constants ofI4/mmmstructure under ambient pressure area=b= 3.52890 ?A andc= 4.35240 ?A, which are highly consistent with the previous results (a=b= 3.48130 ?A,c=4.29830 ?A) derived by Liuet al.[25]TheI4/mmmstructure at atmospheric pressure is composed of an HfH8cuboid.In this HfH8cuboid,each Hf atom is located at the body center with eight equal Hf–H separation of 1.71 ?A, two types H–Hf–H angles of 48°and 80°, and the shortest H–H contact is 2.17 ?A.In theCmmaphase under 300 GPa, one Hf atom is surrounded by three types of H atoms with the distances of 1.75 ?A, 1.83 ?A, and 1.87 ?A, respectively, and the H–Hf–H angles vary between 60°and 90°.Besides, the shortest H–H contact is 1.81 ?A.These results show that the coordination number of Hf increases from 8 to 9 with the formation of H-sharing HfH9hendecahedrons.Compressed under 400 GPa, theP-3m1 structure has the lattice constants:a=b=2.62060 ?A,c=4.77939 ?A,where Hf atoms at the 2d Wyckoff sites are coordinated by three inequivalent H atoms at 2d site,1b site,and 1a site,respectively.The Hf–H separation varies from 1.68 ?A to 1.95 ?A and the shortest H–H separation is 1.57 ?A.In addition,the H–Hf–H angle varies between 51°and 125°.TheP-3m1 structure consists of strongly distorted 10-fold HfH10dodecahedron,which is rarely observed in other transition metal hydrides.It is noteworthy that H2or H3units are absent in three stable crystals as the shortest H–H bond is much longer than that of free H2molecule(0.75 ?A)or H3unit(<1.00 ?A).[57–60]Moreover,the H coordination number of Hf atom becomes larger with the increase of pressure,and its growth mode is to insert an H atom at the bottom of the polyhedron in turn, which is similar to the growth mode of TiO2and VO2.[61–63]Interestingly, it is evident that the sharing mechanism of polyhedral small units in HfH2varies with the coordination number.With the occurrence ofI4/mmm →Cmma →P-3m1 phase transition, it can be clearly noticed that theI4/mmmstructure with 8 coordination number is mainly edge sharing, and theCmmastructure with 9 coordination number is edge and surface sharing until theP-3m1 structure with 10 coordination numbers is essentially transformed into surface sharing.

    Fig.2.Crystal structures of three stable HfH2 phases ((a) I4/mmm phase at 1 atm, (b)Cmma phase at 300 GPa, and (c) P-3m1 phase at 400 GPa),together with metal coordination polyhedra,with blue and red spheres representing Hf and H atoms,respectively.

    3.3.Electronic properties and bonding features

    The electronic band structures and density of states(DOS)are calculated to investigate the electronic properties ofI4/mmmat 1 atm,Cmmaat 300 GPa andP-3m1 at 400 GPa of HfH2(see Fig.3).In the meantime, considering that the spin–orbit coupling (SOC) effect of the heavy Hf atoms can induce band splitting on the metallic band structure in the conventional superconductor, we compare the electron band structures with and without the SOC effect in Fig.S2.It is found that the SOC effect has little influence on electronic band dispersion near the Fermi level.Thus, the subsequent calculations are conducted without considering SOC.As displayed in Figs.3(a), 3(c), and 3(e), these three structures exhibit metallic characteristics because of the overlap between the conduction band and the valence band.This conclusion can also be confirmed by Figs.3(b), 3(d), and 3(f), for there is large total density of states at the Fermi level (EF).The region between two the peaks on both sides of the Fermi level is known as pseudogap and the narrow pseudogap system is corresponding to ionic bonding characteristic.It can be clearly found from Figs.3(b),3(d),and 3(f)that the pseudoenergy gaps of these three structures are very narrow,which reveals that HfH2is a typical ionic bonding material.In these three stable phases of HfH2crystal, the density of states at the Fermi level is mainly contributed by the Hf d state,which is similar to some early transition metal dihydrides(CrH2,[13]ZrH2,[47]VH2,[51]and TiH2[53]).Furthermore, theP-3m1 phase at 400 GPa possesses a largest Hf-d electronic density of states(0.963(state/eV)/f.u.) at Fermi level,which is much higher than that ofI4/mmm(0.323 (state/eV)/f.u.) at 1 atm andCmma(0.880(state/eV)/f.u.) at 300 GPa,which indicates that the phase transition significantly improves the Hf-d electronic density of states at Fermi level.Meanwhile, as exhibited in Fig.S3,the calculated Hf-d electronic DOSs ofP-3m1 structure at Fermi level under 360 GPa, 400 GPa, 450 GPa,and 500 GPa all present an increasing trend.

    Fig.3.Electronic band structures for(a)I4/mmm phase at 1 atm,(c)Cmma phase at 300 GPa and(e)P-3m1 phase at 400 GPa,and total and partial density of states for(b)I4/mmm phase at 1 atm,(d)Cmma phase at 300 GPa,and(f)P-3m1 phase at 400 GPa,of three stable HfH2 phases.

    Fig.4.The electron localization functions(ELF)of three stable HfH2 phases: (a)(001)plane for the I4/mmm phase at 1 atm,(b)(100)plane for the Cmma phase at 300 GPa,and(c)(010)plane for the P-3m1 phase at 400 GPa.

    Table 1.Calculated Bader charges of Hf and H atoms in three stable HfH2 phases,with δ representing the quantity of electric charge transferred from Hf atom to H atom.

    To further uncover the bonding nature in three HfH2configurations, the electron localization functions (ELFs) which can accurately describe the bond type are computed, and the results are depicted in Fig.4.Low ELF value (less than 0.5) corresponds to ionic bond or metal bond while higher ELF value(larger than 0.5)corresponds to covalent bond.As shown in Fig.4, the ELF values around the H atom in three HfH2phases are close to 1,while those of the Hf sites are quite low.Moreover,the ELF values between Hf and the nearest H atom are smaller than 0.5,demonstrating that no electrons are localized toward the neighboring Hf–H connection.Both aspects above illustrate that the Hf–H bonds in three HfH2crystals should be ionic.In addition, the ELF value toward the neighboring H–H connection displays no electron localization,thus stating that no covalent interaction exists for neighboring H–H.This conclusion is in excellent accordance with the H–H bond length analysis.To further disclose the bonding characteristics between Hf and H atoms for three HfH2phases, the Bader maded charge analysis,[43]and the results are shown in Table 1.For three stable HfH2phases,there are large amounts of charge transferring from Hf to H atoms,which further verifies the ionic characteristic of the Hf–H bond.This prediction of the charge transferring from Hf to H atoms can be demonstrated by the element electronegativity.Based on the periodic law,[64]the electronegativity value of the Hf element (1.3) is much smaller than that of the H element(2.2),demonstrating that the charge should transfer from Hf to H atoms.This ionic bonding characteristic can also be seen in VH2,[51]TaH4,[65]FeH6[66]YH6,[67]and CaH6.[9]However,the ionic characteristic for the H atom is contrary to that of many hydrogenrich compounds, such as InH3,[57]GeH4,[58]OsH6,[60]and RuH6,[68]where the H atoms are either bonded to the nearest H atoms to form an H2or H3unit,and/or covalently bonded toM(M=In,Ge,Os,and Ru)atoms to formM–H bonds.Overall,the analysis results of DOS,ELF,and Bader all reveal the ionic characteristic between Hf and H atoms.

    3.4.Mechanical properties and hardness

    The elastic constants of theI4/mmm,Cmma,andP-3m1 structures for HfH2under corresponding pressure are calculated with the identical strain–stress means.[69]The computed consequences above are listed in Table S3.At the same time,the values of shear modulusG, bulk elastic modulusB,B/G,Young’s modulusE,and Poisson’s ratioνof three stable HfH2structures can be derived from the calculated elastic constants on the basis of the Voigt–Reuss–Hill (VRH) method.[70]According to the mechanical stability criteria,[70]all three crystals satisfy mechanical stability under the corresponding pressure.Poisson’s ratio is a key physical quantity to describe the internal bonding property of the material.For the metallic material,the valueνis usually 0.33.[71]From Table S3,the values of Poisson’s ratioνfor the three structures are slightly larger than 0.33,which indicates that three stable HfH2phases should be metallic.In addition, to assess the values of Vickers hardness for three stable HfH2configurations, we compute their hardness values by using the empirical formula for material hardness prediction proposed by Tianet al.:[72]Hν=0.92K1.137G0.708,whereK=G/B.The calculation results are also summarized in Table S3.The hardness values ofI4/mmm,Cmma, andP-3m1 structures under corresponding pressures are 1.90 GPa,1.01 GPa,and 2.07 GPa,respectively.It should be noteworthy that the low hardness for HfH2may be related to the ionic properties between transition-metal and hydrogen atoms.[73]

    3.5.Dynamical properties and electron–phonon coupling

    To explore the dynamical stability ofI4/mmm,Cmma,andP-3m1,we have calculated their phonon dispersion curves and the projected phonon density of states (see Fig.5).As plotted in Fig.5 (left and middle), the phonon dispersion curves confirm the dynamical stabilities of these three structures,as evidenced by the absence of any imaginary frequency in the whole Brillouin zone.From Fig.5 (left and middle),the low-frequency bands come from the vibration of the Hf atoms while the high-frequency bands are mainly correlated with the vibration of the H atoms.This phenomenon should be ascribed to the much heavier atom mass of hafnium atom than hydrogen atom.

    Table 2.Calculated values of electron–phonon coupling parameters λ,electronic density of states at the Fermi level N(EF)(states/spin/Ry/unit cell), logarithmic average phonon frequency ωlog, and superconducting critical temperatures Tc of I4/mmm,Cmma, and P-3m1 at different pressures.

    Fig.5.Phonon dispersion curves (left), projected phonon density of states(middle), and Eliashberg spectral function α2F(ω)together with electron–phonon integral λ(ω)(right)of three stable HfH2 phases,for(a)I4/mmm at 1 atm,(b)Cmma at 300 GPa,and(c)P-3m1 at 500 GPa.

    Considering the metal behavior of three stable HfH2phases under high pressure, we calculate the values of their electron–phonon coupling(EPC)parameterλ,the logarithmic average phonon frequencyωlog,and electron density of states at Fermi levelN(EF) to predict their potential superconductivity.The superconducting temperature is estimated by using the Allen–Dynes modified McMillan equation to be

    Among them, the values of empirical constantμ*describing the Coulomb shielding effect are 0.10 and 0.13, respectively,as shown in Table 2.It can be found that theTcvalue always decreases as the value ofμ*increases.Although the predictedTcofI4/mmmis only 21 mK under ambient pressure,the estimatedTcvalue of theCmmaphase at 300 GPa is 3.931 K and the estimatedTcof theP-3m1 structure can reach 19.737 K under 500 GPa.Subsequently,we probe into the relationships between the pressure and the superconducting critical temperatureTcfor three stable HfH2phases, in order to reveal the internal reasons for the change of the superconducting critical temperatureTcof HfH2.Based on Table 2, it can be clearly seen that theTcvalues ofI4/mmmandCmmaare negatively correlated with the pressure.On the contrary,theTcofP-3m1 presents a positive correlation with the pressure,which is relatively rare in transition metal hydrides.The trends of electron–phonon coupling parameterλwith the pressure intuitively lead to the trends ofTcfor the three stable phases under pressure.ForP-3m1 phase with increasedTc,the calculated value of EPC parameterλis 0.744 at 360 GPa, 0.775 at 400 GPa,0.872 at 450 GPa, and 0.947 at 500 GPa, respectively, which emphasizes that the electron–phonon coupling strength ofP-3m1 is improved with the pressure increasing.To understand this coupling mechanism, the Eliashberg EPC spectral functionα2F(ω)and its integralλofI4/mmmat 1 atm,Cmmaat 300 GPa,andP-3m1 at 500 GPa are analyzed in Fig.5(right).The calculation shows that the low-frequency vibrations below 5 THz from the heavy Hf atoms contribute 86% of the totalλ,while the high-frequency vibrations(30 THz–40 THz)related to H atoms merely account for 14% of the totalλinI4/mmmphase.For theCmmaphase, low-frequency vibrations(below 10 THz)contribute 80%,and high-frequency vibrations(40 THz–80 THz)only contribute 20%of the totalλ.TheP-3m1 phase exhibits a similar trend,where the projected phonon density of states at frequency less than 12 THz is contributed by Hf atom vibrations, which makes contribution to the most (85%) of the electron–phonon coupling coefficientλ, as shown in Fig.5(right).These results highlight that the electron–phonon coupling in three stable HfH2structures are dominated by the low-frequency Hf atom vibrations, which can also be demonstrated by the obvious Hf-d electronic density of states at Fermi level.Therefore, the significantly improvedTcvalue of the high-pressure novelP-3m1 structure is probably due to the enhanced d-state of Hf atoms at Fermi level.Meanwhile, the increase of Hf-d electronic DOS with pressure growing can improve the electron–phonon coupling,which further leads theTcvalue ofP-3m1 phase to increase.

    4.Conclusions

    In summary,the stable phases of HfH2crystal within the pressure range of 0 GPa–500 GPa are determined by combining CALYPSO crystal structure prediction with first-principles calculations.The HfH2crystal transforms a structural phase transition sequence ofI4/mmm →Cmma →P-3m1 under 220.21 GPa and 359.18 GPa,respectively.Besides two known phases, namely,I4/mmmandCmma, an unexpected trigonalP-3m1 structure with 10-fold coordinated under high pressure is uncovered for the first time.Phonon dispersion curves and elastic constant calculations suggest that these three configurations are dynamically and mechanically stable.The consequences of electronic band structure and density of states show that three HfH2polymorphs have metallic properties.Further analysis on the electron localization function and Bader charge demonstrates that the HfH bond in three HfH2crystals should be ionic.In addition, the calculated superconducting critical temperatureTcofI4/mmmat 1 atm,Cmmaat 300 GPa, andP-3m1 at 500 GPa are 21 mK,3.931 K,and 19.737 K, respectively.Meanwhile, the pressure dependence of the superconducting critical temperature forP-3m1 phase exhibits a positive correlation trend,whileI4/mmmandCmmastructures show negative correlation trends.This exceptional phenomenon ofP-3m1 structure is mainly responsible for the stronger electron–phonon coupling which is dominated by Hfd orbits.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11804031 and 11904297), the Scientific Research Project of Education Department of Hubei Province, China (Grant No.Q20191301), the Fundamental Research Funds for the Central Universities(Grant No.SWUKT22049), and the Chongqing Talent Plan for Young Top Notch Talents,China(Grant No.202005007).

    猜你喜歡
    李松
    Pressure-induced novel structure with graphene-like boron-layer in titanium monoboride
    美國(guó)GOES系列衛(wèi)星的發(fā)展
    將色狼送進(jìn)班房:職場(chǎng)“貢品”破釜沉舟
    老實(shí)得有點(diǎn)木訥的他,這次居然拿刀傷人,為什么?
    浩聲樂(lè)享家李松:體驗(yàn)感,是實(shí)體店最有價(jià)值的東西
    網(wǎng)絡(luò)作家成功秘訣:最?lèi)?ài)嬌妻橫刀立馬的威脅
    22年“小三”兩個(gè)娃:從“地下租客”到掃地出門(mén)
    幸福賭局
    李松、趙關(guān)云、梁化山、陳文角色設(shè)計(jì)作品
    有種親人叫前夫前妻
    分憂(yōu)(2017年2期)2017-01-07 14:03:12
    桃色一区二区三区在线观看| 色视频www国产| 美女国产视频在线观看| 看片在线看免费视频| 性插视频无遮挡在线免费观看| 久久亚洲精品不卡| 久久精品91蜜桃| 久久精品91蜜桃| 色网站视频免费| 亚洲成人av在线免费| 国产高清不卡午夜福利| 你懂的网址亚洲精品在线观看 | 国产成人91sexporn| 国产精品女同一区二区软件| 男人和女人高潮做爰伦理| 成人亚洲精品av一区二区| 天堂av国产一区二区熟女人妻| 国产av码专区亚洲av| 亚洲精品日韩av片在线观看| 我要搜黄色片| 婷婷色av中文字幕| 免费人成在线观看视频色| 国产精品一区二区三区四区免费观看| eeuss影院久久| 免费不卡的大黄色大毛片视频在线观看 | 1000部很黄的大片| 午夜精品一区二区三区免费看| 国产v大片淫在线免费观看| 嫩草影院精品99| 国产国拍精品亚洲av在线观看| 国产黄色小视频在线观看| 乱系列少妇在线播放| 亚洲国产精品国产精品| 国产av码专区亚洲av| 久久精品久久久久久噜噜老黄 | 成人高潮视频无遮挡免费网站| 日韩av不卡免费在线播放| 美女国产视频在线观看| 最近手机中文字幕大全| 国产高清三级在线| 亚洲电影在线观看av| 男人舔女人下体高潮全视频| av在线天堂中文字幕| 亚洲国产精品成人久久小说| 天堂av国产一区二区熟女人妻| 天堂中文最新版在线下载 | 日本熟妇午夜| 日韩欧美精品v在线| av免费观看日本| 爱豆传媒免费全集在线观看| 一本久久精品| 99热这里只有是精品50| 国产综合懂色| 韩国高清视频一区二区三区| 国产成人精品婷婷| 久久久亚洲精品成人影院| 欧美三级亚洲精品| 成年女人看的毛片在线观看| 夜夜看夜夜爽夜夜摸| 亚洲国产高清在线一区二区三| 三级国产精品欧美在线观看| 日韩人妻高清精品专区| 少妇人妻一区二区三区视频| 国产一区二区亚洲精品在线观看| 三级毛片av免费| 联通29元200g的流量卡| 又粗又爽又猛毛片免费看| 天堂√8在线中文| 免费观看的影片在线观看| 久久久久久久久久久丰满| 九草在线视频观看| 99久久精品热视频| 一区二区三区免费毛片| av黄色大香蕉| .国产精品久久| 国产精品国产三级专区第一集| 成人毛片a级毛片在线播放| 成年女人看的毛片在线观看| av福利片在线观看| 日本黄色视频三级网站网址| 欧美不卡视频在线免费观看| 97超碰精品成人国产| 在线播放无遮挡| 少妇高潮的动态图| 熟女电影av网| 村上凉子中文字幕在线| 亚洲av一区综合| 国产69精品久久久久777片| 亚洲国产日韩欧美精品在线观看| 91av网一区二区| 我要搜黄色片| 久久久久久久国产电影| 亚洲欧美成人精品一区二区| 日韩,欧美,国产一区二区三区 | 久久久久久久久久黄片| av免费观看日本| 只有这里有精品99| 亚洲精品aⅴ在线观看| 内射极品少妇av片p| 网址你懂的国产日韩在线| 久久精品久久久久久噜噜老黄 | av.在线天堂| 日韩制服骚丝袜av| 亚洲国产最新在线播放| 亚洲在线自拍视频| 91午夜精品亚洲一区二区三区| 麻豆国产97在线/欧美| 久久久国产成人免费| 99热精品在线国产| 国产乱人视频| 欧美性猛交黑人性爽| 热99re8久久精品国产| 久久久久久久久中文| 又粗又爽又猛毛片免费看| or卡值多少钱| 午夜精品国产一区二区电影 | 国产一级毛片在线| .国产精品久久| 日日撸夜夜添| 能在线免费观看的黄片| 免费一级毛片在线播放高清视频| 日产精品乱码卡一卡2卡三| 舔av片在线| 男人狂女人下面高潮的视频| 最近中文字幕2019免费版| 美女国产视频在线观看| 国产精品美女特级片免费视频播放器| 国产成人一区二区在线| 亚洲av成人精品一二三区| 国模一区二区三区四区视频| 水蜜桃什么品种好| 久久久国产成人免费| 久久99热6这里只有精品| 久久99热6这里只有精品| 久久久久久久国产电影| 青春草国产在线视频| 少妇人妻精品综合一区二区| 91精品国产九色| 女的被弄到高潮叫床怎么办| 午夜爱爱视频在线播放| 欧美成人一区二区免费高清观看| 免费观看人在逋| 日日摸夜夜添夜夜爱| 亚洲欧美日韩高清专用| 亚洲av不卡在线观看| 成人综合一区亚洲| 精品国产露脸久久av麻豆 | 亚洲欧美日韩东京热| 午夜福利在线观看免费完整高清在| 2021天堂中文幕一二区在线观| 99热网站在线观看| 天天躁日日操中文字幕| 99久国产av精品| 免费人成在线观看视频色| 欧美不卡视频在线免费观看| 久久精品国产自在天天线| 一区二区三区免费毛片| 日韩欧美在线乱码| 男人舔女人下体高潮全视频| 一本久久精品| av在线亚洲专区| 欧美bdsm另类| 简卡轻食公司| 高清视频免费观看一区二区 | 欧美成人a在线观看| 级片在线观看| 亚洲精品久久久久久婷婷小说 | 国产成人午夜福利电影在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 精品酒店卫生间| av免费在线看不卡| 干丝袜人妻中文字幕| 少妇高潮的动态图| 精品午夜福利在线看| 麻豆乱淫一区二区| 亚洲中文字幕日韩| 日本免费a在线| 高清毛片免费看| 国产成人精品久久久久久| 成人特级av手机在线观看| 一级av片app| 插逼视频在线观看| 舔av片在线| 中文字幕制服av| 中文亚洲av片在线观看爽| 日本猛色少妇xxxxx猛交久久| 久久精品久久久久久久性| 免费无遮挡裸体视频| 亚洲av免费在线观看| 中文字幕精品亚洲无线码一区| 日韩,欧美,国产一区二区三区 | 成人亚洲精品av一区二区| 国产色婷婷99| av福利片在线观看| 久久久亚洲精品成人影院| 精品久久久久久久久亚洲| 亚洲精品日韩av片在线观看| 99热网站在线观看| 99在线人妻在线中文字幕| 最近手机中文字幕大全| 成年av动漫网址| 99久久九九国产精品国产免费| 哪个播放器可以免费观看大片| 欧美一区二区国产精品久久精品| 久久6这里有精品| 欧美xxxx黑人xx丫x性爽| 熟女人妻精品中文字幕| 一级av片app| 免费观看精品视频网站| 免费无遮挡裸体视频| 哪个播放器可以免费观看大片| 淫秽高清视频在线观看| 99在线视频只有这里精品首页| 在线播放国产精品三级| 国产精品一区二区三区四区免费观看| 国产伦理片在线播放av一区| 国内精品宾馆在线| 男人和女人高潮做爰伦理| 欧美激情久久久久久爽电影| 在线观看一区二区三区| 久久精品久久精品一区二区三区| 中文字幕精品亚洲无线码一区| 精品少妇黑人巨大在线播放 | 亚洲aⅴ乱码一区二区在线播放| 少妇熟女欧美另类| 成人美女网站在线观看视频| 三级男女做爰猛烈吃奶摸视频| 久久精品久久久久久噜噜老黄 | 伦精品一区二区三区| 深夜a级毛片| 欧美成人a在线观看| 国产精品野战在线观看| 99久久精品热视频| 久久草成人影院| 国产极品精品免费视频能看的| 在线观看美女被高潮喷水网站| 国产色爽女视频免费观看| 国产亚洲5aaaaa淫片| 国模一区二区三区四区视频| 亚洲无线观看免费| 亚洲国产欧美人成| 国产高清三级在线| 97人妻精品一区二区三区麻豆| 国产老妇伦熟女老妇高清| 少妇熟女aⅴ在线视频| 国产精品人妻久久久影院| 亚洲一区高清亚洲精品| 中文天堂在线官网| 午夜福利在线观看吧| 亚洲精华国产精华液的使用体验| 日韩三级伦理在线观看| 别揉我奶头 嗯啊视频| 日日啪夜夜撸| 中文乱码字字幕精品一区二区三区 | 久久久久久久久久成人| 亚洲伊人久久精品综合 | 岛国在线免费视频观看| 男女国产视频网站| 亚洲av免费高清在线观看| 晚上一个人看的免费电影| 亚洲精华国产精华液的使用体验| 午夜福利在线观看免费完整高清在| 精品熟女少妇av免费看| 热99在线观看视频| 91久久精品国产一区二区成人| 三级国产精品片| 欧美日韩国产亚洲二区| 黄片无遮挡物在线观看| 舔av片在线| a级毛色黄片| 亚洲色图av天堂| 男女边吃奶边做爰视频| 日本一本二区三区精品| 亚洲伊人久久精品综合 | 国产精品.久久久| 色综合站精品国产| 午夜精品一区二区三区免费看| 色噜噜av男人的天堂激情| 三级毛片av免费| 全区人妻精品视频| 日韩av在线大香蕉| 伊人久久精品亚洲午夜| 久久久久久大精品| 国产伦精品一区二区三区四那| 亚洲综合色惰| 99热这里只有精品一区| 深夜a级毛片| 午夜爱爱视频在线播放| 国产成人精品久久久久久| 亚洲aⅴ乱码一区二区在线播放| 18+在线观看网站| 亚州av有码| 国产91av在线免费观看| 亚洲乱码一区二区免费版| 亚洲四区av| 黄色一级大片看看| 搡老妇女老女人老熟妇| 国产精品不卡视频一区二区| 久久久精品94久久精品| 国产探花在线观看一区二区| 亚洲精品乱久久久久久| 天堂影院成人在线观看| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 精品人妻偷拍中文字幕| 麻豆成人午夜福利视频| 国产午夜福利久久久久久| 午夜福利在线观看吧| 内射极品少妇av片p| 久久久久久久午夜电影| 联通29元200g的流量卡| 中文精品一卡2卡3卡4更新| 亚洲人成网站在线播| 免费看a级黄色片| 人妻少妇偷人精品九色| av在线蜜桃| 精品久久久久久久末码| 国内精品一区二区在线观看| 搡老妇女老女人老熟妇| 国产免费男女视频| 91久久精品国产一区二区三区| 中文在线观看免费www的网站| 亚洲成人精品中文字幕电影| 国产亚洲一区二区精品| 日日啪夜夜撸| 精品无人区乱码1区二区| 午夜福利在线观看免费完整高清在| 色播亚洲综合网| 国产伦理片在线播放av一区| 久久精品影院6| 成人二区视频| 欧美日韩一区二区视频在线观看视频在线 | 欧美日本亚洲视频在线播放| 噜噜噜噜噜久久久久久91| 亚洲国产精品成人综合色| 精品无人区乱码1区二区| 欧美高清成人免费视频www| 1000部很黄的大片| 听说在线观看完整版免费高清| 美女cb高潮喷水在线观看| 国产又黄又爽又无遮挡在线| 久久热精品热| 狠狠狠狠99中文字幕| 国产在线一区二区三区精 | 欧美精品国产亚洲| 国产精品美女特级片免费视频播放器| 亚洲精品aⅴ在线观看| 日韩欧美精品免费久久| 亚洲成人av在线免费| 亚洲aⅴ乱码一区二区在线播放| 国产伦一二天堂av在线观看| 欧美性感艳星| 日韩成人伦理影院| 深爱激情五月婷婷| kizo精华| 听说在线观看完整版免费高清| a级一级毛片免费在线观看| 国产男人的电影天堂91| 真实男女啪啪啪动态图| 我的女老师完整版在线观看| 午夜久久久久精精品| 国产精品久久久久久精品电影| 蜜桃久久精品国产亚洲av| 欧美日韩精品成人综合77777| 又爽又黄无遮挡网站| 国产av在哪里看| 午夜激情福利司机影院| 一本一本综合久久| 三级国产精品欧美在线观看| 老司机影院成人| 美女脱内裤让男人舔精品视频| 天天躁日日操中文字幕| 成人亚洲欧美一区二区av| 国产免费视频播放在线视频 | 少妇被粗大猛烈的视频| 久久久国产成人精品二区| 人人妻人人澡欧美一区二区| 麻豆av噜噜一区二区三区| 国内少妇人妻偷人精品xxx网站| 中文乱码字字幕精品一区二区三区 | 亚洲精品aⅴ在线观看| 午夜精品在线福利| 国产免费福利视频在线观看| 久久久久网色| 边亲边吃奶的免费视频| 熟女人妻精品中文字幕| 久久99精品国语久久久| 国产单亲对白刺激| 看非洲黑人一级黄片| 国产精品蜜桃在线观看| 成人国产麻豆网| 国产91av在线免费观看| 婷婷六月久久综合丁香| 午夜久久久久精精品| 日日撸夜夜添| 久久人妻av系列| 美女国产视频在线观看| 99热这里只有是精品50| 少妇的逼好多水| 夜夜爽夜夜爽视频| 97在线视频观看| 波多野结衣巨乳人妻| 国国产精品蜜臀av免费| 人人妻人人看人人澡| 成人特级av手机在线观看| 国产欧美另类精品又又久久亚洲欧美| 激情 狠狠 欧美| 内地一区二区视频在线| 亚洲中文字幕一区二区三区有码在线看| 日韩强制内射视频| 欧美高清性xxxxhd video| 国产高潮美女av| 亚洲av一区综合| 真实男女啪啪啪动态图| 欧美一区二区精品小视频在线| 免费观看性生交大片5| av专区在线播放| 色综合亚洲欧美另类图片| 久久久久性生活片| 国产成人精品久久久久久| 日日摸夜夜添夜夜爱| 中国美白少妇内射xxxbb| 爱豆传媒免费全集在线观看| 99热这里只有精品一区| 日产精品乱码卡一卡2卡三| 91精品伊人久久大香线蕉| 日韩视频在线欧美| 深夜a级毛片| 麻豆成人午夜福利视频| .国产精品久久| 校园人妻丝袜中文字幕| 亚洲人成网站在线观看播放| 国产精品国产三级国产av玫瑰| 中文字幕制服av| 亚洲欧美日韩无卡精品| 啦啦啦啦在线视频资源| 久久这里只有精品中国| 精品久久久噜噜| 亚洲国产欧美人成| 一个人看视频在线观看www免费| 卡戴珊不雅视频在线播放| av天堂中文字幕网| 老司机影院成人| 我的老师免费观看完整版| 国语对白做爰xxxⅹ性视频网站| 国产成人精品一,二区| 联通29元200g的流量卡| 美女国产视频在线观看| 欧美极品一区二区三区四区| 麻豆久久精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久成人| 久久久久久国产a免费观看| 啦啦啦韩国在线观看视频| 美女国产视频在线观看| 91精品国产九色| 午夜激情欧美在线| 男女啪啪激烈高潮av片| 成人鲁丝片一二三区免费| 成人国产麻豆网| 99热这里只有是精品50| 最近视频中文字幕2019在线8| 亚洲国产精品合色在线| 亚洲最大成人手机在线| 亚洲真实伦在线观看| 成人鲁丝片一二三区免费| 男女下面进入的视频免费午夜| 国产大屁股一区二区在线视频| 国产精品三级大全| 精品少妇黑人巨大在线播放 | 中文资源天堂在线| 国产成人a∨麻豆精品| 人体艺术视频欧美日本| 乱系列少妇在线播放| 亚洲欧美日韩无卡精品| 国产av一区在线观看免费| 婷婷六月久久综合丁香| 精品久久久久久成人av| 国产精品.久久久| 午夜福利高清视频| 精品久久久久久久末码| 久久久久久久久久成人| 黑人高潮一二区| 国产精品久久电影中文字幕| 日产精品乱码卡一卡2卡三| 国产亚洲av嫩草精品影院| 国产探花极品一区二区| 美女黄网站色视频| 18禁动态无遮挡网站| 午夜日本视频在线| 久久久久网色| 夜夜看夜夜爽夜夜摸| 国产精品久久视频播放| 黄色一级大片看看| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜添av毛片| 麻豆国产97在线/欧美| 天堂网av新在线| 久久久成人免费电影| 欧美成人精品欧美一级黄| 久久99蜜桃精品久久| 亚洲欧美一区二区三区国产| 国产精品国产高清国产av| 日本免费a在线| 亚洲性久久影院| 美女黄网站色视频| 亚洲天堂国产精品一区在线| 国内揄拍国产精品人妻在线| 色视频www国产| 成人毛片60女人毛片免费| 国产精品熟女久久久久浪| 小说图片视频综合网站| 久久午夜福利片| 黄色配什么色好看| 99九九线精品视频在线观看视频| 午夜免费男女啪啪视频观看| 九色成人免费人妻av| 国产成人精品一,二区| 黑人高潮一二区| 国产精品久久电影中文字幕| 国产一区二区在线观看日韩| 中文字幕制服av| 国产 一区精品| 久久人人爽人人片av| 久久热精品热| 欧美xxxx黑人xx丫x性爽| .国产精品久久| 99久久无色码亚洲精品果冻| videos熟女内射| 三级国产精品欧美在线观看| 久久精品夜色国产| 91av网一区二区| 乱码一卡2卡4卡精品| 丰满乱子伦码专区| 一个人看的www免费观看视频| 国产片特级美女逼逼视频| 国产精品无大码| 国产一区有黄有色的免费视频 | 成人高潮视频无遮挡免费网站| 免费观看的影片在线观看| 永久网站在线| 青春草国产在线视频| 精品酒店卫生间| 青青草视频在线视频观看| 亚洲成色77777| 国产视频首页在线观看| 三级经典国产精品| 最近的中文字幕免费完整| 神马国产精品三级电影在线观看| 日本三级黄在线观看| 亚洲精品国产成人久久av| 欧美高清成人免费视频www| 超碰av人人做人人爽久久| 国产熟女欧美一区二区| 欧美丝袜亚洲另类| 2021天堂中文幕一二区在线观| 精品人妻一区二区三区麻豆| 国内精品一区二区在线观看| 久久久久久久久久黄片| 综合色丁香网| 又爽又黄a免费视频| 日本wwww免费看| 国产淫片久久久久久久久| 亚洲av二区三区四区| 91久久精品国产一区二区成人| 一级毛片aaaaaa免费看小| 久久久久久久久久黄片| a级毛色黄片| 婷婷色麻豆天堂久久 | 亚洲欧美精品综合久久99| 国产三级中文精品| 卡戴珊不雅视频在线播放| 国产精品一区二区在线观看99 | 神马国产精品三级电影在线观看| 高清毛片免费看| 最近视频中文字幕2019在线8| kizo精华| 插阴视频在线观看视频| 精品人妻视频免费看| 国产亚洲av片在线观看秒播厂 | 日韩av在线免费看完整版不卡| 51国产日韩欧美| 婷婷色麻豆天堂久久 | 亚洲人成网站在线观看播放| 亚洲高清免费不卡视频| www.av在线官网国产| av卡一久久| kizo精华| 久久精品久久精品一区二区三区| 亚洲精品aⅴ在线观看| 国产精品永久免费网站| 色综合亚洲欧美另类图片| 日日摸夜夜添夜夜添av毛片| 国产精品嫩草影院av在线观看| 熟女电影av网| 一级黄片播放器| 美女国产视频在线观看| 97超碰精品成人国产| 国产高清有码在线观看视频| 久久久久久九九精品二区国产| 尤物成人国产欧美一区二区三区| 精品一区二区免费观看| 91狼人影院| 成人性生交大片免费视频hd| 亚洲怡红院男人天堂| 最近最新中文字幕大全电影3| 精品午夜福利在线看| 男女那种视频在线观看| 97在线视频观看| 欧美+日韩+精品| 69人妻影院| 网址你懂的国产日韩在线| 能在线免费看毛片的网站| 日本免费在线观看一区| 亚洲四区av|