• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Doping tuned anomalous Hall effect in the van der Waals magnetic topological phases Mn(Sb1-xBix)4Te7

    2023-10-11 07:56:04XinZhang張鑫ZhichengJiang江志誠JianYuan袁健XiaofeiHou侯驍飛XiaWang王霞NaYu余娜ZhiqiangZou鄒志強ZhengtaiLiu劉正太WeiXia夏威ZhenhaiYu于振海DaweiShen沈大偉andYanfengGuo郭艷峰
    Chinese Physics B 2023年9期
    關(guān)鍵詞:正太王霞張鑫

    Xin Zhang(張鑫), Zhicheng Jiang(江志誠), Jian Yuan(袁健), Xiaofei Hou(侯驍飛), Xia Wang(王霞),Na Yu(余娜), Zhiqiang Zou(鄒志強), Zhengtai Liu(劉正太),6,?, Wei Xia(夏威),5,?,Zhenhai Yu(于振海), Dawei Shen(沈大偉), and Yanfeng Guo(郭艷峰),5

    1School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China

    2State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology(SIMIT),Chinese Academy of Sciences,Shanghai 200050,China

    3Analytical Instrumentation Center,School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China

    4National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,China

    5ShanghaiTech Laboratory for Topological Physics,ShanghaiTech University,Shanghai 201210,China

    6Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: anomalous Hall effect,doping,topological materials

    1.Introduction

    The quantum anomalous Hall effect (QAHE) has attracted considerable interest in recent years owing to its virtue of dissipationless conduction and hence the potential applications in topological computation and other low-consumption devices.The QAHE was observed for the first time in Crdoped (Bi, Sb)2Te3thin film, but the realization temperature is only at sub-Kelvin temperature range due to the small surface gap and disorders cause by the extrinsic doping.[1]To avoid these problems, intrinsic magnetic topological materials are preferable.The intrinsic magnetic topological phases MnBi2Te4/(Bi2Te3)n(n= 1, 2, 3) have therefore attracted vast attention in recent several years, which exhibit an array of exotic unconventional topological quantum states such as the QAH insulators, axion insulators and magnetic Weyl semimetals(WSMs).[2–6]The prototype member MnBi2Te4is an A-type antiferromagnetic(AFM)topological insulator(TI)by naturally stacking the septuple-layer (Te–Bi–Te–Mn–Te–Bi–Te) via van der Waals (vdW) bonding along the crystallographicc-axis,[7]which exhibits a QAH effect at~1.4 K and could be raised up to 6.5 K through turning the Fermi levelEFexactly into the surface exchange gap via gating.[8]However, the realization of QAHE in MnBi2Te4requires external magnetic field to align the spins along the same direction,i.e.,the system enters into the ferromagnetic(FM)state.The insertion of nonmagnetic quintuple layers(Te–Bi–Te–Bi–Te) into the adjacent MnTe magnetic double layer has been demonstrated as an effective route favoring the FM interaction, which led to the discovery of other members (n= 1,2, 3) in the MnBi2Te4/(Bi2Te3)nfamily.At present, only MnBi8Te13(n=3)achieves an FM ground state and shows a clean hybridization gap in the surface state.[9–11]However,the QAHE can only be observed in then=0 and 1 members up to now.To widely demonstrate the exotic topological properties in MnBi2Te4/(Bi2Te3)nand raise the working temperature favoring the technical applications,it is of urgent necessity to explore other analogue materials.

    The MnSb2Te4/(Sb2Te3)nsystem is an analogue to the MnBi2Te4/(Bi2Te3)nfamily.At present, only then= 0, 1,2 members are available and then= 2 member displays fragile FM ground state.[12–14]However, by tuning the Mn–Sb antisite defects, the MnSb2Te4can also achieve the FM state.[15–17]For then=1 member, it shows an intriguing robust axion insulator state regardless of whether the specific magnetic configuration stays at the A-type AFM state or is an external magnetic field driven spin-polarized states, thus providing an excellent platform for studying the axion insulator physics.[13]In the experiment,MnSb4Te7is intrinsically hole doped and theEFis about 180 meV away from the Dirac point(DP),which therefore behaves as a Weyl semimetal with multiple Weyl nodes in the highest valence bands and lowest conduction bands.Tuning theEFto be close to DP is necessary to explore QAHE and other exotic topological properties.The previous work showed that substitution Sb for Bi in MnBi4Te7can achieve the FM state and modify the carrier densities,[18–20]which is instructive to replace the Sb by using Bi in MnSb4Te7.

    We report herein the single crystal growth of Mn(Sb1-xBix)4Te7(x= 0.3–0.7) and systematic characterizations of the structure,magnetizations,magnetotransport and electronic band structure properties.It is found that the Sb substitution is not only capable of realizing the FM state, but also significantly tunes the location of theEFof MnSb4Te7.

    2.Experiment

    The Mn(Sb1-xBix)4Te7(x=0.3,0.5,0.6 and 0.7)single crystals were grown by using the self-flux method.Starting materials of Mn (99.95%), Bi (99.999%), Sb (99.999%) and Te (99.999%) blocks were mixed with a specific molar ratio in an alumina crucible, which was then sealed into a quartz tube in vacuum.The assembly was heated in a furnace up to 700°C within 10 h and kept at that temperature for 10 h,then cooled down to 625°C in 10 h and slowly cooled down to target temperatures which are shown in Table S1.The assemblies were taken from the furnace and immediately put into a centrifuge to separate the flux and then black crystals with shining surfaces were left in the crucible.

    The crystallographic phase and quality of the crystals were examined on a Bruker D2 advance powder x-ray diffractometer (PXRD) with CuKα1(λ= 1.54184 ?A) at 298 K.Both (001) surfaces of the crystals were exfoliated to obtain a flat and shiny surface by using the scotch tape method before the following characterizations.Chemical compositions were measured by using the energy dispersive spectroscopy(EDS)on a Phenom-World BV.Three regions were randomly selected on each crystal for the measurements.The measured Sb contents are summarized in Table S2.It is apparent that the Mn contents are less than the nominal ones possibly due to the intrinsic Mn–Sb antisite defects.

    The magnetization measurements were performed in a commercial magnetic property measurement system.The magnetic susceptibilityχ(T)was measured between 2 K and 300 K with the zero-field-cooling (ZFC) and field-cooling(FC) modes.During measurements, a magnetic fieldμ0H=100 Oe was applied with bothH‖candH‖ab.The isothermal magnetization(M(H))was measured within the magnetic field and temperature ranges of±5 T and 2 K–15 K, respectively.The magnetotransport measurements on the freshly cleavedabplane of the crystals by using a standard six-probe method were conducted in a physical properties measurement system.During measurements of the longitude magnetoresistivity (ρxx) and Hall resistivity (ρxy), the current was applied within theabplane (I‖ab) and the magnetic field was parallel to thec-axis(H‖c).Magnetic field dependences ofρxxandρxywere symmetrized by usingρxx=[ρxx(+H)+ρxx(-H)]/2 andρxy=[ρxy(+H)-ρxy(-H)]/2,respectively.

    3.Results and discussion

    Figure 1(a) shows the room temperature PXRD of Mn(Sb1-xBix)4Te7.The clean diffraction peaks arising from the (001) surface of the crystals demonstrate the high quality of the samples used herein.The positions of the peaks slightly shift with differentxvalues indicated by the dotted line in Fig.S1, implying the change of lattice constants upon Bi substitution.[19]The temperature dependentρxxforx=0.3,0.5, 0.6, 0.7 are presented in Fig.1(b), which display clear kinks caused by magnetic scattering at about 13 K signifying the AFM transition.The enlarged views ofχ(T) andρxx(T)between 2 K and 30 K are presented in Figs.1(c)–1(f),showing a coincident N`eel temperatureTNdetermined by the cusps.Forx=0.3, an AFM transition occurs at 12.8 K manifested by the cusps inχ(T) for bothH‖candH‖ab.As shown in Figs.S2(a) and 2(b), the spin-flop transition ofM(H) curve and the platform ofρxx(H)at 12 K demonstrate the existence of AFM order.With further cooling,χ(T) of ZFC and FC data forH‖cshow a rise at 11.8 K and a separation at 6 K,suggesting the establishment of FM order and the existence of hysteresis at low temperatures.The hysteresis ofM(H) and butterfly-shaped loop ofρxx(H) data as shown in Figs.S2(a)and 2(b)support further evidence for the FM state.The magnetic transition could be explained by involving the competition between the AFM and FM orders.[21]

    As seen in Fig.1(d), forx=0.5, an AFM transition occurs at 13.1 K manifested by the cusps inχ(T) forH‖c.However,χ(T) of ZFC and FC data shows a separation at about 11 K upon further cooling, which is larger than that ofx=0.3.No plateaus are observed inM(H) andρxx(H),as shown in Figs.S3(a) and 3(b), manifesting the absence of AFM order.

    While forx=0.6,χ(T) of ZFC and FC data forH‖cpresented in Fig.1(e) shows a rise at 10 K and a separation at 7 K.A similar situation occurs again forx=0.7.As seen in Fig.1(f),χ(T)exhibits a clear rise and separation between ZFC and FC data at~5 K,suggesting the establishment of FM order as also indicated by theM(H) presented in Fig.S5(a).Seen in Figs.S5(a)–S5(c),theM(H)forx=0.7 displays steplike features above 6 K though clear hysteresis loops are visible, corresponding to the AFM or ferrimagnetic state.With further cooling, the hysteresis area becomes larger and the step-like feature gradually vanishes, suggesting that the FM component gradually becomes dominated below 6 K,consistent with the result as seen inχ(T).It is also manifested by theρxx(H) shown in Fig.S5(b) by the clear butterfly-shaped curve and a clear hysteresis loop without step-like feature by theM(H) shown in Fig.S5(b) at 2 K, which is commonly observed in other FM materials.[22]It should be noticed thatρxx(T) forx=0.7 display continuous decrease upon cooling down to 17 K and then an upturn with further cooling with a slope change atTN.This behavior may be attributed to thatxof 0.7 which is approaching CNP and the carrier density is very small.Such phenomenon was also observed in Mn(Bi0.74Sb0.26)2Te4.[23]

    Fig.1.(a) The PXRD for Mn(Sb1-xBix)4Te7.(b) The temperature dependence of ρxx(T) at 2 K–300 K with different x values.(c)–(f) The temperature dependent χ(T) and ρxx measured at 2 K–300 K with x=0.3, 0.5, 0.6 and 0.7, respectively.The χ(T) was measured underμ0H =10 mT between 2 K and 300 K.The blue and red dashed lines represent zero-field cooling(ZFC)and field-cooling(FC)data for H‖ab,respectively.The black and red solid lines represent ZFC and FC data for H‖c,respectively.

    To obtain a clear comparison,theM(H)forx=0.3,0.4,0.5,and 0.7 at 2 K are presented together in Fig.2(a)and also in Fig.2(b)with enlarged views.It is apparent that all samples show step-like features in the low field range ofμ0H <0.1 T,but thex=0.3 and 0.7 show much clearer hysteresis loops than the other two compositions, likely suggesting larger FM components in these two samples.This could also be demonstrated by the clear butterfly-shapedρxx(H)curves forx=0.3 and 0.7 at 2 K, seen in Fig.2(d).As seen in Fig.2(b) by the isothermal magnetizations, underμ0H <0.1 T, the magnetic field driven spin-polarized states can reach their saturation.It is clear that the saturation moment forx=0.5 is much smaller(~1μB/Mn)than those of other components, which might be related to the more Mn vacancies and Mn–Sb antisite defects in the sample.As shown in Fig.2(c), the negativeMR(MR=[ρxx(H)-ρxx(0)]/ρxx(0)×100%) at the low magnetic field results in the suppression of spin-disorder scattering and the upturn at the high magnetic field forx=0.5 andx= 0.6 is caused by the contribution of nonmagnetic(Sb1-xBix)2Te3.[9,21]In addition,the W shapedMRforx=0.7 with positive values at the high magnetic field is due to the large carrier mobility.We have calculated the carrier mobility by usingμH=RH/ρxx(0),whereRHis the slope ofρxy(H)andρxx(0)is the longitudinal resistivity at zero field.As shown in Fig.3(c),the results show that the carrier mobility forx=0.7 is about 1527 cm2·V-1·s-1, which is much larger than those of other samples.Hence,a large positiveMRis observed,resembling the case in Mn(Bi1-xSbx)2Te4.[24]

    Fig.2.(a)and(b)Isothermal magnetizations and(c)and(d)magnetoresistance versus magnetic field at 2 K and different magnetic field ranges for x=0.3,0.4,0.5 and 0.7.

    Fig.3.Evolution of the Hall data for Mn(Sb1-xBix)4Te7 with x=0.3,0.4, 0.5, and 0.7 at 2 K.The Hall resistivities are shown under the magnetic field from(a)-9 T to 9 T and(b)-0.1 T to 0.1 T.(c)The carrier mobility and carrier density were extracted from the linear region under the high magnetic field(μ0H >5 T).(d)The Hall resistivity.The left two diagrams represent the positive σAH and the right two diagrams show the negative σAH.

    The Hall resistivityρxy(H) for all doped samples is depicted in Fig.3(a), showing that the slopes ofρxy(H) forx= 0.3, 0.5 and 0.6 are negative while that forx= 0.7 is positive, suggesting the change of carrier type from p- to ntype and a charge neutrality point (CNP) betweenx= 0.6 and 0.7.The result is similar to that of Sb-doped MnBi2Te4samples.[18,19]The carrier densities are calculated by usingn= 1/RH·e, where the Hall coefficientRHis the slope ofρxy(H) andeis the electron charge.Figure 3(c) shows the carrier densities extracted fromρxy(H) at 2 K within the linear region atμ0H >5 T.The carrier density forx=0.7 is much smaller than that of other samples, indicating that its chemical potential is close to the edge of the conduction or valence band,which is also proved by our ARPES data presented later.Furthermore,we measure another sample(sample 2)ofx=0.7 to guarantee the reliability of the result and the same behavior as shown in Fig.S6 is observed, suggesting the intrinsic property of the composition.

    Theρxy(H)forx=0.3 and 0.5 at 2 K both show positive slopes in the high magnetic field region,while displaying significant deviations from the linear field evolution, likely suggesting a multiple band effect.The Hall resistivityρxy(H)forx=0.3 shows a negative slope while that ofx=0.5 shows a positive slope in the low magnetic field region.The results unveil a reversal of the anomalous Hall conductanceσAH.According toσAH=e2·(-C)/h,whereCis the Chern number.TheCvalue of-1 leads to a positive AHC andC=+1 results in a negative AHC,[25]as shown in Fig.3(d).Considering that the Chern numbers represent different topological states,the reverse sign ofσAHstrongly suggests a topological phase transition betweenx=0.3 andx=0.5.

    Fig.4.The ARPES intensity plot taken at 8 K along the ˉΓ–ˉK direction for Mn(Sb1-xBix)4Te7(x=0,0.3,0.7)and K-doped Mn(Sb0.3Bi0.7)4Te7.The red arrows present the topological surface states.

    We use the synchrotron-based angle-resolved photoemission spectroscopy (ARPES) to probe the low-energy band structures forx=0, 0.3 and 0.7, with the results shown in Figs.4(a)–4(c).These ARPES spectra demonstrate the prominent p-type carrier for all samples.Forx=0, as studied in our previous work, theEFis located at~180 meV below the DP.[13]With the substitution of Bi for Sb, theEFis apparently gradually shifted up, as seen in Figs.4(b) and 4(c).Whenx=0.7,theEFis close to the edge of conduction band,while the DP is invisible yet.With potassium surface doping, the DP is eventually visible by the gapless surface state.The results demonstrate that thex=0.7 is actually close to the CNP in this material.However, it should be noted that,the ARPES data show that thex=0.7 sample is still slightly p-type, which is different from our Hall effect measurement which shows n-type carriers.The discrepancy might be due to that the Hall effect measurements probe the bulk while the ARPES is a surface-sensitive technique and only probes fewlayer of the cleaved crystal.Small differences in compositions can bring large influence on theEFat the surface,and hence inconsistence of the properties with the bulk.Such phenomenon was also observed in a previous measurement on the analogue system.[24]

    4.Conclusion

    We grow a series of Bi-doped MnSb4Te7crystals and measure the magnetizations, magnetotransport and electronic band structure,which show that the Bi substitution favors the FM exchange and shifts up the Fermi level towards the Dirac point.With the Bi substitution, the Hall resistivityρxy(H)changes from positive to negative betweenx=0.6 and 0.7,andσAHchanges from negative to positive betweenx=0.3 and 0.5.These behaviors are tightly related to the electronic band structure and provide the opportunity to study the carrier doping induced topological phase transition in MnSb4Te7.The doping strategy is also instructive for the exploration of exotic topological properties in other magnetic topological phases.

    Acknowledgments

    Project supported by the Shanghai Science and Technology Innovation Action Plan (Grant No.21JC1402000),the National Natural Science Foundation of China (Grant No.12004405),the State Key Laboratory of Functional Materials for Informatics(Grant No.SKL2022), the Double First-Class Initiative Fund of ShanghaiTech University,the Analytical Instrumentation Center(Grant No.SPST-AIC10112914),SPST, and ShanghaiTech University.W.Xia acknowledges the research fund from the State Key Laboratory of Surface Physics and Department of Physics of Fudan University(Grant No.KF202213).

    猜你喜歡
    正太王霞張鑫
    A GPU-based general numerical framework for plasma simulations in terms of microscopic kinetic equations with full collision terms
    二次函數(shù)應(yīng)用及綜合題
    Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
    Exact solution of the Gaudin model with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions*
    609萬風(fēng)波:這樣求愛算不算行賄
    609萬風(fēng)波:這樣求愛算不算行賄
    教會孩子做選擇題
    中華家教(2018年9期)2018-10-19 09:52:04
    伸出雙手 感受快樂
    麻辣生活
    英國脫歐:御姐正太離婚記
    百家講壇(2016年18期)2016-11-01 12:58:35
    久久久久久亚洲精品国产蜜桃av| 人人妻人人添人人爽欧美一区卜| 免费久久久久久久精品成人欧美视频| 可以免费在线观看a视频的电影网站| 男人操女人黄网站| 麻豆国产av国片精品| 国产精品 国内视频| 看十八女毛片水多多多| 人人妻人人澡人人爽人人夜夜| 在线看a的网站| 日韩一卡2卡3卡4卡2021年| 国产成人av激情在线播放| 国产免费视频播放在线视频| 啦啦啦中文免费视频观看日本| 天堂8中文在线网| 黑人欧美特级aaaaaa片| 久久午夜综合久久蜜桃| 美女扒开内裤让男人捅视频| 一本—道久久a久久精品蜜桃钙片| 十分钟在线观看高清视频www| 亚洲免费av在线视频| av网站在线播放免费| 狂野欧美激情性xxxx| 亚洲欧洲精品一区二区精品久久久| 欧美另类一区| 黄片播放在线免费| 校园人妻丝袜中文字幕| 丝袜美足系列| 久久精品亚洲熟妇少妇任你| 亚洲成人免费电影在线观看 | 欧美黄色片欧美黄色片| 天天添夜夜摸| 亚洲欧美精品自产自拍| 一本色道久久久久久精品综合| 男男h啪啪无遮挡| 亚洲三区欧美一区| 亚洲成av片中文字幕在线观看| 亚洲一区二区三区欧美精品| 搡老乐熟女国产| 黄色视频在线播放观看不卡| 国产欧美日韩一区二区三 | 一级,二级,三级黄色视频| 狂野欧美激情性xxxx| 国语对白做爰xxxⅹ性视频网站| 好男人电影高清在线观看| 中文字幕人妻丝袜一区二区| 国产一区二区三区av在线| 久久ye,这里只有精品| 黄色视频在线播放观看不卡| 午夜免费男女啪啪视频观看| 欧美精品人与动牲交sv欧美| 日本猛色少妇xxxxx猛交久久| 不卡av一区二区三区| 91成人精品电影| 国产精品.久久久| 观看av在线不卡| 黄片播放在线免费| 国产爽快片一区二区三区| 一本一本久久a久久精品综合妖精| 日韩av在线免费看完整版不卡| 午夜激情久久久久久久| 黄色视频在线播放观看不卡| 亚洲精品一二三| 日韩av在线免费看完整版不卡| 亚洲欧洲日产国产| 国产亚洲av高清不卡| 赤兔流量卡办理| 老鸭窝网址在线观看| 婷婷丁香在线五月| 欧美日韩av久久| 久久精品熟女亚洲av麻豆精品| 日本a在线网址| 国产成人欧美在线观看 | 精品免费久久久久久久清纯 | 久久久欧美国产精品| 久久免费观看电影| 国产成人av激情在线播放| 亚洲精品在线美女| 男女床上黄色一级片免费看| 观看av在线不卡| 午夜免费鲁丝| 色婷婷久久久亚洲欧美| 午夜福利视频精品| 中文字幕人妻丝袜一区二区| 美女高潮到喷水免费观看| 国产一区有黄有色的免费视频| 久久久精品免费免费高清| 另类亚洲欧美激情| 欧美黄色片欧美黄色片| 免费高清在线观看日韩| 美女大奶头黄色视频| 国产黄色免费在线视频| 亚洲av成人精品一二三区| 国产男人的电影天堂91| 我的亚洲天堂| 欧美人与性动交α欧美软件| 麻豆乱淫一区二区| 精品人妻1区二区| 亚洲视频免费观看视频| 国产高清不卡午夜福利| 日韩大码丰满熟妇| 操美女的视频在线观看| 中国国产av一级| 欧美av亚洲av综合av国产av| 精品人妻一区二区三区麻豆| 一区福利在线观看| 大香蕉久久网| 男的添女的下面高潮视频| 日本vs欧美在线观看视频| 亚洲欧洲日产国产| 久久久久网色| 在线观看一区二区三区激情| 免费观看av网站的网址| 又大又黄又爽视频免费| 亚洲av电影在线观看一区二区三区| 日本欧美国产在线视频| 三上悠亚av全集在线观看| 亚洲视频免费观看视频| 国产成人精品久久二区二区91| 久久九九热精品免费| 精品一区二区三区av网在线观看 | 国产极品粉嫩免费观看在线| 免费在线观看视频国产中文字幕亚洲 | 男人爽女人下面视频在线观看| 男人添女人高潮全过程视频| 一区二区三区精品91| 黄色怎么调成土黄色| 纯流量卡能插随身wifi吗| 色94色欧美一区二区| 国产成人91sexporn| 一本大道久久a久久精品| 日本欧美视频一区| 大香蕉久久成人网| 国精品久久久久久国模美| 丝瓜视频免费看黄片| 美女脱内裤让男人舔精品视频| 各种免费的搞黄视频| a级毛片黄视频| 免费看不卡的av| 国产一区二区三区av在线| 久久国产亚洲av麻豆专区| 老熟女久久久| 天天躁夜夜躁狠狠久久av| 欧美久久黑人一区二区| 精品人妻1区二区| 男女免费视频国产| 黄片播放在线免费| 成人国产一区最新在线观看 | 午夜激情av网站| a级片在线免费高清观看视频| 亚洲天堂av无毛| 99久久综合免费| 搡老岳熟女国产| 亚洲精品日韩在线中文字幕| 国产成人免费无遮挡视频| 韩国精品一区二区三区| 久久国产精品大桥未久av| 成年女人毛片免费观看观看9 | av有码第一页| 日韩中文字幕视频在线看片| 少妇 在线观看| 99国产精品免费福利视频| 亚洲欧洲国产日韩| 国产黄色视频一区二区在线观看| 欧美黑人欧美精品刺激| 成年女人毛片免费观看观看9 | 色网站视频免费| 可以免费在线观看a视频的电影网站| 777久久人妻少妇嫩草av网站| 欧美黄色片欧美黄色片| 国产97色在线日韩免费| 国产精品一二三区在线看| 国产欧美日韩精品亚洲av| 少妇人妻久久综合中文| 国产精品久久久久久精品电影小说| 久久毛片免费看一区二区三区| 香蕉国产在线看| 丝袜美足系列| 欧美黑人精品巨大| 午夜av观看不卡| 精品少妇内射三级| 午夜影院在线不卡| 亚洲精品日韩在线中文字幕| 人妻人人澡人人爽人人| 中文字幕人妻丝袜一区二区| 99热网站在线观看| 建设人人有责人人尽责人人享有的| 黄色视频不卡| e午夜精品久久久久久久| 777久久人妻少妇嫩草av网站| 无遮挡黄片免费观看| 国产熟女欧美一区二区| av天堂久久9| 伊人久久大香线蕉亚洲五| 日本a在线网址| 国产精品一区二区免费欧美 | 亚洲人成77777在线视频| 亚洲精品国产一区二区精华液| 国产精品久久久久久精品古装| 美女脱内裤让男人舔精品视频| 亚洲精品国产色婷婷电影| 国产爽快片一区二区三区| cao死你这个sao货| 99久久99久久久精品蜜桃| 日韩电影二区| 精品久久久久久电影网| 亚洲中文字幕日韩| 高清黄色对白视频在线免费看| 精品一区二区三区av网在线观看 | 夜夜骑夜夜射夜夜干| 午夜福利一区二区在线看| 欧美日韩一级在线毛片| 久久人人爽人人片av| 90打野战视频偷拍视频| 亚洲精品国产色婷婷电影| 亚洲图色成人| 男的添女的下面高潮视频| 亚洲,一卡二卡三卡| 久久狼人影院| 极品人妻少妇av视频| 97人妻天天添夜夜摸| 国产精品九九99| 国产男人的电影天堂91| 老司机靠b影院| 日本a在线网址| 高潮久久久久久久久久久不卡| 国产成人系列免费观看| 视频区图区小说| 国产精品99久久99久久久不卡| 国产一区二区激情短视频 | 亚洲精品日本国产第一区| 精品少妇黑人巨大在线播放| 色综合欧美亚洲国产小说| 悠悠久久av| 天堂中文最新版在线下载| 亚洲国产中文字幕在线视频| 亚洲欧美一区二区三区国产| 国产亚洲精品第一综合不卡| 在线精品无人区一区二区三| 久久99一区二区三区| 18禁黄网站禁片午夜丰满| xxxhd国产人妻xxx| 女人被躁到高潮嗷嗷叫费观| 熟女av电影| 只有这里有精品99| 亚洲国产精品一区三区| 性色av一级| 午夜福利,免费看| 午夜av观看不卡| 高清不卡的av网站| 男人舔女人的私密视频| 夫妻性生交免费视频一级片| 七月丁香在线播放| 欧美 亚洲 国产 日韩一| 精品亚洲成a人片在线观看| 中文字幕另类日韩欧美亚洲嫩草| 爱豆传媒免费全集在线观看| 中文乱码字字幕精品一区二区三区| 欧美黑人精品巨大| 国产色视频综合| 久久 成人 亚洲| 悠悠久久av| 国产av精品麻豆| 香蕉丝袜av| 亚洲人成网站在线观看播放| 欧美变态另类bdsm刘玥| 男女下面插进去视频免费观看| 香蕉国产在线看| 日日摸夜夜添夜夜爱| 午夜激情av网站| 亚洲男人天堂网一区| 国产一区二区三区av在线| 脱女人内裤的视频| 精品人妻1区二区| a级毛片在线看网站| 亚洲,一卡二卡三卡| 久久精品国产a三级三级三级| 国产伦人伦偷精品视频| 男女边吃奶边做爰视频| 成年av动漫网址| 亚洲欧美一区二区三区黑人| 又粗又硬又长又爽又黄的视频| 99热全是精品| 亚洲,欧美,日韩| 男女免费视频国产| 男女高潮啪啪啪动态图| 亚洲中文字幕日韩| 啦啦啦 在线观看视频| 少妇人妻久久综合中文| 在现免费观看毛片| 久热这里只有精品99| 青草久久国产| 久久影院123| 自线自在国产av| 国产精品av久久久久免费| 国产男人的电影天堂91| 少妇 在线观看| 一二三四社区在线视频社区8| 又大又黄又爽视频免费| 在现免费观看毛片| 亚洲,欧美精品.| 日韩制服骚丝袜av| 美女国产高潮福利片在线看| 成年美女黄网站色视频大全免费| 欧美日韩国产mv在线观看视频| 99国产精品免费福利视频| 国产激情久久老熟女| 国产野战对白在线观看| 色婷婷av一区二区三区视频| 丝瓜视频免费看黄片| 后天国语完整版免费观看| 国产精品99久久99久久久不卡| 少妇裸体淫交视频免费看高清 | 日本猛色少妇xxxxx猛交久久| 精品亚洲成a人片在线观看| 99香蕉大伊视频| 久久人人爽人人片av| 永久免费av网站大全| 日韩免费高清中文字幕av| 亚洲av日韩精品久久久久久密 | 日韩欧美一区视频在线观看| av又黄又爽大尺度在线免费看| av线在线观看网站| 国产麻豆69| 婷婷成人精品国产| 国产一区二区三区av在线| 亚洲欧美日韩另类电影网站| 人成视频在线观看免费观看| 久久精品亚洲熟妇少妇任你| 人体艺术视频欧美日本| 亚洲国产最新在线播放| 国产高清不卡午夜福利| 咕卡用的链子| 大陆偷拍与自拍| 脱女人内裤的视频| 亚洲精品美女久久久久99蜜臀 | 久久女婷五月综合色啪小说| 亚洲成人手机| 国产免费现黄频在线看| 在线观看免费高清a一片| 日本黄色日本黄色录像| 国产一区二区 视频在线| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 80岁老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 国产在线观看jvid| 精品欧美一区二区三区在线| 国产真人三级小视频在线观看| 一本—道久久a久久精品蜜桃钙片| 99久久人妻综合| 中文字幕人妻熟女乱码| 纯流量卡能插随身wifi吗| 波多野结衣一区麻豆| 妹子高潮喷水视频| 中文字幕高清在线视频| 国产亚洲欧美在线一区二区| 国产av国产精品国产| 亚洲精品美女久久久久99蜜臀 | 最近中文字幕2019免费版| 91精品国产国语对白视频| 午夜福利,免费看| 欧美大码av| 日韩视频在线欧美| 男人操女人黄网站| 两个人看的免费小视频| 精品久久久久久电影网| 一本久久精品| 国产在线观看jvid| 国产黄色免费在线视频| 久久 成人 亚洲| 男人添女人高潮全过程视频| 国产色视频综合| 一级毛片女人18水好多 | 精品一区二区三卡| 99国产综合亚洲精品| 在线观看免费午夜福利视频| 精品一区二区三区av网在线观看 | 国产亚洲一区二区精品| 一区福利在线观看| 国产成人av教育| 国产免费视频播放在线视频| 黄色 视频免费看| 99re6热这里在线精品视频| 两人在一起打扑克的视频| 亚洲专区国产一区二区| 国产伦人伦偷精品视频| 在线观看免费高清a一片| av视频免费观看在线观看| 精品久久久久久电影网| 老汉色∧v一级毛片| 国产成人精品久久二区二区91| 国产av国产精品国产| 一区二区日韩欧美中文字幕| 欧美国产精品一级二级三级| 亚洲,欧美精品.| 人人澡人人妻人| www.999成人在线观看| 一区二区三区四区激情视频| 亚洲国产日韩一区二区| 91精品伊人久久大香线蕉| 午夜福利在线免费观看网站| 中文字幕精品免费在线观看视频| 精品福利永久在线观看| 少妇 在线观看| 只有这里有精品99| 久久久久久人人人人人| 一区二区av电影网| 欧美精品高潮呻吟av久久| 一级片'在线观看视频| 精品一品国产午夜福利视频| 在线观看国产h片| 黄片小视频在线播放| 国产成人av激情在线播放| 黄色视频不卡| 国语对白做爰xxxⅹ性视频网站| 天堂中文最新版在线下载| 在线 av 中文字幕| 又大又爽又粗| 欧美日韩亚洲高清精品| e午夜精品久久久久久久| 国产精品久久久av美女十八| 男女高潮啪啪啪动态图| 老汉色av国产亚洲站长工具| 久久国产亚洲av麻豆专区| 欧美日韩综合久久久久久| 不卡av一区二区三区| 美女大奶头黄色视频| 一边摸一边做爽爽视频免费| 中文字幕人妻熟女乱码| 91成人精品电影| av网站在线播放免费| 亚洲人成网站在线观看播放| 一级毛片女人18水好多 | a级毛片黄视频| 视频在线观看一区二区三区| 免费在线观看影片大全网站 | 一边摸一边做爽爽视频免费| 99精品久久久久人妻精品| 久久精品国产a三级三级三级| 一本—道久久a久久精品蜜桃钙片| 美女中出高潮动态图| 亚洲精品第二区| 在线观看免费日韩欧美大片| 麻豆乱淫一区二区| 国产欧美日韩综合在线一区二区| 精品亚洲成国产av| 丰满人妻熟妇乱又伦精品不卡| 国产成人一区二区在线| 中文字幕高清在线视频| 亚洲av日韩在线播放| 一级黄色大片毛片| 欧美日韩福利视频一区二区| 日本91视频免费播放| 日本猛色少妇xxxxx猛交久久| 亚洲成人国产一区在线观看 | 亚洲七黄色美女视频| 亚洲精品一卡2卡三卡4卡5卡 | 操美女的视频在线观看| 午夜福利乱码中文字幕| xxxhd国产人妻xxx| 一级毛片黄色毛片免费观看视频| 亚洲精品一卡2卡三卡4卡5卡 | 久久久久久亚洲精品国产蜜桃av| 久热这里只有精品99| 黄色a级毛片大全视频| 五月开心婷婷网| 午夜福利影视在线免费观看| 麻豆av在线久日| 久久久久久免费高清国产稀缺| 亚洲欧美成人综合另类久久久| 国产精品麻豆人妻色哟哟久久| 欧美另类一区| 国产一区二区激情短视频 | 天天影视国产精品| 国产视频首页在线观看| 成人免费观看视频高清| 中文乱码字字幕精品一区二区三区| 免费高清在线观看视频在线观看| 91字幕亚洲| 久久久久视频综合| 尾随美女入室| 一级毛片我不卡| 亚洲国产欧美一区二区综合| 老汉色∧v一级毛片| 国产成人免费观看mmmm| 国产xxxxx性猛交| 欧美久久黑人一区二区| 色网站视频免费| 国产精品99久久99久久久不卡| 成人黄色视频免费在线看| 极品少妇高潮喷水抽搐| 一级毛片电影观看| 美女高潮到喷水免费观看| 久久精品亚洲熟妇少妇任你| 91国产中文字幕| 97在线人人人人妻| 国产视频首页在线观看| 久久女婷五月综合色啪小说| 国产精品一区二区精品视频观看| 精品熟女少妇八av免费久了| 青春草视频在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产有黄有色有爽视频| 亚洲熟女毛片儿| 精品久久久久久电影网| 国产午夜精品一二区理论片| 91精品伊人久久大香线蕉| 国产女主播在线喷水免费视频网站| 久久精品久久久久久久性| 亚洲国产av影院在线观看| 午夜福利乱码中文字幕| 免费一级毛片在线播放高清视频 | 波野结衣二区三区在线| 水蜜桃什么品种好| 精品国产乱码久久久久久小说| 国产xxxxx性猛交| 黄色a级毛片大全视频| 久久人妻福利社区极品人妻图片 | 日本wwww免费看| 一区在线观看完整版| 亚洲成人免费av在线播放| 欧美大码av| 黑丝袜美女国产一区| 侵犯人妻中文字幕一二三四区| 亚洲欧洲国产日韩| 午夜福利一区二区在线看| xxxhd国产人妻xxx| 免费观看av网站的网址| 亚洲精品在线美女| 亚洲精品乱久久久久久| 人人妻人人爽人人添夜夜欢视频| 夜夜骑夜夜射夜夜干| 免费人妻精品一区二区三区视频| 极品少妇高潮喷水抽搐| 国产一区二区 视频在线| 欧美日韩亚洲综合一区二区三区_| 国产亚洲av高清不卡| 少妇人妻久久综合中文| 亚洲成人国产一区在线观看 | 亚洲av国产av综合av卡| 午夜免费成人在线视频| 成人影院久久| 国产免费现黄频在线看| 亚洲精品第二区| 国产麻豆69| 国产欧美日韩一区二区三 | 国产精品免费视频内射| 极品人妻少妇av视频| 国产不卡av网站在线观看| 大片免费播放器 马上看| 亚洲一区二区三区欧美精品| 精品亚洲乱码少妇综合久久| 久久国产精品人妻蜜桃| 久久人妻熟女aⅴ| 国产成人欧美| 欧美日韩亚洲国产一区二区在线观看 | 亚洲人成77777在线视频| 精品少妇一区二区三区视频日本电影| 国产成人91sexporn| 亚洲,欧美精品.| 亚洲自偷自拍图片 自拍| 亚洲熟女精品中文字幕| 久久狼人影院| 国产成人a∨麻豆精品| 日韩av在线免费看完整版不卡| 亚洲国产精品国产精品| 亚洲精品国产色婷婷电影| 美女脱内裤让男人舔精品视频| 麻豆乱淫一区二区| 欧美日韩福利视频一区二区| 国产野战对白在线观看| 国产高清videossex| 美女脱内裤让男人舔精品视频| 一级a爱视频在线免费观看| 香蕉国产在线看| 老熟女久久久| 久久久久精品国产欧美久久久 | 日韩av不卡免费在线播放| 乱人伦中国视频| 欧美久久黑人一区二区| 满18在线观看网站| 嫩草影视91久久| 青春草亚洲视频在线观看| 成年美女黄网站色视频大全免费| 国产高清视频在线播放一区 | 一级黄片播放器| 18禁裸乳无遮挡动漫免费视频| 中文字幕人妻丝袜一区二区| 美女国产高潮福利片在线看| 久久这里只有精品19| 免费看不卡的av| 免费在线观看视频国产中文字幕亚洲 | 精品久久久久久电影网| 人人妻人人爽人人添夜夜欢视频| 国产老妇伦熟女老妇高清| 最黄视频免费看| 热99久久久久精品小说推荐| 我要看黄色一级片免费的| 婷婷色综合大香蕉| 两个人免费观看高清视频| 女人爽到高潮嗷嗷叫在线视频| 香蕉国产在线看| 日韩欧美一区视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 成人黄色视频免费在线看| 一区二区日韩欧美中文字幕| 精品久久久精品久久久| 波多野结衣一区麻豆| 成人午夜精彩视频在线观看| 午夜福利影视在线免费观看| 中文字幕人妻熟女乱码| 91麻豆精品激情在线观看国产 | 免费少妇av软件| 热re99久久国产66热|