• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Axis-symmetric Onsager clustered states of point vortices in a bounded domain

    2023-10-11 05:30:34YanqiXiongJiawenChenandXiaoquanYu
    Communications in Theoretical Physics 2023年9期

    Yanqi Xiong,Jiawen Chen and Xiaoquan Yu,2

    1 Graduate School of China Academy of Engineering Physics,Beijing 100193,China

    2 Department of Physics,Centre for Quantum Science,and Dodd-Walls Centre for Photonic and Quantum Technologies,University of Otago,Dunedin,New Zealand

    Abstract We study axis-symmetric Onsager clustered states of a neutral point vortex system confined to a twodimensional disc.Our analysis is based on the mean field of bounded point vortices in the microcanonical ensemble.The clustered vortex states are specified by the inverse temperature β and the rotation frequency ω,which are the conjugate variables of energy E and angular momentum L,respectively.The formation of the axis-symmetric clustered vortex states (azimuthal angle independent) involves the separating of vortices with opposite circulation and the clustering of vortices with the same circulation around the origin and edge.The state preserves SO(2) symmetry while breakingZ2 symmetry.We find that,near the uniform state,the rotation-free clustered state(ω=0)emerges at particular values of L2/E and β.At large energies,we obtain asymptotically exact vortex density distributions,whose validity condition gives rise to the lower bound of β for the rotation-free states.Noticeably,the obtained vortex density distribution near the edge at large energies provides a novel exact vortex density distribution for the corresponding chiral vortex system.

    Keywords: vortex clusters,negative temperature,exact solutions,quantum vortices

    1.Introduction

    In two-dimensional (2D) fluid turbulence,energy at small scales can transport to large scales known as inverse energy cascade[1–4].This process involves formations of large scale vortex patterns.Onsager explained the formation of large scale structures by studying equilibrium statistical mechanics of point vortices in a bounded domain.The macroscopic vortex structure is associated with the clustering of like-sign point vortices at negative temperatures [1,5].These coherent large structures occur in various systems.Examples are the Great Red Spot in Jupiter’s atmosphere [6],giant vortex clusters in atomic Bose–Einstein condensates (BECs) [7–9],and vortex clustering in quantum fluids of exciton–polaritons [10].

    The clustering phenomena of vortices have attracted much attention[11–38].For a given 2D domain,searching for the maximum entropy clustered vortex state is at the center of investigations.For circularly symmetric domains,previous studies on neutral vortex systems focus on zero angular momentum cases [18,25,27,32,33].The role of finite angular momentum in the formation of clustered states in a neutral vortex system remains less well-explored.

    In this paper,we study axis-symmetric clustered vortex states through the mean field approach.The mean field theory to describe the formation of negative temperature clustered vortex states was formulated systematically by Joyce and Montgomery [39].The mean field equations,which were obtained by maximizing the entropy of the vortex system,are essential for analyzing possible clustered states.We consider a neutral vortex system consisting of an equal number of positive and negative vortices confined to a disc.For a given positive vortex number N+and a negative vortex number N-,clustered vortex states are specified by energy E and angular momentum L or their conjugate variables inverse temperature β(E,L) and rotation frequency ω(E,L).We find that in the limit β →0,ω →∞while keeping βω finite,positive and negative vortex density distributions are Gaussian distributions centered at the origin and edge,respectively.For rotation-free states (ω=0),we find asymptotically exact positive and negative vortex density distributions at large energies.In particular,the one maximized on the edge provides a new exact solution to the mean field equations for the corresponding chiral vortex system.The lower bound of β is obtained from the validity condition of the asymptotically exact solutions at high energies,above which rotation-free clustered states exist.To analyze clustered states closed to the uniform state at low energies,we generalized the perturbation theory,which was initially developed for chiral systems[17],to the neutral case.Using this perturbation theory we find the critical value of β for the onset of the rotation-free clustered vortex state,providing an upper bound of β.

    2.Model

    The point-vortex model describes the dynamics of wellseparated quantum vortices in a superfluid at low temperature[40],2D classical inviscid,incompressible fluids[21,41]and guiding-center plasma[39].Negative temperature states occur due to the bounded phase space of a 2D confined point vortex system.Above a certain energy,the number of available states decreases as the function of energy and consequently,the system becomes more ordered as energy increases [1].

    We consider a system consisting of a large number of point vortices confined to a uniform disc of radius R.The system is neutral and contains N+positive vortices and N-=N+negative vortices.The Hamiltonian is [42]

    In a BEC,the Hamiltonian equation (1) is measured 8n unit E0=ρmaκ2/4π,where ρ is the superfluid density,κ=h/mais the circulation quantum and mais the atomic mass.In this unit,κi=±1/N±and the 1/N±scaling gives a well-defined mean field limit[43,44].For a vortex at position rj,its image locates atto ensure that the fluid velocity normal to the boundary vanishes.The Hamiltonian (1) has rotational SO(2) symmetry due to the disc geometry andZ2symmetry(invariant under κi→-κi).Hereafter we set R=1 without losing generality.

    To investigate formations of large-scale clustered patterns,it is necessary to consider the continuous effective Hamiltonian in the large N±limit [39]:

    Here σ(r)≡n+(r)-n-(r) is the vorticity field,

    is the local density of positive (negative) vortices,andis the position of the vortex i with circulation ±1/N±.The vortex densities n±satisfy the normalization condition

    The Green’s functionφ(r-r′)satisfies?2φ(r-r′)=-4πδ(r-r′).Hereφ(r-r′)=0 on the boundary(|r|=1),andφ(r-r′)~-2 log∣r-r′∣as ∣r-r′∣→0 [45].The stream function

    satisfies the Poisson equation

    with the boundary condition ψ(r=1,θ)=C.Here C is a constant.Recall that the radial velocity

    This boundary condition ensures that there is no flow across the boundary of the domain.Without losing generality,we choose C=0,which is equivalent to including image terms in equation (1).

    For a rotationally symmetric domain,energy

    and angular momentum

    are conserved quantities.

    The most probable density distribution is given by maximizing the entropy function

    at fixed values of N+,N-,E and L[39].From the variational equation

    where β,α and μ±are Lagrange multipliers and γ±=-μ±-1.The parameters β,ω ≡α/β and μ±have the interpretation of inverse temperature,rotation frequency and chemical potentials,respectively.

    3.Onset of clustering

    In this section,we analyze the possible stable large scale coherent structures described by equation (6) and equation(12)near the uniform state.Here we generalized the method which was developed for analyzing chiral vortex matter [17],to the neutral case.

    Let us start at a solution n±of equation (12)at energy E and angular momentum L,and consider a nearby solution n±+δn±at E+δE and L+δL.The corresponding changes are

    To leading order,we obtain

    where δγ-,δγ+,δβ and δα are changes of Lagrange multipliers.Plugging equation (17) into equations (13–16), we have

    and n=n++n-is the total density.Variation of equation(6)gives us

    Our aim is to find stable clustered states which emerge from the homogeneous state n-=n+=n0=1/π.For the homogeneous state,σ=0,ψ=0,α=0,L=0 and E=0.We assume that δα is in the same order as δψ and from equation (18) we obtain

    Let us introduce operatorL:

    Then equation (20) becomes a zero mode equation of the operatorL.The onset of large scale vortex clusters occurs if equation (25) has non-zero solutions.The value of β is undefined in the homogeneous phase within our mean field approach and depends on the mode developing from the uniform state.Since the operatorL is defined on a disc with the Dirichlet boundary condition,it is natural to decompose equation(25) in azimuthal Fourier harmonics ψswhich is characterized by the mode number s and satisfies ?2ψs/?θ2=-s2ψs:

    where ∈?1 is a small amplitude and fsis the mode coefficient.Then each mode satisfies

    where ψs(r,θ) satisfies the boundary condition ψs(r=1,θ)=0.We denote δL=L0∈,δE=E0∈2and δα=∈βω.

    We find that

    solves equation (27) with

    Here Js(r)is the Bessel function of the first kind.Consistently,

    For given L0and E0,the parameters cs,k,and bsare determined by equations(31)and(32)combined with the Dirichlet boundary condition

    The single-valueless of the stream function requires that s has to be an integer,namely,s∈Z.

    For s ≠0,L0=0,a=-ω=0,bs=0,

    and k=js,m,where js,mis the mth zero of the Bessel function of the first kind Js(r).

    For s=0,

    For given E0and L0,c0and k are determined by

    It is useful to introduce

    as a control parameter.

    The ratio Γ(k) reaches its maximum value at k=k*with j1,1<k*<j2,1(see figure 1).For a given Γ0<Γ(k*),there are more than one value of kcsuch that Γ(kc)=Γ0.Guided by the maximum entropy principle,the minimal value of kccorresponds to the equilibrium state.For k →0,E0→0,L0→0,this mode describes the uniform state.

    Fig.1.Γ(k) as a function of k.The maximum value of Γ(k) is reached at k=k* and j1,1 <k*<j2,1.

    The modes s ≠0 break SO(2) symmetry and the maximum entropy state for given energy is the clustered vortex dipole state which corresponds to the s=1 mode [27].This clustered vortex dipole state has been recently realized in BEC experiments[7].In this paper,we focus on states related to the s=0 mode.

    4.Axis-symmetric clustered states

    In this section,we present some(asymptomatically) exact results on axis-symmetric neutral vortex clusters.For axis-symmetric states,the boundary condition equation(7)which is imposed by the most relevant physical condition is fulfilled automatically.

    4.1.Gaussian vortex states

    Let us first consider β →0.For finite ω,vortex distributions n±m(xù)ust be uniform.However,when ω →∞simultaneously such that α=ωβ is finite,non-trivial distributions can occur.In this special limit,the vortex densities have the profile of Gaussian distribution:

    where α ∈(-∞,∞).

    The corresponding stream function reads

    is the exponential integral function.The stream function satisfies ψ(r=1)=0 and dψ/dr|r=1=0.

    The angular momentum is

    It is easy to see that L ≤1.Figures 2(a)–(b) show typical vortex densities for different values of α.Figures 2(c)–(d) show angular momentum and energy as functions of α.Note that the Gaussian state is available in the chiral vortex system as well [17].

    4.2.Rotation-free vortex states

    In this subsection,we consider clustered vortex states for ω=0 and finite β <0.

    4.2.1.Onset of axis-symmetric clustered states.Closed to the uniform state,the clustered states can be analyzed using the formalism developed in section 3.The polar angle θ-independent zero modes s=0 carry non-zero angular momentum.For s=0 modes,the rotation-free condition a=-ω=c0kJ1(k)/2=0[see equation(35)]requires that k=j1,m,where j1,mis the mth zero of the Bessel function of the first kind J1(r).These modes occur atand breakZ2symmetry.The m=1 mode starts to emerge at β=βt=β1,1?-1.835 and has the highest statistical weight among the rotation-free modes(ω=0):

    4.2.2.High energy configuration.All the rotation-free and axis-symmetry states satisfy

    The most relevant solution of equation(46)should be the nonlinear continuation of the zero mode ψ0and describes the axis-symmetry equilibrium state with zero rotation frequency.

    At large energies,vortices with opposite signs are wellseparated and the overlap between n+and n-can be neglected.In this limit,exact results are available.Let us assume that positive vortices are concentrated in the center of the disc and negative vortices are distributed along the edge of the disc.The density distribution of positive vortices near r=0 can be obtained analytically by neglecting the influence of negative vortices:

    Fig.2.Vortex densities for α=1 (a) and α=6 (b).The angular momentum and the energy as functions of α are shown in (c) and(d),respectively.

    with the boundary conditions ψ(0)=0 andψ′(0)=0 [17].HereA=is fixed by the normalization condition of n+and β*=-2.The supercondensation occurs at β=β*,involving point-like concentration of the positive vortices and the divergence of energy [17,46].

    Near r=1,we can neglect the influence of positive vortices and find the density distribution of negative vortices

    where the boundary conditions are ψ(1)=0 andψ′(1)=0.

    Note that ψ(0) and ψ(1) can be chosen as arbitrary constants and here we choose them to be zero for convenience.The boundary conditionψ′(0)=0 ensures thatn′+(0)=0 and n+has no singular behavior near r=0.Similarly,the boundary conditionψ′(1)=0 implies thatn′-(1)=0 and the absence of singular behavior of n-near r=1.As approximations of vortex densities at large energies,equations (47) and (48) should be evaluated for β*<β.Combining the critical value of β at which the onset of clustering occurs,we obtain the parameter regime for the rotation-free clustered vortex state:

    Figure 3 shows the vortex density distributions at high energies.

    In the deep clustered state,positive vortices are concentrated in a small region and the total energy is contributed dominantly from positive vortices.So as β →β*,

    At large energies,the angular momentum is

    and as β →β*,L→Lmaxwith

    5.Exact results for chiral vortex clusters

    As stated in the previous section,equation (48) is the exact solution to equation (46),provided that n+is neglected.Hence equation (48) provides an exact vortex density distribution for a chiral system,which is distinct from the wellknown exact distribution.In this section,we make a summary of relevant exact results and make a comparison between our findings and the known distribution.

    Fig.3.Vortex density distributions at high energies.The densities of positive vortices (a) and negative vortices (b) are evaluated via equations (47) and (48),respectively.

    For a rotation-free (ω=0) and axis-symmetric chiral system,equation (46) becomes

    There is a known exact solution to equations (53) and(54),which is equation (47):

    This solution is valid for β >-2.The corresponding stream function could be different depending on the boundary conditions.The vortex density equation (55) exhibits distinct behaviors in different parameter regimes.The vortices accumulate around the edge for 0 <β while for-2 <β <0 the vortices are center-concentrated(see figure 4).Note that in some literature,equation (53) does not have the prefactor 4π and hence the solution looks slightly different [35,47].

    Fig.4.Typical profiles of the vortex density distribution described by equation (55) in two distinct parameter regimes: 0 <β and -2 <β <0.

    Distinct from equation(55),our finding is equation(48):

    with boundary conditions

    The solution equation (58) holds for β <1 and β ≠0.If requiring thatn′(r=0) is finite,β <-1/2.For 0 <β <1,equation (58) shows center-concentrated distribution and n(r →0)→∞.For -1/2 <β <0,the vortex density is singular at origin,namelyn′(r→ 0)→∞.Vortices distribute around the edge for β <-1/2.In contrast to the known exact solution equation (55),the distribution equation (58) is peaked on the boundary at a negative temperature and is maximized at the origin at a positive temperature.Figure 5 shows typical behaviors of the vortex density in these parameter regimes.

    6.Conclusions

    Axis-symmetric clustered vortex states for a neutral vortex system confined to a disc are investigated.Combining the perturbation theory near the uniform state and asymptotic analysis at high energies,we find the parameter regime for which the rotation-free states are supported.At large energies,the distributions of positive vortices and negative vortices are well-separated and the edge-concentrated part provides a new exact vortex density distribution for the corresponding chiral vortex system.

    Fig.5.Typical profiles of the vortex density distribution described by equation (58) in three distinct parameter regimes: 0 <β <1,-1/2 <β <0 and β <-1/2.

    The onset of a non-axisymmetric vortex cluster in chiral vortex systems appears to proceed via a second-order phase transition [16,17].It would be interesting to investigate possible non-axisymmetric states for neutral systems carrying finite angular momentum.Thanks to the recent experimental advances [7–9],our work would motivate experimentally investigating axis-symmetric clustered phases in a homogeneous Bose–Einstein condensate trapped in cylindrically symmetric potentials.Due to the presence of conservation of angular momentum,axis-symmetric clustered phases are expected to have a longer lifetime than the giant vortex dipole state [7].

    Acknowledgments

    We acknowledge J Nian,T P Billam,M T Reeves and A S Bradley for useful discussions.X.Y.acknowledges support from the National Natural Science Foundation of China(Grant No.12175215),the National Key Research and Development Program of China (Grant No.2022YFA 1405300),and NSAF (Grant No.U1930403).

    变态另类成人亚洲欧美熟女| 小说图片视频综合网站| 麻豆乱淫一区二区| 综合色av麻豆| 变态另类成人亚洲欧美熟女| 色综合站精品国产| 天堂影院成人在线观看| 哪里可以看免费的av片| 人妻夜夜爽99麻豆av| 欧美高清成人免费视频www| 久久久色成人| 国产一区二区亚洲精品在线观看| 九九在线视频观看精品| 性欧美人与动物交配| 国产精品免费一区二区三区在线| 不卡一级毛片| 精品国内亚洲2022精品成人| 国产日本99.免费观看| 日韩av在线大香蕉| 亚洲综合色惰| 三级国产精品欧美在线观看| 久久久久免费精品人妻一区二区| 国产精品久久久久久精品电影小说 | 夫妻性生交免费视频一级片| 观看免费一级毛片| 亚洲欧美日韩高清专用| 舔av片在线| 国内揄拍国产精品人妻在线| 亚洲电影在线观看av| 99久久精品一区二区三区| 成人鲁丝片一二三区免费| 毛片一级片免费看久久久久| 精品午夜福利在线看| 神马国产精品三级电影在线观看| 人妻制服诱惑在线中文字幕| 国产乱人偷精品视频| 午夜老司机福利剧场| 日韩精品青青久久久久久| 成人欧美大片| 日韩av在线大香蕉| 亚洲综合色惰| 在线观看av片永久免费下载| 在线观看66精品国产| av黄色大香蕉| 性欧美人与动物交配| 久久久久网色| 九九热线精品视视频播放| 色综合亚洲欧美另类图片| 一进一出抽搐gif免费好疼| 少妇高潮的动态图| 欧美一级a爱片免费观看看| 国产高清三级在线| 国产精品嫩草影院av在线观看| 久久久久久久午夜电影| 国产不卡一卡二| 色哟哟哟哟哟哟| 看免费成人av毛片| 99热这里只有是精品50| 欧美xxxx性猛交bbbb| 色播亚洲综合网| 国产精品爽爽va在线观看网站| 亚洲av.av天堂| 久久欧美精品欧美久久欧美| 婷婷精品国产亚洲av| 久久这里有精品视频免费| 国产91av在线免费观看| 好男人在线观看高清免费视频| 免费搜索国产男女视频| 偷拍熟女少妇极品色| 床上黄色一级片| 免费观看a级毛片全部| 亚洲中文字幕一区二区三区有码在线看| 国产精品不卡视频一区二区| 国产在视频线在精品| 日韩一区二区三区影片| 日本一二三区视频观看| 久久久精品欧美日韩精品| 久久久成人免费电影| 日韩一本色道免费dvd| 三级男女做爰猛烈吃奶摸视频| 国产在线男女| 级片在线观看| 99热这里只有是精品在线观看| 99久久精品国产国产毛片| 亚洲国产高清在线一区二区三| 日本一本二区三区精品| 99久国产av精品| 成人性生交大片免费视频hd| 国产精品久久久久久av不卡| 97在线视频观看| 国产国拍精品亚洲av在线观看| 亚洲国产欧美在线一区| 精品久久久久久久久亚洲| 国产三级在线视频| 熟女电影av网| 国产精品.久久久| 成人综合一区亚洲| 直男gayav资源| 亚洲一区高清亚洲精品| 日本黄色片子视频| 亚洲最大成人手机在线| 国产成人a∨麻豆精品| 欧美成人a在线观看| 青春草亚洲视频在线观看| 精品久久久久久久久av| 黑人高潮一二区| www.色视频.com| 亚洲欧洲国产日韩| 人人妻人人澡欧美一区二区| 色哟哟哟哟哟哟| av福利片在线观看| 搞女人的毛片| 麻豆一二三区av精品| 国产大屁股一区二区在线视频| 亚洲国产精品久久男人天堂| 麻豆乱淫一区二区| 国产精品嫩草影院av在线观看| 丝袜美腿在线中文| 欧美日韩乱码在线| 欧美性猛交╳xxx乱大交人| 免费不卡的大黄色大毛片视频在线观看 | 精品人妻偷拍中文字幕| 国产精品国产高清国产av| 麻豆一二三区av精品| 国产伦在线观看视频一区| 日本熟妇午夜| 精品久久久久久久久久免费视频| 欧洲精品卡2卡3卡4卡5卡区| 啦啦啦啦在线视频资源| 精品无人区乱码1区二区| 亚洲国产色片| 国模一区二区三区四区视频| 99国产精品一区二区蜜桃av| 欧美性猛交╳xxx乱大交人| 有码 亚洲区| 国产成年人精品一区二区| 欧美bdsm另类| 亚洲精品日韩av片在线观看| av天堂在线播放| 亚洲av中文av极速乱| 国产白丝娇喘喷水9色精品| 日韩欧美在线乱码| 97超碰精品成人国产| 又爽又黄a免费视频| 内地一区二区视频在线| 国产91av在线免费观看| 中文字幕久久专区| 亚洲图色成人| 中文字幕免费在线视频6| 国产精品伦人一区二区| 日本在线视频免费播放| 99热这里只有精品一区| 一本精品99久久精品77| 天堂影院成人在线观看| 欧洲精品卡2卡3卡4卡5卡区| 在线播放国产精品三级| 中文字幕免费在线视频6| 秋霞在线观看毛片| 狂野欧美白嫩少妇大欣赏| 免费观看的影片在线观看| 欧美xxxx黑人xx丫x性爽| 国产成人a∨麻豆精品| 青春草亚洲视频在线观看| 日日干狠狠操夜夜爽| 嫩草影院新地址| 性色avwww在线观看| 麻豆成人午夜福利视频| 非洲黑人性xxxx精品又粗又长| 国产乱人偷精品视频| 精品久久久久久久久久免费视频| 日韩欧美国产在线观看| 国产成人精品一,二区 | 人妻夜夜爽99麻豆av| 国产高潮美女av| 12—13女人毛片做爰片一| 国产成人精品久久久久久| 日韩一本色道免费dvd| 在线观看av片永久免费下载| 欧洲精品卡2卡3卡4卡5卡区| 性欧美人与动物交配| 中文字幕制服av| 蜜桃久久精品国产亚洲av| 十八禁国产超污无遮挡网站| 亚洲在线观看片| 99精品在免费线老司机午夜| 国内精品久久久久精免费| 国产色婷婷99| 亚洲av中文字字幕乱码综合| 日韩欧美在线乱码| 欧美人与善性xxx| 日本熟妇午夜| 亚洲av二区三区四区| 在线a可以看的网站| 成人特级黄色片久久久久久久| 天堂中文最新版在线下载 | 直男gayav资源| 丝袜喷水一区| 国产精品麻豆人妻色哟哟久久 | 久久久久久久久大av| 亚州av有码| 亚洲内射少妇av| 最近视频中文字幕2019在线8| 听说在线观看完整版免费高清| 欧美性猛交╳xxx乱大交人| 天美传媒精品一区二区| 一个人观看的视频www高清免费观看| 毛片一级片免费看久久久久| 一本久久中文字幕| 久久久国产成人精品二区| 成熟少妇高潮喷水视频| 午夜精品国产一区二区电影 | 网址你懂的国产日韩在线| 日韩欧美国产在线观看| 成人美女网站在线观看视频| 别揉我奶头 嗯啊视频| 午夜福利成人在线免费观看| 亚洲一区高清亚洲精品| 十八禁国产超污无遮挡网站| 看片在线看免费视频| 在线国产一区二区在线| 成年版毛片免费区| 欧美日韩综合久久久久久| 精品人妻偷拍中文字幕| 日韩制服骚丝袜av| 国产男人的电影天堂91| 天美传媒精品一区二区| 一区二区三区免费毛片| 亚洲四区av| a级毛色黄片| 国产av一区在线观看免费| 国内精品久久久久精免费| 日韩国内少妇激情av| 99久久九九国产精品国产免费| 午夜福利在线观看免费完整高清在 | 成人亚洲欧美一区二区av| 中文亚洲av片在线观看爽| 日韩一本色道免费dvd| 18禁黄网站禁片免费观看直播| 看非洲黑人一级黄片| 久久99热这里只有精品18| 麻豆国产97在线/欧美| 欧美性感艳星| 国产成人a∨麻豆精品| 男人和女人高潮做爰伦理| 非洲黑人性xxxx精品又粗又长| 欧美高清性xxxxhd video| 中文字幕久久专区| 白带黄色成豆腐渣| 两个人的视频大全免费| 国产三级中文精品| av免费观看日本| 91麻豆精品激情在线观看国产| 国产高清视频在线观看网站| 亚洲欧洲日产国产| 搡老妇女老女人老熟妇| 中国美女看黄片| av女优亚洲男人天堂| 欧美色欧美亚洲另类二区| 中文字幕制服av| 级片在线观看| 麻豆一二三区av精品| 内射极品少妇av片p| 插逼视频在线观看| 国产午夜福利久久久久久| 2021天堂中文幕一二区在线观| 美女大奶头视频| 99热只有精品国产| а√天堂www在线а√下载| 男人和女人高潮做爰伦理| 桃色一区二区三区在线观看| 91精品国产九色| 精品久久久噜噜| 少妇的逼水好多| 黄色日韩在线| 日韩欧美 国产精品| 日韩欧美一区二区三区在线观看| 男的添女的下面高潮视频| 婷婷色综合大香蕉| 色吧在线观看| 一级毛片久久久久久久久女| 久久国内精品自在自线图片| 99久国产av精品| 亚洲在线观看片| 少妇熟女aⅴ在线视频| 久久久久久九九精品二区国产| 欧美+亚洲+日韩+国产| 少妇丰满av| 九色成人免费人妻av| 免费观看人在逋| 国产黄色视频一区二区在线观看 | 性插视频无遮挡在线免费观看| 一级黄片播放器| 直男gayav资源| 欧美日本视频| 亚洲成人av在线免费| 精品人妻偷拍中文字幕| 日韩精品有码人妻一区| 国产一区二区三区在线臀色熟女| 毛片女人毛片| 一级av片app| av专区在线播放| 成人特级黄色片久久久久久久| 国产 一区精品| 听说在线观看完整版免费高清| 好男人在线观看高清免费视频| 欧美成人精品欧美一级黄| 99精品在免费线老司机午夜| 国产精品乱码一区二三区的特点| 我的老师免费观看完整版| 国产 一区精品| 国产一区二区在线av高清观看| 午夜免费激情av| 欧美另类亚洲清纯唯美| 18+在线观看网站| 国内精品美女久久久久久| 亚洲天堂国产精品一区在线| 久久精品夜色国产| 精品久久久久久成人av| 色5月婷婷丁香| 亚洲av中文av极速乱| 亚洲精品粉嫩美女一区| 一边摸一边抽搐一进一小说| 又爽又黄无遮挡网站| 97超碰精品成人国产| 成人毛片a级毛片在线播放| 搡女人真爽免费视频火全软件| 青青草视频在线视频观看| 国产美女午夜福利| 久久人妻av系列| 成人高潮视频无遮挡免费网站| av在线观看视频网站免费| 深夜精品福利| 久久韩国三级中文字幕| 国产一级毛片在线| 亚洲丝袜综合中文字幕| 免费av不卡在线播放| 男女下面进入的视频免费午夜| 亚洲最大成人av| 麻豆国产av国片精品| 久久久a久久爽久久v久久| 黄色一级大片看看| 日日啪夜夜撸| 亚洲国产欧美人成| 国产亚洲精品久久久com| av黄色大香蕉| 夫妻性生交免费视频一级片| 神马国产精品三级电影在线观看| 亚洲精品国产成人久久av| 麻豆国产av国片精品| 欧美另类亚洲清纯唯美| 麻豆成人av视频| 久久99精品国语久久久| 精品久久久久久久久av| 亚洲最大成人手机在线| 国产又黄又爽又无遮挡在线| 一个人看视频在线观看www免费| 亚洲精品乱码久久久久久按摩| 有码 亚洲区| 成人av在线播放网站| 成人欧美大片| 不卡一级毛片| 久久中文看片网| 久久韩国三级中文字幕| 欧美3d第一页| 国产精品人妻久久久久久| 亚洲第一区二区三区不卡| 久久亚洲精品不卡| 少妇裸体淫交视频免费看高清| 51国产日韩欧美| 99热精品在线国产| 精品熟女少妇av免费看| 精品一区二区免费观看| 丝袜美腿在线中文| 免费看日本二区| 亚洲无线观看免费| 亚洲av中文av极速乱| 久久久久久久午夜电影| 99在线视频只有这里精品首页| 午夜久久久久精精品| 黄色一级大片看看| 91av网一区二区| 免费大片18禁| 青春草国产在线视频 | 国产精品乱码一区二三区的特点| 国产极品天堂在线| 国产男人的电影天堂91| 国产亚洲av嫩草精品影院| 亚洲天堂国产精品一区在线| 国产精品一区二区在线观看99 | 舔av片在线| 久久人人爽人人片av| 高清毛片免费观看视频网站| 国产精品久久电影中文字幕| 看十八女毛片水多多多| 黄片wwwwww| 欧美激情在线99| 中文字幕制服av| 看免费成人av毛片| eeuss影院久久| 少妇猛男粗大的猛烈进出视频 | 特大巨黑吊av在线直播| 中国美白少妇内射xxxbb| 亚洲激情五月婷婷啪啪| 久久久久久久午夜电影| 在线免费观看不下载黄p国产| 久久亚洲国产成人精品v| 神马国产精品三级电影在线观看| 国产精品日韩av在线免费观看| 亚洲成a人片在线一区二区| 搞女人的毛片| 少妇丰满av| 成人无遮挡网站| 免费观看精品视频网站| 91午夜精品亚洲一区二区三区| 男女边吃奶边做爰视频| 51国产日韩欧美| 麻豆成人av视频| 成人国产麻豆网| 最近手机中文字幕大全| 成人综合一区亚洲| 亚洲精品日韩在线中文字幕 | 亚洲av电影不卡..在线观看| 老熟妇乱子伦视频在线观看| 亚洲av.av天堂| 亚洲国产色片| 国产欧美日韩精品一区二区| 日本免费一区二区三区高清不卡| av在线天堂中文字幕| 国产亚洲欧美98| 特级一级黄色大片| 久久精品久久久久久噜噜老黄 | 男女边吃奶边做爰视频| 成人漫画全彩无遮挡| 插阴视频在线观看视频| 秋霞在线观看毛片| 赤兔流量卡办理| 亚洲真实伦在线观看| 成人午夜高清在线视频| 直男gayav资源| 99久久久亚洲精品蜜臀av| 亚洲精品粉嫩美女一区| 麻豆av噜噜一区二区三区| 精品少妇黑人巨大在线播放 | 悠悠久久av| 黄色视频,在线免费观看| 国产在线男女| 日韩三级伦理在线观看| 极品教师在线视频| 国产亚洲5aaaaa淫片| 日韩欧美精品免费久久| 老女人水多毛片| 12—13女人毛片做爰片一| 日韩强制内射视频| 极品教师在线视频| av福利片在线观看| 亚洲国产欧洲综合997久久,| 亚洲人与动物交配视频| 亚洲,欧美,日韩| 婷婷六月久久综合丁香| 国产精品嫩草影院av在线观看| 亚洲av中文字字幕乱码综合| 亚洲乱码一区二区免费版| 日韩av在线大香蕉| 中文字幕久久专区| 亚洲乱码一区二区免费版| 亚洲五月天丁香| 麻豆成人av视频| 波多野结衣高清作品| 国产精品久久电影中文字幕| 插逼视频在线观看| 色综合站精品国产| 亚洲av不卡在线观看| 少妇高潮的动态图| 12—13女人毛片做爰片一| 91在线精品国自产拍蜜月| 国产精品电影一区二区三区| 久久精品国产亚洲av香蕉五月| 亚洲国产色片| 人妻制服诱惑在线中文字幕| 亚洲自偷自拍三级| 亚洲av电影不卡..在线观看| 永久网站在线| 天美传媒精品一区二区| 又黄又爽又刺激的免费视频.| 日本五十路高清| 午夜老司机福利剧场| 一级毛片aaaaaa免费看小| 国产高清激情床上av| 在线免费十八禁| 亚洲欧美日韩东京热| 爱豆传媒免费全集在线观看| 精品无人区乱码1区二区| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧美在线一区| 久久精品久久久久久久性| 少妇熟女aⅴ在线视频| 深夜精品福利| 亚洲一区高清亚洲精品| 一级黄色大片毛片| 国产成人福利小说| 成年av动漫网址| 国产爱豆传媒在线观看| 国产黄片视频在线免费观看| 国产综合懂色| 黄片无遮挡物在线观看| 97热精品久久久久久| 亚洲人成网站在线观看播放| 少妇丰满av| 成年版毛片免费区| 男人舔女人下体高潮全视频| 99在线视频只有这里精品首页| 亚洲最大成人中文| 亚洲内射少妇av| 高清毛片免费看| 国产精品综合久久久久久久免费| av视频在线观看入口| 啦啦啦观看免费观看视频高清| 国产真实伦视频高清在线观看| 亚洲欧美日韩高清专用| 看十八女毛片水多多多| or卡值多少钱| 亚洲av成人精品一区久久| 99国产极品粉嫩在线观看| 美女内射精品一级片tv| 国产成人午夜福利电影在线观看| 国产成人91sexporn| 啦啦啦啦在线视频资源| 国产成人精品久久久久久| 观看美女的网站| 联通29元200g的流量卡| 久久精品久久久久久噜噜老黄 | 在线免费观看的www视频| 熟女人妻精品中文字幕| 免费av不卡在线播放| 黄色视频,在线免费观看| 十八禁国产超污无遮挡网站| 村上凉子中文字幕在线| 日韩亚洲欧美综合| 国产精品.久久久| 校园人妻丝袜中文字幕| 成人午夜精彩视频在线观看| 婷婷六月久久综合丁香| 久久久久性生活片| 精品熟女少妇av免费看| 成人午夜高清在线视频| 午夜免费男女啪啪视频观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产三级中文精品| 性色avwww在线观看| 国内精品一区二区在线观看| 中国国产av一级| 日韩一区二区视频免费看| 久久婷婷人人爽人人干人人爱| 成人鲁丝片一二三区免费| 久久精品人妻少妇| 久久九九热精品免费| 插逼视频在线观看| 91在线精品国自产拍蜜月| 色5月婷婷丁香| 亚洲精品粉嫩美女一区| 国产大屁股一区二区在线视频| 亚洲精品日韩av片在线观看| 精品人妻熟女av久视频| 插逼视频在线观看| 国产成人a∨麻豆精品| 亚洲国产日韩欧美精品在线观看| 哪里可以看免费的av片| 99久久成人亚洲精品观看| 精华霜和精华液先用哪个| 国产中年淑女户外野战色| 国产免费一级a男人的天堂| 欧美xxxx黑人xx丫x性爽| 看免费成人av毛片| 偷拍熟女少妇极品色| 欧美日本视频| 校园人妻丝袜中文字幕| 麻豆成人av视频| 99九九线精品视频在线观看视频| 天堂网av新在线| av免费在线看不卡| 亚洲美女搞黄在线观看| 日本色播在线视频| 国产精品一二三区在线看| 男女啪啪激烈高潮av片| 国内精品宾馆在线| 欧美区成人在线视频| 嫩草影院入口| 看免费成人av毛片| 一夜夜www| 国产午夜精品论理片| 国产视频首页在线观看| 看片在线看免费视频| 国产亚洲91精品色在线| 啦啦啦韩国在线观看视频| 亚洲自偷自拍三级| 亚洲在线自拍视频| 在线免费观看的www视频| 日本三级黄在线观看| 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| 自拍偷自拍亚洲精品老妇| 久久精品国产亚洲网站| 欧美又色又爽又黄视频| 中文字幕精品亚洲无线码一区| 男的添女的下面高潮视频| 在现免费观看毛片| 午夜福利在线观看免费完整高清在 | 99热6这里只有精品| ponron亚洲| 人妻系列 视频| 午夜福利在线在线| 日韩一区二区三区影片| 精品人妻偷拍中文字幕| 一进一出抽搐动态| 国产av在哪里看|