• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel energetic framework with the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole for energy-stability balanced explosive

    2023-10-09 04:29:48ChengchuangLiHaoGuJieTangGuojieZhangGuangbinChengHongweiYang
    Defence Technology 2023年9期

    Cheng-chuang Li,Hao Gu,Jie Tang,Guo-jie Zhang,Guang-bin Cheng ,Hong-wei Yang

    School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China

    Keywords:Fused and bridged rings Energetic skeleton Balanced energy-stability Energetic materials

    ABSTRACT In recent years,the introduction of fused rings own high density and low sensitivity has promoted the development of energetic materials.However,the development of energetic compounds containing fused and bridged rings by introducing multiple nitrogen heterocycles at different sites of fused rings is still difficult to progress,which seriously limits the emergence of advanced energetic compounds.In this study,a series of energetic materials choosing different nitrogen rich heterocycles at the vacancies of the fused ring,i.e.,neutral compound 5,6 and their ionic derivatives(compounds 7-12)were designed and synthesized.Compounds 5 and 6 were further confirmed by single crystal X-ray diffraction,while the crystal analysis and theoretical calculations were carried out to explore the relationship between crystal structure and physicochemical properties.All of the newly synthesized compounds (5-12) are insensitive to mechanical stimulation (IS >40 J;FS ≥342 N) and they own the high detonation velocity (D:8322-9075 m/s).Notably,hydrazine salt 11 own the higher detonation velocity (9075 m/s) and powder density(1.83 g/cm3),but exhibits lower sensitivity(IS>40 J)than the classical energetic compound RDX(8795 m/s,1.80 g/cm3,7.5 J).It is obvious that the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole may be a new energetic skeleton for synthesising the heterocyclic compounds with balanced energy-stability.

    1.Introduction

    As a unique branch of chemical materials,the strategies to design High Energy Density Materials(HEDMs)in civil and military has been widely concerned in recent decades[1].The design core of novel HEDMs is to balance high energy and low sensitivity at the same time [2].The existing nitrogen rich heterocyclic compounds like HMX and CL-20 have high heat of formation and the enhanced detonation performance,but their application is limited owing to the high impact and friction sensitivity [3-5].Therefore,it is necessary to give consideration to both the safety and the energy performance when exploring the synthesis strategy of new energetic frameworks.The following effective strategies for designing these kinds of ideal energetic compounds may be helpful for reference: (1) introducing amino groups into energetic frameworks to enhance intramolecular or intermolecular hydrogen bond interactions;(2) constructing energetic metal-organic frameworks;(3) constructing the fused ring skeleton with larger πconjugate system[6-8].

    In exploring the synthesis of modern energetic compounds,the construction of fused ring skeleton (3) is an efficient way to improve the performance of new high energetic compounds.Owing to the unique cage structure or polycyclic coplanar structure and the conjugated system,the fused ring compounds show positive heat of formation,high density and good stability [9,10].Various of fused energetic materials containing 1,2,4-triazine have been synthesized with good energetic performance and stability over recent years[11-14].In particular,the fused compounds based on 5-amine-1,2,4-triazine and tetrazole energetic framework have attracted the extensive attention because of their good properties.For instance (Scheme 1),7,8-dinitro-pyrazolium [5,1-C] [1,2,4]triazine-3-(1H-tetrazole-5-yl)-4-amine (I) and 7-nitro-[1,2,4]triazolo [5,1-c] [1,2,4]triazin-3-(1H-tetrazol-5-yl)-4-amine (II)display high detonation velocities(8755 m/s and 8651 m/s)and low sensitivities over 35 J[11,12].The ortho amino group and tetrazole ring on the fused ring stabilize the molecular structure of these energetic compounds through intramolecular and intermolecular hydrogen bond interactions [15].At the same time,incorporating the tetrazole group into the fused framework could improve the stability and density through hydrogen bonding interactions [16].

    However,the reported energetic compounds based on 5-amine-1,2,4-triazine and tetrazole energetic framework exhibit undesirably defects(Scheme 1).For instance,compoundIand compoundIIhave high density and detonation properties,but they own the poor thermal stability (Td(onset): 174 ℃ (I),181 ℃ (II)) [11,12].Moreover,3-nitro-6-(1H-tetrazol-5-yl)-[1-3]triazolo [5,1-c] [1,2,4]triazin-7-amine (III) have high sensitivity (IS: 5 J),while compounds

    IIIand 6-(1H-tetrazol-5-yl)tetrazolo [5,1-c] [1,2,4]triazin-7-amine(IV) own the low energy density (ρ: 1.77 g/cm3,1.795 g/cm3)[12,13].Herein,in order to design energetic compounds with high explosive properties and good molecular stability,we tried to develop the derivatives of 5,6-fused triazolo-triazine ring which contain 5-amine-1,2,4-triazine and tetrazole [17].There are some significant advantages of the 5,6-fused triazolo-triazine: (a)numerous energetic C-N,N-N,C=N and N=N bonds provide a large energy storage capacity;(b) low mechanical sensitivity;(c)enough vacancies for detonation groups.After that,the most urgent problem to be solved is to construct nitrogen rich heterocycle at the vacancies of the 5,6-fused triazolo-triazine ring.The nitropyrazole rings own high heat of formation and good stability,which can be effective moieties for improving comprehensive properties of energetic compounds [18-21].There are few reports that two vacancies of the fused ring backbone were explosive modified with different nitrogen rich heterocycles through the C-C bond.It is proved that the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole may be a new energetic skeleton for synthesising the heterocyclic compounds with balanced energystability.

    Based on the above analysis,two neutral energetic compounds5and6and their divalent cationic salts (compounds7-12) were synthesized (Scheme 1).The prepared compounds were characterized by multinuclear nuclear magnetic resonance (NMR)spectroscopy,elemental analysis (EA) and differential scanning calorimetry(DSC).In addition,based on the obtained single-crystal parameters,quantum chemistry calculations of compounds5and6are performed to investigate the structure-property relationships.

    2.Results and discussion

    2.1.Synthesis

    In this study,5-amine-3-(5-nitro-1H-pyrazol)-1H-1,2,4-triazol(1) can be easily synthesized according to the reported procedure[17].In the first step,compound1was used as the starting material to synthesize compound3through diazotization reaction and condensation reaction with a yield of 89.0%.(Scheme 2).According to the method in literature[11],a closed-loop reaction will occur in compound3when the temperature is heated to 85 ℃.However,only a small amount of flocs separated out after diluting the solution with water in the reaction system.We tried to increase the reaction temperature in a gradient of 10 ℃.To our delight,when the temperature rises to 105 ℃,compound5can be easily collected by filtering with a yield of 92.5%.Considering the energy limitation of compound5,nitro group was attempted to introduce into the vacancy of pyrazole ring by one-step nitration.However,compound6was not successfully obtained(Scheme 2)by using nitrate sulfur mixed acid.Therefore,5-amine-3-(4,5-dinitro-1H-pyrazol)-1H-1,2,4-triazol (2)was selected as substrate to synthesize compound6.Firstly,compound4(yield: 77.8%) were obtained following the similar procedure [22].After that,compound4was further converted to compound6with energy stability equilibrium by reacting with sodium azide at 105 ℃ (yield: 90.6%).

    Scheme 2.Synthetic routes of 5-6 and their energetic salts 7-12.

    In order to further improve the energy properties of neutral compounds,compounds5and6reacted with monovalent organic bases in acetonitrile at a stoichiometric ratio of 1:2 to produce the corresponding energetic salts7-12 with the yields ranging from 88.5% to 92.4% (Scheme 2).

    2.2.Single crystal X-ray structure analysis

    In order to determine the structure of the compounds to obtain more structural information,compounds5and6were characterized by single crystal X-ray structure determination.The crystals of both compounds5and6were recrystallized from dimethyl sulfoxide (DMSO),while their molecular structures are depicted in Fig.1(a) and Fig.2(a).Compound5?3DMSO crystallizes in the monoclinic space group P21(Z=2),which has a calculated density of 1.494 g/cm3at 173 K.Compound 6?3DMSO crystallizes in the monoclinic space group P21/n.And there be four molecules per unit cell (Z=4) with the calculated density of 1.526 g/cm3at 173 K.

    Fig.1.(a) The molecular structure of 5?3DMSO;(b) The planarity of 5?3DMSO;(c) The packing diagram and stacking diagram of 5? 3DMSO.

    Fig.2.(a) The molecular structure of 6?3DMSO;(b) The planarity of 6?3DMSO;(c) The packing diagram and stacking diagram of 6? 3DMSO.

    As shown in Fig.1(b),the dihedral angle(4.106°)confirmed that the triazolo-triazine ring and nitropyrazole ring of compound5?3DMSO are nearly in the same plane.At the same time,the torsion angles display that the nitro and pyrazole are almost coplanar(O4-N1-C1-N2 179.3 (13)°,O5-N1-C1-N2 -3.1 (18)°).On the other side,the amino group and the triazolotriazine bicyclic ring are almost coplanar(N9-C6-C7-N8 180.0(7)°,N9-C6-C7-C8 0.7(12)°).There is an intramolecular hydrogen bond existing in the crystal structure of compound 5?3DMSO(N9-H9A…N12)with the length of 3.012 ?.The crystals of compound 5 exhibit the classic face-to-face stacking,and the nearest distance between the two layers is 3.1 ?(Fig.1(c)).It is worth mentioning that the classic faceto-face stacking mode can effectively explain the low mechanical sensitivity of compound 5 [23].

    In the structure of compound6?3DMSO,the fused ring are not coplanar with pyrazole ring,which can be determined by C2-C3-C4-N5(-10.3(8)°)and C2-C3-C4-N6(170.0(5)°)as the dihedral angle of the fused-tetrazolo ring and triazole ring(Fig.2(b)).Furthermore,the two nitro groups in the ortho position on the pyrazole are slightly twisted out of plane.As observed,the torsion angles of one nitro and pyrazole are O1-N1-C1-N3 (10.8(7)°),O2-N1-C1-N3 -168.4 (5)°) while the other nitro group are O3-N2-C2-C1 (74.3 (6)°),O4-N2-C2-C1 (-106.4 (7)°).In the conjoined structure of fused and tetrazole rings,there is a stable system formed by intramolecular hydrogen bond between tetrazole ring and amino group(N10-H10B…N11 2.879 ?),which helps compound 6 to be more stable.As shown in Fig.2(c),a wave-like stacked crystal structure emerges during the stacking process with the interlayer distance of 2.9 ? (Fig.2(c)).

    2.3.Physic and energetic properties

    All powdered compounds were dried sufficiently at 25 ℃ to remove the solvent before testing,which was judged by differential scanning calorimetry (DSC).The energetic properties of compounds5-12are shown in Table 1.

    Table 1 The energetic properties of compounds 5-12.

    The densities of compounds5-12were measured by using argon gas pycnometer at room temperature [24].Among all these compounds,the compounds5and6(1.82 g/cm3,ρ=1.87 g/cm3)own the higher density than that of traditional energetic compound RDX(ρ=1.80 g/cm3,while the density of anionic salts7-12is in the range of 1.76-1.87 g/cm3.The heats of formation(△Hfc)of compounds5-12was calculated by using Gaussian 09,which exhibits the positive high numerical HOF values due to the high enthalpy of the fused rings.Generally speaking,high nitrogen organic salts have higher nitrogen content,formation enthalpy and detonation performance,but lower density than neutral compounds.Comparing the ionic compounds7-12,it is easy to find that the heat of formation of ammonium salt,hydroxylamine salt and hydrazine salt increase in turn.Although hydrazine salts8and11have a lower density than neutral compounds,their heat of formation is higher,which may be related to the high nitrogen content and rich N=N bonds of hydrazine salts.Using the experimental density at room temperature,the detonation characteristics were calculated by EXPLO5(version 6.01)program.The detonation velocity and detonation pressure of5-12lie in the range from 8322 m/s to 9075 m/s and 25.4-32.3 GPa,respectively.Among them,the detonation velocity of cationic salts7-12is higher than that of their neutral compounds.Notably,the detonation velocity performance of hydrazine salt11(D=9075 m/s) and hydroxylamine salt12(D=8843 m/s) is higher than that of RDX(D=8795 m/s).Hydrazine salts8and11have higher detonation properties than other cationic salts,which may be related to the higher nitrogen content,higher heat of formation and abundant N=N bonds of hydrazine salts.

    The sensitivity was tested with standard BAM fall hammer and BAM friction testing machine to evaluate the safety of compounds against external stimuli [25].All of the newly synthesized compounds5-12(IS>40 J,FS ≥342 N)own the lower sensitivity than the traditional explosives TNT (IS=15 J,FS=353 N).Herein,in order to better explain the relationship between sensitivity and structure of compounds5and6,the weak interactions were analyzed by employing two-dimensional fingerprint and Hirshfeld surface [26].Sensitivity can be demonstrated by the shape of the Hirshfeld surface.On the surface of Hirshfeld,red represents the area with high degree of close contact,and blue represents the area with low degree of close contact[27].The molecules of compounds5and6are approximately coplanar,and the red region (intermolecular interaction force) is large and evenly distributed (Fig.3(a) and Fig.3(b)).According to the two-dimensional fingerprints of compounds5and6in Figs.3(b)and 3(d),it can be easily found that the proportions of N-H,H-N,O-H and H-O in the total weak interaction are 61.8% and 59.0% of5and6,respectively.Compound5has a higher hydrogen bond ratio,which can partly explain its lower sensitivity than compound6.In addition,the π-π interaction(C-N and N-C interaction) (9.90%) of compound5is higher than that of compound6(9.30%).Compound5has the stronger π-π stacking interactions,making it more stable.Thus,the above results indicate that the energy of the compound might increase with the increasing of the nitro group number on the pyrazole ring,while the weak interaction will reduce in the meantime.In addition,the strong O-O interaction increases the possibility of accidental explosion,which also leads to higher sensitivity of compounds.As shown in Fig.3(e),the low percentages of O-O interactions for compounds5and6(1.00% for5and 1.90% for6) indicates that compound6has lower sensitivity.

    Fig.3.Hirshfeld surfaces,2D-fingerprint plots and percentage contribution for (a) 5 and (c) 6,(b) 5 and (d) 6,(e) (5 and 6).

    In order to study the effect of the weak intermolecular and intramolecular interactions on crystal packing of5and6,the noncovalent interaction (NCI) plots were applied [28].Generally,the blue region represents the hydrogen bond interaction,while the green flakes represent π-π interactions.As shown in Fig.4(a),the clear green layer between the two molecules indicates that the compound5own strong π-π interaction.Moreover,the larger green flakes indicate the stronger π-π interaction in compound5(Figs.4(a) and 4(b)).The extensive π-π interactions may suggest that compound5own low impact and friction sensitivity.In addition,there are obvious intramolecular hydrogen bonds in both compounds5and6(Figs.4(a)and 4(b)).The existence of hydrogen bond and strong π -π interaction contribute to the satisfactory density and low sensitivity of compounds5and6,which is consistent with the experimental results.

    Fig.4.NCI plots for compound (a) 5 and (b) 6.

    Fig.5.3D-DSC curve of all energetic compounds.

    The thermodynamic stability is the focus of the test to evaluate the explosives [29].The thermal stability of all the synthesized compounds5-12was determined by differential scanning calorimetry measurement.As shown in Fig.5,all compounds exhibit an exothermic peak,which indicates that they decompose without melting point.Compounds5and6began to decompose from 250 ℃ to 201 ℃,while their energetic salts5-12have the onset decomposition temperature between 194 ℃ and 261 ℃.It is noteworthy that compound5and6has the high peak temperature of 272 ℃ and 217 ℃,which is higher than the peak temperature of RDX (Td=204 ℃) (Fig.5).

    Compared with compound5,a concentrated red region near the pyrazole ring of compound6changes to a blue region,indicating that positive charge accumulation begins to change to negative charge accumulation.In order to further explore the difference of thermodynamic stability between mononitro fused compound5and dinitro fused compound6,the molecular electrostatic potential(ESP) analysis were drawn [30].Different color depths in the ESP diagram represent the ESP values in the molecules which was drawn by the Multiwfn software.As shown in Fig.6,compared with compound5,a concentrated red region near the pyrazole ring changes to the blue region of compound6,which indicates that the positive charge accumulation begins to change to negative charge accumulation.At the same time,with the introduction of nitro,the maximum positive charge in the red region of N-H position of pyrazole ring increases to 68.51 kcal/mol.In addition,the maximum electrostatic potential near amino group and N-H of tetrazole in compound6increases significantly compared with that of compound5(58.64 kcal/mol),which can be used to explain the worse stability of compound6(Figs.6(a)and 6(b)).

    Fig.6.Electrostatic potential (ESP) of (a) 5 and (b) 6.

    Compatibility refers to the ability when explosives are mixed or contacted with other materials,the physical and chemical properties of the system will not exceed the allowable range compared with the original components.It is necessary to consider the compatibility closely related to the safety and reliability of explosives.The DSC diagram at the heating rate of 2,5,10 and 20 K/min is displayed in Supporting Information,so as to obtain the decomposition peak temperature of the individual(mixed)system(Table 2).The peak temperature deviation value(ΔTp)is calculated according to the decomposition peak at different heating rates in Table 2.According to the Ozawa formula,the apparent activation energy (ΔE)with the changing rate ΔE/Eais calculated [31].The compatibility of samples can be judged according to ΔTpand ΔE/Ea.As shown in Table 3,the compatibility between RDX and compound 6,NC and compound 5 has reached compatibility level 1,which indicates that they have good compatibility respectively.At the same time,the compatibility of RDX with compound 5,NC and compound 6 reached compatibility level 2 respectively.The above analysis can be used to prove that compounds 5 and 6 have good safety and reliability when mixed with traditional energetic compounds.

    Table 2 Decomposition peak temperature under different beating rates.

    Table 3 Opinion of explosive’s compatibility.

    3.Conclusions

    In summary,with the combination of 5,6-fused triazolo-triazine and nitropyrazole-tetrazole,the energy-stability balanced compounds 5 and 6 were synthesized in this work.Meanwhile,a series of divalent cationic salts 7-9 and 10-12 were synthesized based on neutral compounds 5 and 6,respectively.Notably,all these fused compounds demonstrate low sensitivity(IS>40 J;FS ≥342 N)and the high detonation velocity (D: 8322-9075 m/s).Among them,energetic salt (11) exhibits better integrated properties(D=9075 m/s,IS >40 J,ρ=1.83 g/cm3) than that of the RDX(D=8795 m/s,IS=7.5 J,ρ=1.80 g/cm3).In order to study the relationship between structure and properties,the NCI,ESP,twodimensional fingerprint and Hirshfeld surface were applied.Through the analysis of compatibility,it can be proved that compounds 5 and 6 have better safety and reliability when mixed with traditional energetic compounds(RDX and NC).Based on the above analysis,it is obvious that the combination of 5,6-fused triazolotriazine and nitropyrazole-tetrazole is an effective method to design energetic materials with high energy and low sensitivity.

    4.Experimental section

    4.1.Synthesis of 3-carbonitrile-4-amino-7-(5-nitro-1H-pyrazol-3-yl)-[1,2,4]triazolo [5,1-c] [1,2,4]triazine (3)

    Compound1(1.97 g,10.0 mmol) was slowly added to the mixture of 3 ml of concentrated hydrochloric acid in 10 ml of water.The sodium nitrite(0.75 g,11.0 mmol)and water(6 ml)was added to the mixture at -5 ℃ for 1 h.Then,a mixture of malononitrile(0.50 g,10.5 mmol) and sodium acetate (3.97 g,11.7 mmol) was added to the system.The reaction system was stirred at -5 ℃ for 2 h,and then raised to 30 ℃ for overnight reaction.The precipitate was filtered,washed with ethanol and dried at 30 ℃ to give a brown solid(2.40 g,89.0%).1H NMR(500 MHz,DMSO-d6):6.05(br),8.92 (s) ppm.13C NMR (125 MHz,DMSO-d6) δ 111.6,115.5,132.6,134.2,136.8,144.6,155.85,158.1 ppm.Elemental analysis for C8H4N10O2(272.19):calcd.C 35.30,H 1.48,N 51.46%.Found:C 35.35,H 1.49,N 51.40%.

    4.1.1.Synthesis of 4-amine-3-(1h-tetrazol-5-yl)-7-(5-nitro-1Hpyrazol-3-yl)-[1,2,4]triazolo [5,1-c] [1,2,4]triazin (5)

    0.35 g of NaN3and compound3(1.36 g,5.0 mmol)was added to the 40 ml of N,N-dimethylformamide at 0 ℃ and stirred for half an hour.Slowly heat to 105 ℃ and react for 24 h.After that,a large number of solid precipitates out.The precipitate was filtered,washed with ethanol and dried at 30 ℃ to give a brown black solid(1.44 g,92.5%).1H NMR (500 MHz,DMSO-d6): 7.54 (s),8.99 (s),10.03(s)ppm.13C NMR(125 MHz,DMSO-d6):δ 101.9,120.8,136.3,140.40,152.5,156.2,156.4,156.8 ppm.IR (KBr): 3608,3426,3209,3153,3016,2970,2480,1641,1580,1567,1529,1469,1431,1385,1369,1305,1277,1256,1200,1174,1068,997,930,820,752,700,626,587 cm-1.Elemental analysis for C8H5N13O2(315.22):calcd.C 30.48,H 1.60,N 57.77%.Found: C 30.58,H 1.60,N 57.67%.

    Procedure for prepare salts 7-9.

    Add the 28% ammonia (0.02 g,1.4 mmol),98% hydrazine monohydride (0.71 g,1.4 mmol) and 50% hydroxylamine water(0.92 mg,1.4 mmol) to the mixed solution of compound5(0.31 g,1.0 mmol)in acetonitrile(15 ml)under stirring at 25 ℃,while the reaction was maintained for half an hour.The precipitate obtained by filtration was washed with acetonitrile.

    Dark brown solid,yield: 0.32 g,91.2%.1H NMR (500 MHz,DMSO-d6): 7.45 (s),7.66 (br) ppm.13C NMR (125 MHz,DMSO-d6):δ 102.3,126.8,139.6,140.4,156.0,157.7,158.4,159.2 ppm.IR (KBr):3741,3562,3146,2988,2813,1861,1620,1580,1518,1477,1475,1259,1196,1179,1112,1011,937,902,822,778,732,707,626,580 cm-1.Elemental analysis for C8H11N15O2(349.12): calcd.C 27.51,H 3.17,N 60.15%.Found: C 27.55,H 3.19,N 60.09%.

    Hydrazinium salt (8).

    Dark yellow solid,yield: 0.34 g,90.7%.1H NMR (500 MHz,DMSO-d6):7.27 (s),7.50 (s) ppm.13C NMR (125 MHz,DMSO-d6):δ 102.4,126.1,139.5,142.2,155.52,156.1,158.1,160.6 ppm.IR(KBr):3401,3307,3142,2845,2603,2169,1641,1585,1501,1486,1536,1486,1361,1291,1158,1070,1025,997,972,944,825,784,749,623,560 cm-1.Elemental analysis for C8H13N17O2(379.31): calcd.C 25.33,H 3.45,N 62.78%.Found: C 25.33,H 3.46,N 62.77%.

    Brown solid,yield:0.35 g,89.3%.1H NMR(500 MHz,DMSO-d6):7.31 (s),8.04 (br) ppm.13C NMR (125 MHz,DMSO-d6): δ 101.9,126.9,137.8,139.7,155.9,156.9,157.2,158.2 ppm.IR (KBr): 3674,3559,3121,2985,2897,2495,1861,1631,1571,1518,1455,1342,1243,1204,990,937,906,829,766,693,623,570 cm-1.Elemental analysis for C8H11N15O4(381.28): calcd.C 25.20,H 2.91,N 55.51%.Found: C 25.25,H 2.92,N 55.45%.

    4.1.1.1.Synthesis of 3-carbonitrile-4-amino-7-(4,5-dinitro-1H-pyrazol-3-yl)-[1,2,4]triazolo[5,1-c][1,2,4]triazine(4).Compound 4 was synthesized by using a synthetic method similar to that of compound 3,but compound 2 (2.40 g,10 mmol) was used instead of compound 1.Yellow solid,yield: 2.42 g,77.8%.1H NMR (500 MHz,DMSO-d6): 8.39 (s) ppm.13C NMR (125 MHz,DMSO-d6): δ 110.8,115.1,128.0,135.9,144.3,149.2,155.9,159.2 ppm.Elemental analysis for C8H3N11O4(317.79): calcd.C 30.29,H 0.95,N 48.58%.Found: C 30.38,H 0.96,N 48.48%.

    4.1.1.2.Synthesis of 4-amine-3-(1h-tetrazol-5-yl)-7-(4,5-dinitro-1Hpyrazol-3-yl)-[1,2,4]triazolo [5,1-c] [1,2,4]triazin (6).0.35 g of NaN3and compound 4 (2.02 g,6.0 mmol) were suspended in 40 ml of DMF.The solution was heated to 105 ℃ and reacted for 12 h.The solution is concentrated and then diluted with an aqueous solution of sodium chloride until the maximum amount of sediment is present.The precipitate was filtered,washed with ethanol and dried at 30℃ to obtain brownish black solid,yield:3.24 g,90.6%.1H NMR (500 MHz,DMSO-d6):7.75 (s),8.31 (s) ppm.13C NMR(125 MHz,DMSO-d6):δ 120.9,127.3,133.4,140.9,148.2,152.6,156.2,156.4 ppm.IR (KBr): 3653,3562,3205,2985,2987,2904,2141,1644,1557,1476,1399,1393,1340,1238,1193,1106,1018,944,902,850,759,679,644,580,490 cm-1.Elemental analysis for C8H4N14O4(360.21): calcd.C 26.28,H 1.12,N 54.44%.Found: C 26.30,H 1.15,N 54.39%.

    Procedure for prepare salts 10-12.

    Add the 28% ammonia (0.02 g,1.4 mmol),98% hydrazine monohydride (0.71 g,1.4 mmol) and 50% hydroxylamine water(0.92 mg,1.4 mmol) to the mixed solution of compound6(0.36 g,1.0 mmol) in acetonitrile(15 ml)under stirring at 25 ℃,while the reaction was maintained for half an hour.The precipitate obtained by filtration was washed with acetonitrile.

    Brown solid,yield:0.35 g,88.5%.1H NMR(500 MHz,DMSO-d6):δ 6.32 (s),7.66 (br) ppm.13C NMR (125 MHz,DMSO-d6): δ 125.9,128.2,137.4,139.5,149.5,155.7,156.3,156.8 ppm.IR (KBr): 3569,3167,2985,2127,1693,1567,1411,1492,1418,1322,1256,1151,1105,1067,1032,951,848,763,693,667,558 cm-1.Elemental analysis for C8H10N16O4(394.28): calcd.C 24.37,H 2.56,N 56.84%.Found: C 24.40,H 2.60,N 56.77%.

    4.1.1.3.Hydrazinium salt (11).Brown solid,yield: 0.39 g,92.4%.1H NMR (500 MHz,DMSO-d6): δ 6.33 (s),7.73 (br) ppm.13C NMR(125 MHz,DMSO-d6):δ 126.1,128.2,137.4,139.6,149.5,155.8,156.3,156.8 ppm.IR (KBr): 3664,3328,2985,2901,2614,2162,1630,2585,1480,1378,1350,1319,1249,1154,1105,1028,994,846,808,752,693,616,581 cm-1.Elemental analysis for C8H12N18O4(424.31):calcd.C 22.65,H 2.85,N 59.42%.Found:C 22.70,H 2.86,N 59.36%.

    Hydroxylammonium salt (12).

    Brown solid,yield:0.38 g,90.2%.1H NMR(500 MHz,DMSO-d6):δ 7.18 (s),7.78 (s) ppm.13C NMR (125 MHz,DMSO-d6): δ 125.3,128.2,137.3,139.7,149.5,155.8,157.6,159.7 ppm.IR (KBr): 3681,2995,2971,2897,2185,1637,1570,1518,1508,1445,1396,1329,1245,1165,1046,1009,1011,948,860,780,630,574 cm-1.Elemental analysis for C8H10N16O6(426.27):calcd.C 22.54,H 2.36,N 52.57%.Found: C 22.59,H 2.41,N 52.47%.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant No.21875110,22075143) and the Science Challenge Project.H.Y thanks the Qing Lan Project for the grant.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.dt.2022.10.003.

    色婷婷久久久亚洲欧美| 亚洲精品在线美女| 色综合欧美亚洲国产小说| 美女高潮到喷水免费观看| 欧美 亚洲 国产 日韩一| 中国国产av一级| 中文精品一卡2卡3卡4更新| 两个人免费观看高清视频| 久热爱精品视频在线9| e午夜精品久久久久久久| 日韩视频一区二区在线观看| 女人被躁到高潮嗷嗷叫费观| 一区二区av电影网| 成年av动漫网址| 国产区一区二久久| 国产日韩欧美亚洲二区| 精品一区二区三区av网在线观看 | 啦啦啦视频在线资源免费观看| 久久久国产成人免费| 欧美黑人欧美精品刺激| 久久久久久久大尺度免费视频| 国产99久久九九免费精品| av超薄肉色丝袜交足视频| 国产不卡av网站在线观看| 老熟妇乱子伦视频在线观看 | 国产成人a∨麻豆精品| 美女主播在线视频| 国产三级黄色录像| 极品少妇高潮喷水抽搐| 久久久久久久精品精品| 亚洲黑人精品在线| 免费黄频网站在线观看国产| 一区二区三区激情视频| 97人妻天天添夜夜摸| 国产精品久久久久成人av| 久久 成人 亚洲| 亚洲人成电影免费在线| 两个人免费观看高清视频| 精品亚洲成a人片在线观看| 精品国产超薄肉色丝袜足j| 一区二区三区乱码不卡18| 天天操日日干夜夜撸| 久久精品国产亚洲av香蕉五月 | 黑人巨大精品欧美一区二区mp4| 高潮久久久久久久久久久不卡| 欧美黄色淫秽网站| 性色av一级| 一本综合久久免费| 狂野欧美激情性xxxx| 免费高清在线观看日韩| 欧美激情极品国产一区二区三区| 亚洲欧美色中文字幕在线| 啦啦啦啦在线视频资源| 日韩一卡2卡3卡4卡2021年| 少妇裸体淫交视频免费看高清 | 午夜91福利影院| 欧美在线一区亚洲| 久久天堂一区二区三区四区| 狂野欧美激情性bbbbbb| 亚洲 欧美一区二区三区| 一级毛片电影观看| 一级片'在线观看视频| 久久国产精品大桥未久av| 在线观看人妻少妇| 国产视频一区二区在线看| 久久99热这里只频精品6学生| 国产精品亚洲av一区麻豆| 中亚洲国语对白在线视频| 成年人免费黄色播放视频| 老汉色∧v一级毛片| 国产av国产精品国产| 波多野结衣一区麻豆| 成年人免费黄色播放视频| 国产xxxxx性猛交| 丝袜在线中文字幕| 一本久久精品| 99精品久久久久人妻精品| 叶爱在线成人免费视频播放| 少妇被粗大的猛进出69影院| 天天躁夜夜躁狠狠躁躁| 男人爽女人下面视频在线观看| 黄片播放在线免费| 大码成人一级视频| 青草久久国产| 亚洲七黄色美女视频| 亚洲第一青青草原| 一区福利在线观看| 丁香六月天网| 久久精品国产a三级三级三级| 国产精品国产三级国产专区5o| 老司机在亚洲福利影院| 久久久久国产精品人妻一区二区| 在线 av 中文字幕| 九色亚洲精品在线播放| 大片免费播放器 马上看| 日本猛色少妇xxxxx猛交久久| 麻豆国产av国片精品| 中文字幕人妻熟女乱码| 国产熟女午夜一区二区三区| 宅男免费午夜| 丝瓜视频免费看黄片| 国产精品国产三级国产专区5o| 精品福利观看| 曰老女人黄片| 热re99久久国产66热| 精品卡一卡二卡四卡免费| 99九九在线精品视频| 国产片内射在线| 十八禁人妻一区二区| 中文字幕另类日韩欧美亚洲嫩草| 国产三级黄色录像| 波多野结衣av一区二区av| 国产又爽黄色视频| 欧美黑人精品巨大| 另类精品久久| 超碰成人久久| 99久久综合免费| 精品国产乱子伦一区二区三区 | 久久久久久久精品精品| 亚洲情色 制服丝袜| 91老司机精品| 美女扒开内裤让男人捅视频| 欧美日韩福利视频一区二区| 午夜精品久久久久久毛片777| 亚洲欧美精品自产自拍| 国产在线免费精品| 精品国产一区二区三区久久久樱花| 久久人妻福利社区极品人妻图片| 国产精品二区激情视频| 少妇的丰满在线观看| 一区在线观看完整版| cao死你这个sao货| 国产有黄有色有爽视频| 欧美在线一区亚洲| 电影成人av| 午夜福利在线观看吧| 亚洲av欧美aⅴ国产| 丝袜人妻中文字幕| 亚洲熟女精品中文字幕| 精品熟女少妇八av免费久了| 亚洲av男天堂| 亚洲情色 制服丝袜| 久久热在线av| 国产一区二区 视频在线| 成人三级做爰电影| 多毛熟女@视频| 色视频在线一区二区三区| 一级毛片精品| 国产精品 欧美亚洲| 老司机午夜福利在线观看视频 | 极品少妇高潮喷水抽搐| 亚洲精品一区蜜桃| 久久精品熟女亚洲av麻豆精品| 亚洲成人国产一区在线观看| 日本黄色日本黄色录像| 亚洲成av片中文字幕在线观看| 老汉色av国产亚洲站长工具| 五月开心婷婷网| 欧美日本中文国产一区发布| 国产欧美日韩一区二区三 | 久久久久久久久久久久大奶| 亚洲精华国产精华精| 狠狠狠狠99中文字幕| 欧美在线一区亚洲| 亚洲一区二区三区欧美精品| 国产一区二区三区av在线| 1024视频免费在线观看| 久久精品成人免费网站| 欧美日韩一级在线毛片| 国产97色在线日韩免费| 国产成人免费观看mmmm| 日本撒尿小便嘘嘘汇集6| 一级片'在线观看视频| 国产精品免费大片| 高清在线国产一区| 国产片内射在线| 久久热在线av| 脱女人内裤的视频| 少妇猛男粗大的猛烈进出视频| 午夜91福利影院| 久热爱精品视频在线9| 老司机在亚洲福利影院| 午夜福利影视在线免费观看| 中文字幕高清在线视频| 91精品国产国语对白视频| 免费一级毛片在线播放高清视频 | 久久久精品区二区三区| 久久国产精品影院| 国产日韩欧美视频二区| 青春草视频在线免费观看| 欧美激情高清一区二区三区| 嫁个100分男人电影在线观看| 久久狼人影院| 成年美女黄网站色视频大全免费| 99精品久久久久人妻精品| 亚洲一卡2卡3卡4卡5卡精品中文| 天堂8中文在线网| 午夜视频精品福利| 国产精品久久久人人做人人爽| 伊人亚洲综合成人网| 国产精品免费大片| 一级a爱视频在线免费观看| av视频免费观看在线观看| 国产一卡二卡三卡精品| 99精品久久久久人妻精品| 亚洲 欧美一区二区三区| 国产精品影院久久| 永久免费av网站大全| 久久ye,这里只有精品| 建设人人有责人人尽责人人享有的| 1024香蕉在线观看| 如日韩欧美国产精品一区二区三区| 黑人猛操日本美女一级片| 老司机亚洲免费影院| 午夜福利一区二区在线看| 中亚洲国语对白在线视频| www.精华液| 一级黄色大片毛片| 蜜桃在线观看..| 交换朋友夫妻互换小说| √禁漫天堂资源中文www| 国产亚洲精品一区二区www | 三级毛片av免费| 国产成人免费无遮挡视频| 成人av一区二区三区在线看 | 国产高清videossex| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 伦理电影免费视频| 久久综合国产亚洲精品| 黄网站色视频无遮挡免费观看| 天天影视国产精品| 热re99久久精品国产66热6| 搡老岳熟女国产| 国产精品二区激情视频| 亚洲人成77777在线视频| 国产精品久久久久久精品电影小说| 手机成人av网站| 国产亚洲一区二区精品| 午夜视频精品福利| 在线观看人妻少妇| 午夜福利乱码中文字幕| 黄片小视频在线播放| 亚洲精品美女久久av网站| 日韩视频一区二区在线观看| 国产成人精品久久二区二区91| 美女大奶头黄色视频| 国产一区二区在线观看av| 人人妻人人添人人爽欧美一区卜| 99久久99久久久精品蜜桃| 午夜两性在线视频| 搡老岳熟女国产| 肉色欧美久久久久久久蜜桃| 一进一出抽搐动态| 亚洲av电影在线观看一区二区三区| 热99国产精品久久久久久7| 999久久久国产精品视频| 欧美午夜高清在线| 精品国产乱码久久久久久男人| 国产精品秋霞免费鲁丝片| 国产高清videossex| 91精品伊人久久大香线蕉| 成人国产一区最新在线观看| 亚洲欧美精品自产自拍| 精品熟女少妇八av免费久了| 美女扒开内裤让男人捅视频| 国产成人精品久久二区二区免费| 国产无遮挡羞羞视频在线观看| 国产欧美日韩一区二区三 | 久久久国产精品麻豆| 91国产中文字幕| av一本久久久久| 久久99热这里只频精品6学生| 在线十欧美十亚洲十日本专区| 亚洲精品成人av观看孕妇| 日本五十路高清| 人人妻人人爽人人添夜夜欢视频| 久久精品亚洲av国产电影网| 日本猛色少妇xxxxx猛交久久| 王馨瑶露胸无遮挡在线观看| 少妇 在线观看| 美女午夜性视频免费| 精品国产一区二区三区久久久樱花| 国产熟女午夜一区二区三区| 亚洲精品国产一区二区精华液| 中文字幕av电影在线播放| a 毛片基地| 丝袜喷水一区| 亚洲久久久国产精品| 精品福利永久在线观看| 亚洲免费av在线视频| 一级毛片精品| 亚洲中文字幕日韩| 午夜福利一区二区在线看| 国产亚洲精品久久久久5区| 国产成人影院久久av| 国产成人免费观看mmmm| 色视频在线一区二区三区| 国产老妇伦熟女老妇高清| 亚洲全国av大片| 亚洲精品一二三| 亚洲av日韩在线播放| 亚洲第一欧美日韩一区二区三区 | 老汉色av国产亚洲站长工具| a级毛片在线看网站| 国产男女内射视频| 国产成人免费无遮挡视频| 亚洲国产精品成人久久小说| 嫩草影视91久久| 黄色视频不卡| 麻豆国产av国片精品| 丰满人妻熟妇乱又伦精品不卡| xxxhd国产人妻xxx| 欧美日韩av久久| 亚洲精品一区蜜桃| 18禁国产床啪视频网站| 中文字幕另类日韩欧美亚洲嫩草| 国产色视频综合| 欧美日韩亚洲国产一区二区在线观看 | avwww免费| 91成年电影在线观看| 大香蕉久久成人网| 久久久久久亚洲精品国产蜜桃av| 熟女少妇亚洲综合色aaa.| 国产成人精品久久二区二区免费| 国产视频一区二区在线看| 欧美精品高潮呻吟av久久| 亚洲国产日韩一区二区| 中亚洲国语对白在线视频| 欧美黄色淫秽网站| av在线播放精品| 久久国产精品影院| 少妇精品久久久久久久| 亚洲精品美女久久久久99蜜臀| 青草久久国产| 69精品国产乱码久久久| 日本猛色少妇xxxxx猛交久久| 久久国产亚洲av麻豆专区| 老熟妇仑乱视频hdxx| 国产精品九九99| bbb黄色大片| 80岁老熟妇乱子伦牲交| 亚洲中文av在线| 日韩制服骚丝袜av| 9热在线视频观看99| 久久久精品免费免费高清| 午夜福利在线免费观看网站| 欧美在线一区亚洲| 热99re8久久精品国产| 日日爽夜夜爽网站| 成人国产一区最新在线观看| 成人亚洲精品一区在线观看| a级毛片在线看网站| 18禁裸乳无遮挡动漫免费视频| 男男h啪啪无遮挡| 欧美 日韩 精品 国产| 一二三四社区在线视频社区8| 成人黄色视频免费在线看| 免费av中文字幕在线| 老司机亚洲免费影院| 日韩视频在线欧美| 久久天躁狠狠躁夜夜2o2o| 成人18禁高潮啪啪吃奶动态图| 下体分泌物呈黄色| 国产xxxxx性猛交| 最近中文字幕2019免费版| 国产区一区二久久| 9191精品国产免费久久| 国产深夜福利视频在线观看| 在线精品无人区一区二区三| 后天国语完整版免费观看| 亚洲色图综合在线观看| 亚洲av成人不卡在线观看播放网 | 日本vs欧美在线观看视频| 亚洲精品av麻豆狂野| 超碰97精品在线观看| 国产一卡二卡三卡精品| 男女边摸边吃奶| 亚洲欧洲精品一区二区精品久久久| 少妇 在线观看| avwww免费| 国产色视频综合| 国产1区2区3区精品| 亚洲第一av免费看| 男女免费视频国产| 多毛熟女@视频| 不卡一级毛片| 精品人妻熟女毛片av久久网站| 国产av又大| 9色porny在线观看| 18禁观看日本| 久久国产精品大桥未久av| 日本wwww免费看| 老司机深夜福利视频在线观看 | 久久久国产成人免费| 91精品伊人久久大香线蕉| 天天影视国产精品| 欧美精品一区二区大全| 多毛熟女@视频| 国产精品免费视频内射| 考比视频在线观看| 中国美女看黄片| 一级毛片电影观看| a级毛片黄视频| 日韩欧美一区视频在线观看| 伊人亚洲综合成人网| 黑人猛操日本美女一级片| 日韩 亚洲 欧美在线| 国产欧美日韩一区二区三 | 免费不卡黄色视频| 一本综合久久免费| 日本欧美视频一区| 国产成人精品久久二区二区91| 午夜激情久久久久久久| 丝袜脚勾引网站| 80岁老熟妇乱子伦牲交| 丝袜人妻中文字幕| 国产成人av激情在线播放| 久久人人97超碰香蕉20202| 俄罗斯特黄特色一大片| 少妇的丰满在线观看| 成年人午夜在线观看视频| 欧美激情 高清一区二区三区| 18禁黄网站禁片午夜丰满| 我要看黄色一级片免费的| 亚洲视频免费观看视频| av福利片在线| 欧美精品啪啪一区二区三区 | 中文字幕另类日韩欧美亚洲嫩草| 一级片'在线观看视频| 麻豆乱淫一区二区| 一二三四社区在线视频社区8| 日韩制服骚丝袜av| 97人妻天天添夜夜摸| 日韩,欧美,国产一区二区三区| 成人国产av品久久久| 大香蕉久久成人网| 亚洲色图综合在线观看| videos熟女内射| 性色av乱码一区二区三区2| 久久热在线av| 国产亚洲精品第一综合不卡| 麻豆av在线久日| 国产av国产精品国产| 日本欧美视频一区| 成年人黄色毛片网站| 亚洲欧美清纯卡通| 国产一卡二卡三卡精品| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看| 一区二区av电影网| 国产精品一区二区精品视频观看| 黄片小视频在线播放| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 在线精品无人区一区二区三| 男女免费视频国产| 一级片免费观看大全| 黄色毛片三级朝国网站| 亚洲国产毛片av蜜桃av| 日韩大码丰满熟妇| 亚洲国产欧美网| 久久天堂一区二区三区四区| 午夜老司机福利片| 国产精品99久久99久久久不卡| 国产三级黄色录像| 大码成人一级视频| 99热全是精品| 亚洲av日韩精品久久久久久密| 国产97色在线日韩免费| 老司机在亚洲福利影院| 在线精品无人区一区二区三| 操美女的视频在线观看| a 毛片基地| 亚洲精品美女久久av网站| 欧美黄色淫秽网站| 乱人伦中国视频| 亚洲一码二码三码区别大吗| 欧美精品av麻豆av| 伊人久久大香线蕉亚洲五| 最近最新中文字幕大全免费视频| 亚洲国产精品一区三区| 精品亚洲乱码少妇综合久久| 色精品久久人妻99蜜桃| 国产成人免费无遮挡视频| 精品国产一区二区三区四区第35| 亚洲一卡2卡3卡4卡5卡精品中文| 9热在线视频观看99| 国产在线视频一区二区| 亚洲第一欧美日韩一区二区三区 | 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 国内毛片毛片毛片毛片毛片| 青青草视频在线视频观看| 日韩 欧美 亚洲 中文字幕| 一进一出抽搐动态| 国产精品一二三区在线看| 欧美精品人与动牲交sv欧美| 大片免费播放器 马上看| 国产又爽黄色视频| 黄色片一级片一级黄色片| 男人爽女人下面视频在线观看| 成人亚洲精品一区在线观看| 50天的宝宝边吃奶边哭怎么回事| 久热这里只有精品99| 成人国产av品久久久| 免费久久久久久久精品成人欧美视频| 韩国高清视频一区二区三区| 肉色欧美久久久久久久蜜桃| 久久综合国产亚洲精品| 免费黄频网站在线观看国产| 久久久国产成人免费| 欧美精品亚洲一区二区| 亚洲九九香蕉| 啦啦啦在线免费观看视频4| 国产av一区二区精品久久| 首页视频小说图片口味搜索| 午夜视频精品福利| 国产精品 国内视频| 咕卡用的链子| 成年人免费黄色播放视频| 国产人伦9x9x在线观看| 精品一区二区三卡| 极品人妻少妇av视频| 亚洲精品在线美女| 纵有疾风起免费观看全集完整版| 国产免费一区二区三区四区乱码| 啦啦啦 在线观看视频| 欧美精品av麻豆av| 久久久国产欧美日韩av| 在线观看免费午夜福利视频| 国产亚洲av高清不卡| 欧美xxⅹ黑人| 久久精品国产综合久久久| 日韩三级视频一区二区三区| 中国国产av一级| 久久久精品免费免费高清| 欧美一级毛片孕妇| 亚洲精品一区蜜桃| 制服诱惑二区| 一级a爱视频在线免费观看| 国产精品av久久久久免费| 丁香六月欧美| 高清视频免费观看一区二区| 高清在线国产一区| 男人添女人高潮全过程视频| 桃花免费在线播放| 午夜精品国产一区二区电影| 亚洲人成电影观看| 狂野欧美激情性bbbbbb| 狠狠狠狠99中文字幕| 国产免费一区二区三区四区乱码| www.av在线官网国产| 91大片在线观看| 女人高潮潮喷娇喘18禁视频| 男女之事视频高清在线观看| 脱女人内裤的视频| 高清视频免费观看一区二区| 亚洲欧洲日产国产| 午夜视频精品福利| 精品国产一区二区三区久久久樱花| 久久影院123| 午夜福利视频在线观看免费| 老鸭窝网址在线观看| 中文字幕精品免费在线观看视频| 免费高清在线观看日韩| 久久国产亚洲av麻豆专区| 中文字幕人妻丝袜一区二区| 丰满人妻熟妇乱又伦精品不卡| 国产一区有黄有色的免费视频| 久久久精品国产亚洲av高清涩受| 不卡一级毛片| 这个男人来自地球电影免费观看| 国产老妇伦熟女老妇高清| 精品国产一区二区三区久久久樱花| 一区二区三区四区激情视频| 欧美激情 高清一区二区三区| 日本猛色少妇xxxxx猛交久久| tube8黄色片| 两人在一起打扑克的视频| 亚洲全国av大片| 成人黄色视频免费在线看| 亚洲欧美激情在线| 日韩人妻精品一区2区三区| 国产精品熟女久久久久浪| 中文字幕人妻丝袜制服| 王馨瑶露胸无遮挡在线观看| 亚洲精品国产精品久久久不卡| 一区二区三区四区激情视频| 日韩,欧美,国产一区二区三区| 脱女人内裤的视频| 啦啦啦 在线观看视频| 国产99久久九九免费精品| 日韩,欧美,国产一区二区三区| av在线播放精品| www.av在线官网国产| 日日摸夜夜添夜夜添小说| 99re6热这里在线精品视频| 淫妇啪啪啪对白视频 | 久久久国产精品麻豆| 在线观看免费高清a一片| 久久精品人人爽人人爽视色| 午夜福利视频精品| 久久精品人人爽人人爽视色| 午夜日韩欧美国产| 久久国产精品大桥未久av| 99九九在线精品视频| 免费高清在线观看日韩| 丰满少妇做爰视频| 免费观看人在逋| 老司机深夜福利视频在线观看 | 亚洲欧美日韩高清在线视频 | 精品一区二区三卡| 久久久国产一区二区|