湯磊,曾德森,凌子夜,3,張正國,3,4,方曉明,3,4
(1 華南理工大學(xué)傳熱強(qiáng)化與過程節(jié)能教育部重點(diǎn)實(shí)驗室,廣東 廣州 510640;2 廣東美的制冷設(shè)備有限公司,廣東 佛山 528312;3 廣東省熱能高效儲存與利用工程技術(shù)研究中心,廣東 廣州 510640;4 華南理工大學(xué)珠海現(xiàn)代產(chǎn)業(yè)創(chuàng)新研究院,廣東 珠海 519175)
隨著全球變暖和人們生活質(zhì)量的提升,制冷需求快速增長,制冷空調(diào)系統(tǒng)帶來的碳排放量與日俱增[1]。預(yù)計到2050年,全球制冷能源消耗仍將增加十倍[2]。面對制冷能耗急劇增長的發(fā)展趨勢,大力開發(fā)太陽能、風(fēng)能等新能源電力是解決未來制冷能耗缺口的技術(shù)關(guān)鍵。然而,新能源電力存在間歇性、波動大的缺點(diǎn),易出現(xiàn)發(fā)電量與用電量不匹配的問題。因此發(fā)展高效儲能技術(shù),對新能源消納與利用是適應(yīng)可再生能源網(wǎng)絡(luò)的有效途徑。發(fā)展先進(jìn)的蓄冷技術(shù),調(diào)節(jié)制冷和用冷負(fù)荷使之匹配,是制冷系統(tǒng)技術(shù)發(fā)展的重要方向。
蓄冷技術(shù)可以在峰谷電價時段或能量盈余的時候進(jìn)行儲能,實(shí)現(xiàn)能源移峰填谷,降低電網(wǎng)峰值用電負(fù)荷和成本[3]。相對于電化學(xué)儲能,蓄冷技術(shù)可以直接存儲冷能,具有安全性高、循環(huán)穩(wěn)定性好、成本低的優(yōu)點(diǎn)。因此,將蓄冷技術(shù)與制冷系統(tǒng)耦合的儲能技術(shù)一直是研究熱點(diǎn),在工商業(yè)及民用場景應(yīng)用廣泛。在冷鏈運(yùn)輸領(lǐng)域,我國每年因運(yùn)輸過程中低溫環(huán)境不合格導(dǎo)致水產(chǎn)品腐爛損失率達(dá)25%,果蔬類損失率達(dá)25%~35%[4],全球有超過50%的疫苗被浪費(fèi)[5]。因而蓄冷技術(shù)在冷鏈運(yùn)輸領(lǐng)域能夠通過減少運(yùn)輸過程中的溫度波動來降低產(chǎn)品變質(zhì)概率,有效減少產(chǎn)品損耗,實(shí)現(xiàn)食品和醫(yī)療用品的長距離運(yùn)輸。蓄冷技術(shù)也可應(yīng)用于建筑節(jié)能[6],將蓄冷材料與建筑基體復(fù)合制得儲能墻體,在白天吸收室外進(jìn)入室內(nèi)的熱量,夜晚則釋放熱量給室內(nèi)供暖,實(shí)現(xiàn)輔助控制室內(nèi)溫度,減小建筑采暖、制冷能耗,有助于提高室內(nèi)環(huán)境舒適度。此外,通過蓄冷空調(diào)[7]將晚上低谷電轉(zhuǎn)化為冷能儲存起來,在白天電網(wǎng)高負(fù)荷時釋放,轉(zhuǎn)移用電負(fù)荷,結(jié)合分時階梯電價策略能降低建筑制冷成本與能耗[8]。此外,蓄冷技術(shù)與紡織品結(jié)合[9]制作成智能紡織品應(yīng)用于人體熱管理,也是重要的應(yīng)用領(lǐng)域之一。
蓄冷材料是蓄冷技術(shù)的核心,開發(fā)適宜溫度及高蓄冷密度的蓄冷材料是滿足不同蓄冷需求的關(guān)鍵。目前常見的蓄冷材料主要有:顯熱蓄能材料和潛熱蓄能材料。顯熱蓄能材料包括水等,利用自身升降溫過程中熱能的變化進(jìn)行能量儲存和釋放,技術(shù)成熟且成本便宜,適合大規(guī)模生產(chǎn)。但其蓄冷密度小,只適用于分鐘、小時級的短時蓄冷場景。潛熱蓄能材料利用相變材料固-液-氣相態(tài)變化[10]來儲蓄或釋放能量,其中應(yīng)用最為廣泛的固-液相變[11]能在相變過程中吸收大量熱能,同時溫度保持不變(圖1)。潛熱蓄能材料蓄冷密度遠(yuǎn)高于顯熱蓄能材料[12],適用于數(shù)小時至數(shù)周的蓄能場景,且成本適中,具備大規(guī)模應(yīng)用的潛力。
圖1 固液相變過程[13-14]
本文主要對應(yīng)用于蓄冷領(lǐng)域的相變材料進(jìn)行綜述,探討相變蓄冷材料物性調(diào)控和優(yōu)化、相變蓄冷系統(tǒng)傳熱技術(shù)強(qiáng)化,總結(jié)當(dāng)前相變蓄冷材料和蓄冷系統(tǒng)不足,展望相變蓄冷技術(shù)研究方向和應(yīng)用前景。
常見相變蓄冷材料主要指相變溫度在25℃及以下的相變材料[15]。其中,按材料成分可分為有機(jī)、無機(jī)和共晶相變材料[16]。
有機(jī)相變材料主要包括石蠟、脂肪酸、酯和醇等[17],以碳鏈長度小于17 的烷烴為主。有機(jī)相變材料相變焓優(yōu)異、腐蝕性小,而且熱穩(wěn)定性好,經(jīng)多次相變后物理和化學(xué)性質(zhì)基本不變,可靠性好。但有機(jī)相變材料熱導(dǎo)率低,如石蠟、酸或醇類有機(jī)物的熱導(dǎo)率為0.3W/(m·K)[18],部分材料易燃、生產(chǎn)成本較高等[19]。表1 列舉了一些相變溫度在25℃及以下的常用有機(jī)相變材料熱物性。其中十四烷相變溫度為5~8℃,在冷庫、冷鏈運(yùn)輸保溫箱、空調(diào)蓄冷等多個場景中應(yīng)用最為廣泛。
表1 有機(jī)相變材料的熱物性參數(shù)[20-23]
無機(jī)相變材料主要有冰、水合鹽類、熔融鹽類、金屬或合金類等,其中冰和水合鹽因相變溫度較低主要用于低溫領(lǐng)域[17],如在空調(diào)和建筑蓄冷等領(lǐng)域應(yīng)用廣泛。無機(jī)相變材料相變焓大、熱導(dǎo)率較高,常見水合鹽熱導(dǎo)率為0.5W/(m·K)[18],而且來源廣、成本低、商用化前景好。然而無機(jī)相變材料可靠性差,存在過冷度高和相分離嚴(yán)重的缺點(diǎn),多次使用后性能衰減嚴(yán)重,而且腐蝕性強(qiáng)[24]。表2列舉了一些相變溫度在25℃及以下的常用無機(jī)相變材料熱物性。
表2 無機(jī)相變材料的熱物性參數(shù)[20-21,23,25-26]
無機(jī)相變材料中冰的研究最多,因為冰相變焓為334kJ/kg,為常見相變材料的2~3 倍,而且成本低廉。冰與水混合所得冰漿具有良好的流動性和高相變潛熱,可通過離心泵和管道輸送[27],在極高含冰量下不堵塞,且所需輸送管道和儲罐尺寸小[10,28],以其為基礎(chǔ)的冰蓄冷技術(shù)是實(shí)際工程項目中使用最廣泛的蓄冷技術(shù)[29-30]。
共晶相變材料是將兩種或兩種以上相變材料混合制備得到的共晶產(chǎn)物,其熔點(diǎn)低于任一組分。共晶相變材料按材料可分為有機(jī)-有機(jī)共晶、無機(jī)-無機(jī)共晶和有機(jī)-無機(jī)共晶相變材料。無機(jī)-無機(jī)共晶相變材料包括金屬合金相變材料、水合鹽及熔融鹽共晶相變材料,有機(jī)-有機(jī)共晶相變材料包括有機(jī)酸共晶和石蠟,無機(jī)-有機(jī)共晶相變材料主要是有機(jī)酸和水合鹽的共晶相變材料。其中無機(jī)-有機(jī)共晶相變材料能實(shí)現(xiàn)有機(jī)、無機(jī)材料優(yōu)勢互補(bǔ),可獲得兼具過冷度低、潛熱較高、性能穩(wěn)定的相變蓄冷材料,但目前應(yīng)用研究較少,潛力巨大。共晶相變材料能通過調(diào)整各組分比例來控制相變溫度,而且能一定程度上改善材料過冷度和相分離等問題[31],是調(diào)節(jié)相變材料熱物性的一種重要方法,但共晶相變材料的制備工藝較為復(fù)雜,需要圍繞共晶點(diǎn)按比例形成共晶物,且組分比例與相變溫度不呈線性規(guī)律,應(yīng)用前需要進(jìn)行大量預(yù)實(shí)驗,過程繁瑣復(fù)雜。表3列舉了一些相變溫度在25℃及以下的常用共晶相變材料熱物性。
表3 共晶相變材料的熱物性參數(shù)[20-21,23,32]
研究并篩選出適用于蓄冷系統(tǒng)的相變蓄冷材料,是相變蓄冷技術(shù)的關(guān)鍵之一。一般來說,用于蓄冷領(lǐng)域的相變材料應(yīng)具有以下特性∶①相變溫度合適;②相變潛熱大;③熱導(dǎo)率高;④凍結(jié)和熔化率高;⑤熱穩(wěn)定性好;⑥固液相變體積變化?。虎哌^冷度低;⑧循環(huán)穩(wěn)定性好;⑨無毒和無腐蝕性;⑩成本低。
目前相變蓄冷材料中有機(jī)相變材料和無機(jī)相變材料應(yīng)用最為廣泛,二者關(guān)鍵物性對比如圖2 所示,可作為實(shí)際選材的參考依據(jù)。無機(jī)相變材料具有低成本、毒性低和高熱導(dǎo)率的優(yōu)點(diǎn),適合大規(guī)模生產(chǎn),在蓄能水罐、冷庫等大型建筑設(shè)備中應(yīng)用較廣,但其過冷度高、相分離嚴(yán)重和腐蝕性強(qiáng)的缺陷限制其在蓄冷領(lǐng)域的應(yīng)用。有機(jī)相變材料具有過冷度低、循環(huán)穩(wěn)定性好和腐蝕性小等優(yōu)點(diǎn),主要適用于冷鏈運(yùn)輸和智能紡織品,但其低熱導(dǎo)率、有毒、易燃和高成本的缺點(diǎn)阻礙其進(jìn)一步應(yīng)用。相比有機(jī)、無機(jī)相變材料,共晶相變材料可根據(jù)組分比例調(diào)控相變溫度,實(shí)現(xiàn)精準(zhǔn)控溫,適用于要求溫度變化范圍小的場景,但目前研究較少,適用環(huán)境較少。
圖2 無機(jī)相變材料與有機(jī)相變材料關(guān)鍵物性對比圖
在實(shí)際應(yīng)用中,很難篩選出滿足所有條件的相變蓄冷材料,因此要優(yōu)先選擇相變溫度適宜且相變潛熱高的蓄冷材料,最后采用合適的方法對其性能進(jìn)行調(diào)控。
冷鏈運(yùn)輸過程中環(huán)境溫度波動易造成產(chǎn)品損耗,如果引入相變材料,發(fā)揮其相變控溫功能,減少環(huán)境溫度波動,能有效提高冷鏈運(yùn)輸產(chǎn)品質(zhì)量。冷鏈運(yùn)輸根據(jù)保溫方式分為被動式和主動式[33]。
被動式冷藏主要應(yīng)用于冷藏箱,如圖3 所示,在箱體內(nèi)加入相變蓄冷材料,吸收進(jìn)入箱體內(nèi)部的熱量,減緩溫度上升速率,為冷藏物體長時間提供低溫儲存環(huán)境[34]。Li 等[35]復(fù)合了膨脹石墨與辛酸-月桂酸共晶相變材料,二者質(zhì)量比為71∶29,制得復(fù)合相變材料的相變溫度和潛熱分別為3.8℃和141.7J/g,熱導(dǎo)率提升了2.8倍,使材料釋冷速率提高636.7%。Huang 等[36]基于石蠟OP5E 開發(fā)了一種蓄冷保溫箱,高低溫測試表明,相變材料可以在至少80h 使保溫箱內(nèi)部溫度保持在2~8℃。Liu 等[37]將KCl-NH4Cl 共晶鹽吸附于高吸水性聚合物SAP 上,制得一種相變溫度為-21℃和相變潛熱為230.62J/g的蓄冷材料。該材料在-15℃下冷藏生物樣品時,冷藏時間能達(dá)到16.37h,能有效保證生物樣品質(zhì)量。
圖3 被動式冷藏箱及內(nèi)部構(gòu)造
主動式冷藏是如圖4所示在車內(nèi)安裝含相變材料的制冷機(jī)組,主動將車內(nèi)溫度控制在適合食品冷藏的低溫狀態(tài)[38]。在主動冷藏系統(tǒng)內(nèi),加入相變材料可以輔助控溫,減少車廂內(nèi)的溫度波動,降低主動制冷系統(tǒng)能耗。劉廣海等[39]設(shè)計了一款集隔熱、相變蓄冷、制冷送風(fēng)為一體的冷藏車,相比傳統(tǒng)冷藏車,相變材料加入使車內(nèi)的平均溫度波動下降48.7%,溫度不均勻度系數(shù)下降50%。Zhang等[40]考察了集成相變材料對制冷系統(tǒng)能耗的影響情況,含相變材料的集裝箱制冷能源成本和運(yùn)營成本分別降低71.3%和85.6%。Michele 等[41]提出了一種結(jié)合相變材料并用于冷藏車的新型隔熱墻,當(dāng)相變材料厚度為1cm時,能在10h內(nèi)使車內(nèi)溫度波動范圍不超出相變溫度2℃。
圖4 主動式冷藏車及系統(tǒng)組成[42]
將相變材料與冷鏈運(yùn)輸相結(jié)合,能出色發(fā)揮相變材料高潛熱和相變控溫的特點(diǎn),不僅大幅延長有效冷藏時間,還可減少冷藏空間的溫度波動,提升其溫度均勻性,有效減少冷藏產(chǎn)品的損耗率。與傳統(tǒng)制冷相比,將制冷系統(tǒng)與相變材料結(jié)合,能大大降低能源成本和運(yùn)營成本,起到減少碳排放的作用。
與出汗散熱類似,將相變材料如圖5所示應(yīng)用于紡織品中,通過引入溫度調(diào)節(jié)作用來提升人體舒適度[43]。這種紡織品被稱為智能調(diào)溫紡織品,能響應(yīng)人體或環(huán)境的變化,實(shí)現(xiàn)保暖和降溫雙向溫度調(diào)節(jié)功能,適應(yīng)多變的環(huán)境。目前相變材料與紡織品結(jié)合方式主要有三種∶填充法、涂層法和纖維中空填充法。
圖5 紡織品集成相變材料用于溫度調(diào)節(jié)[44]
填充法是將相變材料填充于纖維或密封袋中,再集中放置在服裝內(nèi)部,特別是胸部和背部等發(fā)熱量較大的部位,通過相變材料直接吸熱或放熱的方式控制體表溫度。如圖6所示,Saeid等[45]將相變溫度在24~35℃的石蠟用于降溫背心,穿著降溫背心在輕度活動和中度活動期間,溫度仍維持在人體舒適溫度范圍內(nèi),出汗率分別降低了42%和52%,減小了脫水概率。Hou等[46]開發(fā)了一種基于相變材料的液體冷卻背心,背心質(zhì)量為1.8kg,能在炎熱環(huán)境中為穿戴者提供至少2h溫度舒適環(huán)境。
圖6 石蠟降溫背心及其包裝[45]
涂層法將相變微膠囊加入涂層液中,并用刮板將液體均勻涂抹在織物表面,使纖維表面黏附上相變微膠囊來改變紡織品的熱性能。Xu等[47]將相變微膠囊固定在棉質(zhì)衣物上,所制衣物相變溫度為16.5~36.8℃,符合人體熱舒適溫度,而且保溫系數(shù)與不含相變材料的衣物相比從1.05%提高到32.2%。劉殷等[48]將相變溫度為25.7℃的相變微膠囊嵌在纖維表面,使面料保溫率達(dá)23.9%,控溫能力良好。
纖維中空填充法是如圖7所示對含有中空結(jié)構(gòu)的纖維進(jìn)行加工,在內(nèi)部填充相變材料來賦予纖維蓄能特性。Ke等[49]制備了一種聚丙烯腈/月桂酸-硬脂酸/二氧化鈦的復(fù)合納米纖維,相變溫度約為25℃,經(jīng)30 個循環(huán)后性質(zhì)相對穩(wěn)定,具有良好的控溫性和穩(wěn)定性。Song等[50]采用真空浸漬法將月桂酸封裝到木棉纖維微管中,制得樣品中月桂酸質(zhì)量分?jǐn)?shù)達(dá)86.5%,焓值達(dá)153.5J/g,經(jīng)2000 次循環(huán)后性能基本不變。
圖7 纖維中空填充法[51]
相變材料對熱能的吸收會延緩身體溫度升高,并減少皮膚中水分散失,從而提高舒適度。同時相變材料具有相變控溫特性,可以減緩穿著者的熱失衡癥狀,如感冒、中暑和暈厥等,在醫(yī)療保健領(lǐng)域有著廣闊的發(fā)展空間。Olson 等[52]制備了由NaCl、Na2SO4和水組成的復(fù)合相變材料,如圖8所示,應(yīng)用于嬰兒出生后降溫問題上,通過簡單方式抑制了環(huán)境溫度的變化。Prashantha 等[53]將相變材料制成冰袋用于低溫治療,不僅降低成本,而且延長了使用時間,提供更好的冷療功能。Zhang 等[54]用浸漬法將OP10E 和SEBS 混合制備了可在10℃下保持1800s 的彈性相變油凝膠,并設(shè)計如圖9 所示的冷卻帽用于發(fā)燒兒童的冷敷治療,模擬了不同身高(Hb)、體重(Wb)和變化溫度(ΔT)下人體熱調(diào)節(jié)過程,建立發(fā)燒兒童所需凝膠量(m)的數(shù)據(jù)庫,為相變頭套設(shè)計提供參考標(biāo)準(zhǔn)。
圖8 相變床墊(藍(lán)色)上為嬰兒降溫,床墊由相變材料和軟墊組成[52]
圖9 相變油凝膠冷卻帽建模及數(shù)據(jù)庫[54]
將相變材料與人體熱管理相結(jié)合,可以實(shí)現(xiàn)個性化體溫調(diào)節(jié)。這類智能被動體溫調(diào)節(jié)紡織品體積小、使用便利,在高溫作業(yè)和戶外運(yùn)動等場景中提升人體舒適度。用相變紡織品制備調(diào)節(jié)體溫的醫(yī)療保健產(chǎn)品,能幫助嬰兒或患有溫度敏感性疾病的人群緩解熱失衡和常見并發(fā)癥,加快病情治愈速率。創(chuàng)新性的相變智能體溫調(diào)節(jié)紡織品在技術(shù)上已有了較深積累,其商業(yè)化值得期待。
將相變材料用于建筑節(jié)能領(lǐng)域,能使室內(nèi)溫度維持在舒適范圍內(nèi),提高人們居住和辦公舒適度,實(shí)現(xiàn)節(jié)能和減少碳排放的目標(biāo)。建筑節(jié)能領(lǐng)域所用蓄冷技術(shù)可根據(jù)蓄冷方式分為被動式蓄冷和主動式蓄冷。
被動式蓄冷主要通過將相變材料與建筑墻體復(fù)合制得如圖10 所示的相變儲能墻體,白天吸收熱量給室內(nèi)降溫,夜晚釋放熱量維持室內(nèi)溫度,起到輔助調(diào)節(jié)室溫、減小建筑采暖和制冷能耗的作用。聶瑞等[55]將硅藻土、十八烷和過硫酸銨混合制備一種相變微膠囊/硅藻土復(fù)合材料,具有調(diào)節(jié)室溫以及維持室內(nèi)濕度平衡的功能。Wang 等[56]將石蠟、膨脹石墨和高密度聚乙烯摻入水泥砂漿中制備復(fù)合相變磚塊,在15~30℃和18~24℃時,120mm 厚的相變墻體比240mm 厚普通墻體的蓄能能力分別提高了12.7%和61%,有效降低了室內(nèi)溫度波動。Fu等[57]將膨脹珍珠巖和六水氯化鈣復(fù)合制得相變溫度在27.38℃的相變磚塊,用其代替泡沫保溫磚作為屋頂,使得室內(nèi)峰值溫度降低5℃,達(dá)到室內(nèi)峰值溫度的時間滯后約900s。
圖10 相變材料在建筑節(jié)能中的應(yīng)用[1,58-59]
主動式蓄冷主要通過制冷裝置將電能和太陽能等轉(zhuǎn)化并儲存到如圖11、圖12所示的蓄冷裝置中,常見于冷庫、家用空調(diào)和數(shù)據(jù)中心應(yīng)急冷卻系統(tǒng)等,能在需要時將冷能釋放出來,有助于緩解能源供需不匹配的問題。Solaimalai 等[60]將1-癸醇用于冰基蓄冷系統(tǒng)中,使制冷系統(tǒng)工作時間減少了81.85%,平均充冷放冷速率是原來的5 倍以上。Dogan 等[61]研究了蓄冰系統(tǒng)對大型超市空調(diào)用電成本的影響,相變材料的引入使制冷系統(tǒng)性能提升4.4%,目前運(yùn)營成本已降低60%。Zheng 等[62]基于相變溫度為5℃的相變微膠囊材料構(gòu)建了一種相變冷庫空調(diào)系統(tǒng),其蓄冷量為常見冷庫的1.5 倍,當(dāng)冷藏容量為3000kJ 時,冰和相變微膠囊懸浮液分別需要3980s 和2200s 完全凝固,使用相變微膠囊懸浮液可節(jié)省1780s。王芳等[63]選擇主要成分為甘氨酸的相變蓄冷材料用于小型移動保鮮庫中,使冷藏區(qū)域溫度保持在1.6~2.6℃間,在不同供冷方式下內(nèi)部溫度波動均小于1.5℃。周曉棠等[64]將冰蓄冷技術(shù)運(yùn)用到家用空調(diào)中,運(yùn)行10h后,蓄冰空調(diào)的制冷量平均增加34%,達(dá)到15.6kW,性能系數(shù)COP 平均提升0.7,起到降低能耗的作用。Batlles等[65]在太陽能制冷系統(tǒng)中引入相變儲能罐,結(jié)果表明,每天可節(jié)約40%制冷能耗。Peter 等[66]將儲能罐、太陽能板和熱泵組合成蓄冷系統(tǒng),經(jīng)1616h測試,相比常規(guī)系統(tǒng),該系統(tǒng)的季節(jié)性性能系數(shù)為4.4,總效率提高了46.6%。
圖11 集成相變材料冷卻系統(tǒng)的空調(diào)系統(tǒng)[67]
圖12 集成相變材料冷卻系統(tǒng)的太陽能空調(diào)系統(tǒng)[68]
隨著數(shù)據(jù)中心服務(wù)器集成程度的提升,熱負(fù)荷也在不斷升高,為了防止服務(wù)器故障,需要配置空調(diào)系統(tǒng)以滿足數(shù)據(jù)中心降溫需求。而當(dāng)空調(diào)系統(tǒng)因故障停止工作時,需要應(yīng)急冷卻系統(tǒng)及時為服務(wù)器提供合適的環(huán)境溫度,降低故障率。將相變材料與數(shù)據(jù)中心應(yīng)急冷卻系統(tǒng)結(jié)合,發(fā)揮相變材料高相變焓和相變控溫優(yōu)勢,起到降低運(yùn)營成本和短時間大量釋冷的作用。Huang 等[69]基于相變蓄冷裝置設(shè)計了一種如圖13 所示的風(fēng)冷緊急冷卻系統(tǒng),可以將溫度保持在27℃以下至少300s,在低運(yùn)營成本的同時保證較長的冷卻時間。Ma 等[70]將相變蓄冷裝置和循環(huán)熱虹吸管集成了一種新型冷卻系統(tǒng),可以維持服務(wù)器運(yùn)行6min,并且隨著相變材料熱導(dǎo)率的提升,能將有效緊急冷卻時間延長到15min。
圖13 緊急冷卻系統(tǒng)[69]
綜上,在建筑節(jié)能領(lǐng)域中引入相變蓄冷材料,可減少室內(nèi)溫度波動并維持在舒適范圍內(nèi)。且相比傳統(tǒng)制冷裝置,相變材料具有的高相變焓優(yōu)勢能減小制冷機(jī)組裝機(jī)容量,實(shí)現(xiàn)制冷、蓄冷裝置的輕量化,降低安裝、運(yùn)行成本,提高能源利用效率。
蓄冷材料的固有缺陷及其蓄冷系統(tǒng)的傳熱性能不足會影響系統(tǒng)整體傳熱效率,需要針對性改善這些不足,提升實(shí)際使用性能。蓄冷技術(shù)的提升主要包括∶①蓄冷相變材料物性調(diào)控和優(yōu)化;②相變蓄冷系統(tǒng)傳熱技術(shù)強(qiáng)化。
3.1.1 相變溫度調(diào)控
相變溫度是篩選相變材料的重要參數(shù)。為了同時滿足對潛熱、相變溫度等方面的要求??梢越Y(jié)合兩種及以上組分開發(fā)共晶相變材料來擴(kuò)大相變溫度的選擇范圍,通過改變組分比例來調(diào)控相變溫度,克服單一相變材料的缺點(diǎn),使相變材料更貼合應(yīng)用需求。
Liang 等[71]以磷酸二氫鈉二水合物、磷酸氫二鉀三水合物和五水合硫代硫酸鈉配制得三元共晶水合鹽相變材料,相變溫度從-14.8℃到-10.6℃,可根據(jù)需要更改相變溫度。李夔寧等[72]將相變溫度分別為58℃、18.2℃和-1℃的乙酸鈉、丙三醇和水,混合制得相變溫度為-14℃的三元共晶相變材料,獲得更低的相變溫度。Vennapusa 等[73]將相變溫度為23.01℃的脂肪酸共混物OM-21 和相變溫度為22.7℃的十二烷醇配制成共晶相變材料,其相變溫度從8.6℃到17.5℃,實(shí)現(xiàn)調(diào)控相變溫度的目標(biāo)。
共晶相變材料能根據(jù)需求調(diào)整相變溫度,但材料配比與相變溫度間的規(guī)律仍不清晰,需要對共晶鹽相變機(jī)理和規(guī)律進(jìn)一步研究,為大規(guī)模應(yīng)用共晶相變材料提供科學(xué)依據(jù)。
3.1.2 熱導(dǎo)率調(diào)控
不同應(yīng)用場景對相變材料熱導(dǎo)率要求不同。例如在換熱器中要求高熱導(dǎo)率[74],更快將近熱源部位的熱量傳遞給低溫部位,強(qiáng)化系統(tǒng)整體換熱效率。而在保溫冷藏系統(tǒng)中要求低熱導(dǎo)率,減少冷藏空間和外界環(huán)境熱交換,延緩溫度變化趨勢[75],創(chuàng)造合適且長效的低溫環(huán)境,實(shí)現(xiàn)保障產(chǎn)品質(zhì)量的目標(biāo)[76]。
不同相變材料傳熱機(jī)理不同,金屬相變材料主要由電子進(jìn)行熱傳遞,非金屬相變材料主要由聲子傳遞熱量[77]。不相容材料之間的聲子散射會增大界面熱阻,而內(nèi)部具有完整三維互聯(lián)網(wǎng)絡(luò)的材料可以為聲子傳播提供通道,進(jìn)而提升材料熱導(dǎo)率[78]。因此調(diào)控相變材料熱導(dǎo)率的方法主要是添加多孔載體材料或納米粒子等制備復(fù)合相變材料,進(jìn)而改變材料整體的熱導(dǎo)率。常用的高熱導(dǎo)率多孔載體有泡沫金屬和膨脹石墨等,低熱導(dǎo)率的載體有二氧化硅、膨脹珍珠巖等。高熱導(dǎo)率的納米粒子有碳基納米粒子,如碳纖維、碳納米管和石墨烯等,以及金屬納米粒子如納米二氧化鈦、納米氧化鋁等。
Lin等[79]制備了相變溫度為5.92℃的膨脹石墨基復(fù)合相變材料,將熱導(dǎo)率提高到0.43W/(m·K),為原來的1.75 倍,顯著改善材料的傳熱性能。Soroush 等[80]考察泡沫銅對不同石蠟熱導(dǎo)率的改善效果,在質(zhì)量流量為0.02kg/s 和使用石蠟C22 的前提下,系統(tǒng)最高熱效率高達(dá)83%。He 等[81]將二氧化鈦納米顆粒懸浮于氯化鋇水溶液中,制得相變溫度為-5℃、熱導(dǎo)率為0.565W/(m·K)的懸濁液,二氧化鈦的加入使熱導(dǎo)率提高12.76%。Chen 等[76]將相變溫度為-9.6℃的十二烷吸附到疏水氣相二氧化硅中,與純十二烷相比熱導(dǎo)率降低45%,低熱導(dǎo)率有利于抑制內(nèi)外環(huán)境之間熱傳遞,使十二烷更好用于保溫領(lǐng)域。
這兩種調(diào)控?zé)釋?dǎo)率的方法仍有不足,納米粒子存在分散不均勻和團(tuán)聚的問題,在循環(huán)使用中性能衰減嚴(yán)重,熱導(dǎo)率提升幅度小,性價比低。加入多孔載體會減少相變材料含量,影響整體蓄能量。目前對納米粒子和多孔載體孔隙的尺寸對熱導(dǎo)率的影響規(guī)律研究仍有空缺,降低界面熱阻和提高相變材料相容性的機(jī)理還需進(jìn)一步探究。
3.1.3 過冷度調(diào)控
過冷是指相變材料在一定壓力條件下,溫度低于理論凝固溫度時仍不發(fā)生凝固或結(jié)晶,需要冷卻到凝固點(diǎn)以下才開始凝固的現(xiàn)象。過冷度被定義為熔化起始溫度和結(jié)晶開始溫度之間的差值[82],過冷度越大越難結(jié)晶。無機(jī)相變材料的過冷度普遍偏高,其中水合鹽相變材料成核性能較差,容易發(fā)生過冷,使相變材料無法在要求的溫度范圍內(nèi)工作。而且過冷度越大,意味著制冷溫度越低,對制冷機(jī)負(fù)荷要求越高。
影響過冷度的因素主要包括:冷卻速率、壁面效應(yīng)和尺寸效應(yīng)。一般冷卻速率越大,過冷度也越大[83]。過冷度也受封裝容器材料種類、表面粗糙度和壁面晶體結(jié)構(gòu)影響,粗糙壁面能提供更多成核位點(diǎn),粗糙度越大,過冷度越低[84]。儲存相變材料的容器體積越小,過冷度越大[85-86],因為相變材料中存在灰塵或其他雜質(zhì)顆粒,能在結(jié)晶過程中作為成核位點(diǎn),促進(jìn)結(jié)晶。但隨著容器尺寸減小,缺少足夠雜質(zhì)顆粒提供成核位點(diǎn),只能以均勻成核的方式結(jié)晶,增大相變材料結(jié)晶難度。目前解決相變材料過冷的方法主要有添加成核劑和壁面改性。
添加成核劑主要是選擇晶格參數(shù)接近目標(biāo)材料的成核劑,當(dāng)成核劑結(jié)構(gòu)與無機(jī)鹽類結(jié)晶物相似時,能起到誘導(dǎo)結(jié)晶作用,實(shí)現(xiàn)減小過冷度的目的[86]。這種方法經(jīng)濟(jì)成本低、適用范圍廣且制備過程無需特定設(shè)備,在調(diào)控過冷度方法中應(yīng)用最廣泛。Wu 等[87]在氯化鎂溶液中加入氯化鈣和氫氧化鈣作為成核劑,相變材料的過冷度由16.56℃降低到7.73℃,有效抑制過冷。Tang 等[88]在相變材料中加入成核劑九水偏硅酸鈉將過冷度降低至1.9℃。Zou等[89]以相變溫度為11.81℃的四正丁基溴化銨溶液作為蓄冷材料,加入成核劑十二水合磷酸氫二鈉使材料的過冷度由4.5℃降低到2.01℃,成核劑的加入有助于降低過冷度。
壁面改性法通過增加壁面粗糙度或加入多孔材料和納米粒子,為相變材料結(jié)晶提供更多成核位點(diǎn),降低材料過冷度[86]。Matthieu 等[84]考察金屬表面粗糙度對乙醇水溶液過冷度的影響,當(dāng)鋁管表面粗糙度從0.63μm變?yōu)?3.3μm時,乙醇水溶液過冷度從4.20℃降低到3.97℃。Zhang等[90]制備了一種以泡沫銅為骨架的水基復(fù)合相變材料,過冷度從20.6℃抑制到6.8℃,有效降低了材料過冷度。Liu等[91]將去離子水和氧化石墨烯納米片超聲混合,使水過冷度至少降低74%。
成核劑用量需要合理配比,少量成核劑就能有效降低過冷度,過多成核劑反而會降低抑制過冷的能力[92],性價比不高。后續(xù)應(yīng)使用分子模型對成核機(jī)理進(jìn)行研究,加大對復(fù)合型成核劑的開發(fā)和機(jī)理解釋,構(gòu)建成核劑數(shù)據(jù)庫為大規(guī)模商業(yè)化提供參考依據(jù)。目前對于壁面改性降低過冷度的機(jī)理研究不夠深入,僅為定性分析,后續(xù)應(yīng)建立多維模型來模擬真實(shí)場景,從成核能角度解釋機(jī)理,用普適性規(guī)律指導(dǎo)過冷度的調(diào)控。
3.1.4 循環(huán)穩(wěn)定性調(diào)控
固-液相變材料在吸熱后,相態(tài)會從固態(tài)熔化為易于流動的液態(tài),容易出現(xiàn)泄漏,在長期使用中性能衰減嚴(yán)重。對于水合鹽類相變材料,在循環(huán)使用中可能會發(fā)生部分水合鹽晶體因沉底而無法重新結(jié)晶的情況,即發(fā)生相分離,降低相變材料蓄冷能力。在實(shí)際使用中相變材料需要具有良好的循環(huán)穩(wěn)定性,能夠克服泄漏和相分離的缺點(diǎn)。提升循環(huán)穩(wěn)定性的主要途徑包括:制備定形復(fù)合相變材料法、微膠囊法和添加增稠劑法。
制備定形復(fù)合相變材料法主要采用熔融吸附法,在膨脹石墨、泡沫金屬等多孔基材內(nèi)吸收液態(tài)相變材料,借助毛細(xì)作用和范德華力將液態(tài)相變材料吸附在內(nèi)部孔隙中,減輕相變材料的泄漏。多孔基材內(nèi)部孔徑?jīng)Q定對相變材料的限制能力,根據(jù)孔徑大小可分為微孔(<2nm)、中孔(2~50nm)和大孔(>50nm)。較小的微孔可能會限制相變材料的相變,而較大的大孔不足以將相變材料吸附住。因此中孔和較小的大孔更適合制備防泄漏的復(fù)合相變材料[93]。Fei等[94]基于癸酸、棕櫚酸和膨脹石墨制備了一種相變溫度為23.05℃的復(fù)合相變材料,經(jīng)1000 次熔化和凝固循環(huán),幾乎沒有液態(tài)相變材料泄漏,可靠性優(yōu)秀。Shahbaz 等[95]采用氣相二氧化硅吸附相變溫度為20.65℃的六水氯化鈣,經(jīng)100次相變循環(huán)后,相變潛熱僅變化了7.8%,性能較純相變材料更為穩(wěn)定。Zhang 等[96]將六水氯化鎂和六水氯化鈣混合制得相變溫度為23.9℃的低溫共晶物,經(jīng)熔融吸附到膨脹珍珠巖中,經(jīng)500次相變循環(huán)后,材料性質(zhì)未出現(xiàn)明顯變化,未出現(xiàn)相分離現(xiàn)象。
微膠囊法常用高分子材料包覆相變材料,在其表面形成一層外殼,將液態(tài)相變材料鎖在殼中,從而減少相變材料泄漏。Charles等[97]使用相變溫度為6.2℃的相變材料與外殼材料聚甲基丙烯酸甲酯進(jìn)行交聯(lián)制備微膠囊,使用30 天后,質(zhì)量損失僅為0.6%,而無外殼的純相變材料質(zhì)量損失高達(dá)6.6%,微膠囊殼使泄漏情況較輕。Zheng 等[62]以石蠟和三聚氰胺樹脂分別為核材和殼材,制備了一種相變溫度為5℃的相變微膠囊,經(jīng)72h 后未出現(xiàn)分層,穩(wěn)定時間長。Eszter等[98]用海藻酸鈣包裹月桂酸辛酯,經(jīng)過250次高低溫循環(huán)后,相變焓從128.27J/g降至127.67J/g,沒有明顯變化,循環(huán)穩(wěn)定性良好。
添加增稠劑法通過增加溶液黏度,使相變材料穩(wěn)定保持懸浮態(tài)或乳液態(tài),減少相分離。常見的增稠劑有羧甲基纖維素、瓊膠、聚丙烯酰胺、聚乙烯醇、海藻酸鈉和活性白土等,添加增稠劑法已廣泛用于食品、涂料、化妝品、洗滌劑和醫(yī)藥等領(lǐng)域[99]。He 等[100]在六水氯化鈣與六水氯化鎂二元共晶水合鹽中加入增稠劑羧甲基纖維素,在100次循環(huán)內(nèi)保持優(yōu)異的循環(huán)穩(wěn)定性,焓值從123.13J/g 降至117.88J/g,為原來的95.7%。楊超等[101]選取羧甲基纖維素作為增稠劑對六水氯化鈣進(jìn)行改性,獲得的改性六水氯化鈣在300次循環(huán)中實(shí)現(xiàn)了相分離的控制。楊晉等[102]考察聚丙烯酸鈉、聚丙烯酰胺、羧甲基纖維素、聚陰離子纖維素、黃原膠等增稠劑對十水硫酸鈉相分離的調(diào)控規(guī)律,其中加入聚丙烯酸鈉和聚丙烯酰胺后靜置72h未出現(xiàn)明顯相分離。
目前多孔基材吸附機(jī)理解釋不足,針對不同材料間相容性問題提出改善方法和相應(yīng)機(jī)理解釋。微膠囊使用時容易出現(xiàn)團(tuán)聚問題,多次使用后因團(tuán)聚前后密度差出現(xiàn)分層,不利于循環(huán)穩(wěn)定。后續(xù)應(yīng)探究使用表面活性劑來改善團(tuán)聚問題,考察與不同添加劑的作用規(guī)律。增稠劑的使用會增加成本和降低焓值,需開發(fā)復(fù)配型增稠劑,降低生產(chǎn)成本。而且當(dāng)相變材料作為漿料使用時,材料黏度的增大會加大傳質(zhì)阻力,增加泵功耗,應(yīng)通過流體力學(xué)仿真來優(yōu)化增稠劑配比。
根據(jù)應(yīng)用需求不同,可將相變蓄能系統(tǒng)分為相變蓄熱系統(tǒng)和相變蓄冷系統(tǒng),其中相變蓄冷系統(tǒng)如圖14 所示。而相變蓄能系統(tǒng)性能主要受兩個因素影響:相變材料和系統(tǒng)傳熱結(jié)構(gòu)。相變材料可通過選材和改性等方法將性能調(diào)整至預(yù)期所需,系統(tǒng)傳熱結(jié)構(gòu)可以通過改變換熱器內(nèi)外部形狀和排布,獲得具有換熱面積大、結(jié)構(gòu)穩(wěn)定、操作簡單、抗壓性好、抗腐蝕性好和熱穩(wěn)定性好等優(yōu)點(diǎn)的換熱器。根據(jù)相變蓄冷系統(tǒng)換熱方式的不同,可以分為間壁換熱式相變蓄冷系統(tǒng)和直接接觸式相變蓄冷系統(tǒng)。
圖14 相變蓄冷系統(tǒng)示意圖[103]
3.2.1 間壁換熱式相變蓄冷系統(tǒng)
蓄冷技術(shù)中間壁換熱式相變蓄冷系統(tǒng)主要包括:內(nèi)融盤管式、堆積床式和管翅式。通過將制冷劑與傳熱流體隔開來防止二者直接接觸,在一定程度上維持二者性質(zhì)不變,目前應(yīng)用最為廣泛。
內(nèi)融盤管式蓄冷系統(tǒng)屬于靜態(tài)制冰[104],裝置如圖15 所示,以冰作為相變材料,由浸沒在水槽中的盤管構(gòu)成結(jié)冰載體。蓄冷時,制冷劑在管內(nèi)流動,將管外的水凍結(jié)成冰;釋冷時,傳熱流體在管內(nèi)流動,管外的冰熔化吸收管內(nèi)流體的熱量。盤管式蓄冰系統(tǒng)形狀多變,應(yīng)用范圍廣泛,使用簡單,可靠性好,價格較低,本身既可制冰又可蓄冰。而且間壁換熱的方式能隔開冷源和外界,提升系統(tǒng)的循環(huán)穩(wěn)定性。但冰與傳熱流體間存在較大的接觸熱阻,對傳熱性能不利。且盤管式內(nèi)部管路長、多彎折,制冷劑流動阻力大,泵功耗大,運(yùn)營成本較高。
圖15 內(nèi)融盤管式冰蓄冷系統(tǒng)的蓄冷和放冷過程[105]
堆積床式蓄冷系統(tǒng)通過將水、低溫石蠟和水合鹽等相變材料封裝在如圖16 所示的球形或板形容器內(nèi),并將這種蓄冷單元如圖17 所示放置在水罐內(nèi)。蓄冷時,制冷劑在蓄冰單元外流動,其中相變材料通過凝固來實(shí)現(xiàn)蓄冷。放冷時,傳熱流體流過蓄冷單元間隙實(shí)現(xiàn)熱交換。這種蓄冷裝置運(yùn)行可靠,但存在蓄冷量不易計量、傳質(zhì)阻力大等缺點(diǎn)。
圖16 封裝式蓄冷單位[106]
圖17 堆積床式蓄冷系統(tǒng)[103]
管翅式蓄冷裝置如圖18 所示,在列管上增加翅片來增大傳熱面積,常在翅片空隙中填充水合鹽和石蠟等相變材料用于蓄冷。蓄冷時,制冷劑在管內(nèi)流動,管外相變材料凝固蓄冷。放冷時,管外相變材料熔化釋冷,降低管內(nèi)傳熱流體溫度。這種裝置結(jié)構(gòu)緊湊、傳熱面積大,但制備工藝復(fù)雜而且難檢修保養(yǎng),運(yùn)行成本較高。
圖18 管翅式換熱器[107]
3.2.2 直接接觸式相變蓄冷系統(tǒng)
直接接觸式相變蓄冷系統(tǒng)方法包括外融盤管式和直接接觸式,通過制冷劑與傳熱流體直接接觸換熱,減少換熱器熱損失并提高熱交換效率。
外融盤管式蓄冷裝置如圖19 所示,與內(nèi)融盤管式蓄冷裝置結(jié)構(gòu)相似,同以冰作為相變材料。蓄冷時,制冷劑在管內(nèi)流動,將管外水凍結(jié)成冰;但在釋冷時,傳熱流體在管外流動,直接與冰接觸換熱。這種直接接觸式傳熱能有效降低接觸熱阻,提升換熱速率。但相變材料會直接接觸傳熱流體,存在物性被影響的可能,可靠性有待提高。
圖19 外融盤管式冰蓄冷系統(tǒng)的蓄冷和放冷過程[105]
直接接觸式冰漿制備裝置如圖20 所示。制冷劑和水溶液直接接觸,水溶液降溫結(jié)晶形成冰晶顆粒,這種方法在動態(tài)制備冰漿[104]過程中具有較高的換熱效率,改進(jìn)靜態(tài)冰蓄冷中冰層厚度增長和熱阻增加[108]的缺點(diǎn)。但是制冷劑噴嘴處易發(fā)生冰堵,難連續(xù)制冰[109],傳統(tǒng)低溫冷媒難與水分離,消耗量大,且容易腐蝕管壁,實(shí)際應(yīng)用成本高[110]。
圖20 直接接觸式冰漿制備裝置[111]
3.2.3 相變蓄冷系統(tǒng)的性能優(yōu)化
相變蓄冷材料的低熱導(dǎo)率意味著相變蓄冷系統(tǒng)蓄冷和放冷時間長,增加制冷系統(tǒng)功耗,提高運(yùn)行成本,因此需要對材料和換熱器的熱性能進(jìn)行優(yōu)化[112]。相變蓄冷系統(tǒng)傳熱主要有兩種強(qiáng)化方向:添加高導(dǎo)熱填料和增大換熱器表面積。實(shí)際應(yīng)用中常將這兩種方法結(jié)合起來,共同優(yōu)化相變蓄冷系統(tǒng)性能。
添加高導(dǎo)熱填料的方法是通過添加具有高熱導(dǎo)率、大比表面積的納米顆?;蚨嗫谆膩硖嵘w熱導(dǎo)率,提升系統(tǒng)釋冷、蓄冷速率,提高整體融冰率。Lou 等[113]研究了泡沫金屬對蓄冰球的傳熱強(qiáng)化,分析金屬泡沫和金屬泡沫復(fù)合翅片下溫度場、冰鋒演化、凝固分?jǐn)?shù)、總凝固時間和蓄冷能力的變化,最后對泡沫金屬蓄冰球的量綱為1參數(shù)進(jìn)行分析,為泡沫金屬在蓄冷系統(tǒng)中的應(yīng)用提供參考。Rajan 等[114]將活性生物炭納米粉末分散在水中,將材料熱導(dǎo)率從0.62W/(m·K)提升至1.05W/(m·K)。連續(xù)運(yùn)行337h,相比不含相變材料的冷庫,含相變材料的冷庫消耗電量從304.58kW·h 降至278.03kW·h,相變材料降低了冷庫9%的能耗。AL-Shannaq 等[115]為提高水的熱導(dǎo)率,將水封裝在高熱導(dǎo)率石墨球中并用于堆積床系統(tǒng),石墨的加入使水的熱導(dǎo)率從0.6W/(m·K)提升至7.2W/(m·K),系統(tǒng)完全蓄冷時間縮短了53.7%。
增大換熱器表面積,進(jìn)而增大系統(tǒng)傳熱面積來提升熱導(dǎo)率。常見方法是在換熱器內(nèi)引入翅片和增加槽口,管翅式換熱器由此而來[107],翅片和槽口越多,熱導(dǎo)率提升幅度越大。Shao 等[116]研究了相變?nèi)橐篜CE-10在管翅式換熱器中的熱性能,其相變溫度在4~11℃間,熱導(dǎo)率為0.4W/(m·K),翅片的存在強(qiáng)化了傳熱,使整體傳熱速率提升了1.1~1.3倍。Safari等[117]研究了管殼幾何形狀和傳熱管向下偏心對管殼式換熱器中石蠟融化行為的綜合影響,得出增加偏心系數(shù)可以延長以對流為主的融化時間,縮短以傳導(dǎo)為主的融化時間的結(jié)論,為容器設(shè)計提供思路。G?lta?等[118]為改善板式換熱器的性能,在板表面上增設(shè)魚鰓槽,傳熱速率提高了17.5%,魚鰓槽起到增大傳熱面積的作用。
結(jié)合高導(dǎo)熱填料及增大換熱器表面積可進(jìn)一步提高蓄冷系統(tǒng)傳熱性能,已廣泛用于蓄冷系統(tǒng)中。黃江常[119]使用膨脹石墨與水復(fù)合制備出相變焓值為280.6kJ/kg、相變溫度為0℃、過冷度為2.6℃和熱導(dǎo)率為4.72W/(m·K)的水/改性膨脹石墨復(fù)合相變材料。Feng 等[120]將這種水/膨脹石墨復(fù)合相變材料與管翅式換熱器通過如圖21 所示的方式耦合,將復(fù)合相變材料填充入換熱器翅片間。相比純水蓄冷器,該蓄冷器的蓄冷功率提升了15.9%,而且完成蓄冷時間僅為純水蓄冷器的69.7%,成功搭建了一個具有較高蓄冷功率和較快蓄冷速率的蓄冷裝置。Nóbrega 等[121]在水中加入納米氧化鋁顆粒,當(dāng)納米氧化鋁質(zhì)量分?jǐn)?shù)為5%時,相變焓為275.9kJ/kg,結(jié)冰前熱導(dǎo)率為0.67W/(m·K),結(jié)冰后熱導(dǎo)率為2.65W/(m·K)。再將其和圖22所示的四翅片管耦合,氧化鋁和翅片管的加入分別使水完全凝固時間縮短25%和9.1%,成功縮短了系統(tǒng)蓄冷時間。Anurag 等[122]采用十四烷為相變材料,膨脹石墨作為高導(dǎo)熱封裝基材,制得相變溫度為4.5 ℃、相變焓為168kJ/kg、熱導(dǎo)率為10W/(m·K)的復(fù)合相變材料。并如圖23 所示在空調(diào)系統(tǒng)中設(shè)計雙流體回路,通過結(jié)構(gòu)上優(yōu)化空調(diào)組成,空調(diào)壓縮機(jī)在高峰時期的功耗從2.18kW降至1.82kW,降低約16%。
圖21 水/改性膨脹石墨復(fù)合相變材料填充管翅式換熱器[119]
圖22 相變材料與四翅片管耦合模型[121]
圖23 使用膨脹石墨/十四烷復(fù)合相變材料的蓄熱式集成空調(diào)[122]
加入納米顆粒和多孔材料雖能提升系統(tǒng)熱導(dǎo)率,但會對相變材料的相變潛熱、相變溫度和循環(huán)穩(wěn)定性等性質(zhì)產(chǎn)生影響。增大蓄冷器傳熱面積,會因內(nèi)部結(jié)構(gòu)的復(fù)雜化提高成本和壓降,對生產(chǎn)和應(yīng)用提出更高要求。目前相變蓄冷材料和蓄冷器的量產(chǎn)工藝尚不成熟,大規(guī)模應(yīng)用難度高,后續(xù)應(yīng)繼續(xù)開發(fā)新型蓄冷材料和蓄冷容器,尋找相變材料與蓄冷器之間更多種耦合方式,提出與工況相匹配的釋冷、蓄冷控制策略,降低運(yùn)行成本,實(shí)現(xiàn)相變蓄冷技術(shù)的大規(guī)模應(yīng)用。而且要探究材料與容器間的相容性,部分材料有金屬腐蝕性,會縮短系統(tǒng)使用壽命和增加維護(hù)成本,如何對裝置進(jìn)行防腐蝕處理也是未來的研究重點(diǎn)。
本文回顧了面向低溫相變蓄能領(lǐng)域的相變材料和相變蓄冷系統(tǒng),并介紹了目前相變蓄冷系統(tǒng)的主要應(yīng)用場景,最后針對相變蓄冷系統(tǒng)的關(guān)鍵性能介紹了調(diào)控方法和方向。盡管相變蓄冷材料和系統(tǒng)的研究已經(jīng)取得了較大進(jìn)展,但由于相變材料自身缺陷和使用條件限制,目前應(yīng)用范圍較窄,離大規(guī)模商業(yè)化還有一定距離。根據(jù)國內(nèi)外現(xiàn)有研究,本綜述認(rèn)為可以從以下三個方面繼續(xù)發(fā)展。
(1)進(jìn)一步研究相變材料的性能調(diào)控方法和規(guī)律,單一相變材料通常存在如熱導(dǎo)率低、過冷度高、循環(huán)穩(wěn)定性差和腐蝕性強(qiáng)等缺陷,這可以通過制備復(fù)合相變材料和加入添加劑來調(diào)控相變材料性能。后續(xù)需要建立和完善相變材料的物性數(shù)據(jù)庫,提供一種有利于解決多數(shù)問題的方案,同時開發(fā)兼具低成本和低制造難度的工業(yè)化路線,為相變材料大規(guī)模商業(yè)化提供技術(shù)支撐。
(2)開發(fā)和研究新型相變蓄冷系統(tǒng),使用數(shù)值模擬指導(dǎo)設(shè)備開發(fā),設(shè)計結(jié)構(gòu)簡單和制造難度低的蓄冷系統(tǒng),特別是對于冷鏈運(yùn)輸、紡織品和數(shù)據(jù)中心冷卻等領(lǐng)域,要求有限的體積和重量,需要提高相變蓄冷系統(tǒng)的集成程度。應(yīng)結(jié)合實(shí)驗來驗證模擬設(shè)備的實(shí)際使用性能,最后對相變蓄冷系統(tǒng)進(jìn)行經(jīng)濟(jì)評估和環(huán)境評估,開發(fā)低能耗、低碳排放的相變蓄冷系統(tǒng)。
(3)拓寬相變蓄冷系統(tǒng)在各領(lǐng)域中的應(yīng)用,目前已在數(shù)據(jù)中心應(yīng)急冷卻和醫(yī)療保健等新領(lǐng)域有了較深的技術(shù)積累。后續(xù)還要完善在冷鏈運(yùn)輸、紡織品和建筑節(jié)能等領(lǐng)域的應(yīng)用,尋找高蓄冷需求的行業(yè),實(shí)現(xiàn)在各行各業(yè)的大規(guī)模商業(yè)化。
總之,相變蓄冷技術(shù)作為儲能技術(shù)中的技術(shù)分支,具有高安全性、性能穩(wěn)定、充放壽命長、成本低、結(jié)構(gòu)系統(tǒng)簡單等優(yōu)點(diǎn),是未來實(shí)現(xiàn)分布式儲能和清潔能源利用的重要方向。