嚴(yán)蕾艷 王迎兒 邢乃林 古斌權(quán) 黃蕓萍 王毓洪
摘? ? 要:【目的】明確浙江省內(nèi)西瓜、甜瓜、葫蘆和南瓜等瓜類作物根部病害種類及篩選病害防治的有效殺菌劑?!痉椒ā客ㄟ^病原菌分離培養(yǎng)、形態(tài)學(xué)特征觀察、基因序列分析和致病性測定確定了造成瓜類根部病害的主要病原菌,并采用菌絲生長速率法測定了該病原菌對5種殺菌劑的敏感性。【結(jié)果】從不同瓜類作物上分離的主要根部病原菌從形態(tài)學(xué)上觀察菌絲呈白色,在馬鈴薯葡萄糖瓊脂培養(yǎng)基(potato dextrose agar,PDA)上產(chǎn)生分生孢子。以內(nèi)轉(zhuǎn)錄間隔區(qū)(internal transcribed spacer,ITS)和蛋白翻譯延長因子1-α(Translation elongation factor 1-α,TEF1-α)為引物進行基因序列分析,發(fā)現(xiàn)病原菌與腐皮鐮刀菌(Fusarium solani)聚為一類。病原菌寄主?;詼y定表明,鑒定到的多個瓜類根腐病菌可同時侵染西瓜、甜瓜、葫蘆和南瓜等4種瓜類作物,病原菌的寄主專化性不明顯。不同藥劑敏感性測定結(jié)果表明,咪鮮胺對瓜類根腐病原菌的菌絲生長的抑制作用最強,平均有效中濃度EC50為0.135 mg·L-1;嘧菌酯的抑制作用最弱,所有測試菌株的EC50均大于800 mg·L-1?!窘Y(jié)論】在浙江省內(nèi)首次鑒定到一種由腐皮鐮刀菌引起的西瓜、甜瓜、葫蘆和南瓜等瓜類根腐病。殺菌劑敏感性測定表明,咪鮮胺對菌絲生長有較好的抑制作用。
關(guān)鍵詞:瓜類,腐皮鐮刀菌,寄主?;?,殺菌劑敏感性
中圖分類號:S65 文獻標(biāo)志碼:A 文章編號:1009-9980(2023)09-1943-09
收稿日期:2023-02-24 接受日期:2023-05-24
基金項目:科技創(chuàng)新2025重大專項(2021Z006);國家西甜瓜產(chǎn)業(yè)技術(shù)體系項目(CARS-25)
作者簡介:嚴(yán)蕾艷,女,副研究員,博士,主要從事植物病原真菌分子生物學(xué)研究。Tel:0574-87923251,E-mail:yanleiyan@zju.edu.cn
*通信作者Author for correspondence. Tel:0574-87924005,E-mail:yhwangsc@163.com
Identification and fungicide sensitivity of pathogens causing Cucurbitaceae root rot in Zhejiang province
YAN Leiyan, WANG Yinger, XING Nailin, GU Binquan, HUANG Yunping, WANG Yuhong*
(Vegetable Institute, Ningbo Academy of Agricultural Sciences/Ningbo Key Laboratory of Characteristic Horticultural Crops in Quality Adjustment and Resistance Breeding, Ningbo 315040, Zhejiang, China)
Abstract: 【Objective】Cucurbitaceae is one type of the most important economic plants in the world, including watermelon, melon, gourd, cucumber, pumpkin and other common vegetables and fruits. With the increase of protected cultivation area and the increasingly serious land continuous cropping obstacles, soil-borne diseases of Cucurbitaceae have occurred seriously, affecting the yield and quality. Grafting technology is one of the effective ways to solve soil-borne diseases like Fusarium wilt. However, in recent years, watermelon and other melon crops have withered and died in many Cucurbitaceae production areas in Zhejiang, including watermelon grafted on gourd or pumpkin rootstocks. It is preliminarily determined that the plants may be infected with other soil-borne diseases other than fusarium wilt, but the specific type of pathogen has not been determined. Therefore, this study was conducted to investigate the soil-borne disease of Cucurbitaceae in Zhejiang. 【Methods】 The pathogens were isolated by tissue separation method, and small pieces of necrotic root tissues were cut, sterilized, dried and placed on PDA with streptomycin, growing at 25 ℃ for 4 d. The purified stains were stored on PDA at 4 ℃. The main pathogens causing Cucurbitaceae root rot were identified by morphological characteristic observation, sequence analysis and pathogenicity test. The main causal agent of F. solani root rot from necrotic roots of watermelon, melon, bottle gourd and pumpkin was identified in Zhejiang. The pathogenicity of stains to different Cucurbitaceae crops was determined by yellowing seedling hypocotyl inoculation. The pathogens were inoculated on PDA containing penicillin and rifampicin for 5 d in dark at 25 ℃, and then the mycelium block was inoculated on the hypocotyl of the seedling with yellowing flattened cotyledons growing in dark, and wrapping with soaked absorbent paper for 4 d. The sensitivity of pathogens to five fungicides was determined by the mycelial growth rate method, i.e., the mycelial disk of pathogens with a diameter of 0.5 cm was inoculated on PDA containing different concentrations of fungicides, and the colony diameter was measured by the cross method after 5 d at 25 ℃. 【Results】 The results showed that the colony of the F. solani root rot pathogen was light pink, with a small amount of white thin aerial hypha growing on PDA for 7 d, and directly produced conidia on PDA. According to the observation on conidia under the microscope, the large conidia were fusiform and obtuse at both ends with 2-4 septums, and the size was (22.5-35.0) μm × (2.5-3.5) μm. The small conidia were oval, with 0-1 septum, and the size was (5.0-18.0) μm × (2.5-3.0) μm. The fragment amplified by the universal primers ef1/ef2 was 735 bp, and BLAST analysis showed that the sequence was 99% identity to F. solani (GenBank accession:KR935896.1). The fragment amplified by the universal primers ITS1/ITS4 was 544 bp, and BLAST analysis showed that the sequence was 97% identity to F. solani (GenBank accession:MK250905.1). Phylogenetic tree analysis based on ITS and tef1-α sequences of F. solani showed that FS-isolates and F. solani clustered together, combined with the morphological characteristics of the strains, and these pathogens were identified as F. solani. The results of host specialization showed that the pathogens could infect watermelon, melon, gourd and pumpkin. The sensitivity of the pathogens to different fungicides was determined. The results indicated that prochloraz had the highest activity inhibiting mycelial growth of the pathogens, with an average median effective concentration (EC50) value of 0.13 mg·L-1, followed by carbendazim with an average EC50 of 1.262 mg·L-1, while azoxystrobin had the weakest inhibitory effect, and EC50 of all tested strains was greater than 800 mg·L-1. 【Conclusion】 In this study, F. solani causing Cucurbitaceae root rot of watermelon, melon, gourd, pumpkin and other Cucurbitaceaes was identified in Zhejiang. Pathogenicity analysis showed that F. solani could infect a variety of Cucurbitaceae crops without obvious host specialization. The fungicide sensitivity test showed that the three fungicides including prochloraz, carbendazim and iprodione, were effective against F. solani mycelial growth, which could provide theoretical basis for disease control in the field. The F. solani stains in this study can infect watermelon, melon, gourd and pumpkin, so rotation between these crops cannot solve the root rot problem. The purpose of using pumpkin or gourd grafting is to solve the problem of soil-borne diseases. In this study, it was found that pumpkin or gourd grafting rootstock itself would cause root rot, leading to crop failure. At present, there are few studies on the breeding of Cucurbitaceae crops for resistance to F. solani root rot. In the future, it is necessary to breed not only the scion varieties with resistance to F. solani root rot, but also the rootstocks.
Key words: Cucurbitaceae; Fusarium solani; Host specialization; Fungicide sensitivity
瓜類根腐病是由半知菌亞門真菌(Deuteromycotina)腐皮鐮刀菌(Fusarium solani)引起的病害,在西瓜、甜瓜和黃瓜等葫蘆科作物上普遍發(fā)生,是繼瓜類枯萎病之后的又一毀滅性土傳病害[1-3]。瓜類根腐病的病原菌主要侵染根部,初呈水浸狀,后呈淺褐色濕腐,病部腐爛處維管束變褐色,但不向上擴展,此癥狀可與枯萎病相區(qū)別[4]。瓜類枯萎病目前可通過嫁接換根有效解決,但是隨著設(shè)施面積的不斷增加,輪作倒茬困難,土壤中的病原菌多年連續(xù)繁殖積累,導(dǎo)致土傳病害逐年加重,即使通過嫁接技術(shù)仍有瓜類作物發(fā)生根部腐爛,給瓜類生產(chǎn)帶來嚴(yán)重?fù)p失[5]。
國內(nèi)外對瓜類根腐病的研究報道不多。國外有研究報道南瓜根腐病是由腐皮鐮刀菌南瓜?;停‵. solani f. sp. cucurbitae)侵染引起的,且能夠侵染包括甜瓜在內(nèi)的其他葫蘆科作物[6]。國內(nèi)甜瓜根腐病最早發(fā)生于20世紀(jì)80年代末的新疆地區(qū),分離的病原菌腐皮鐮刀菌可侵染甜瓜、西瓜、豇豆和黑籽南瓜,但并不侵染冬瓜、金絲瓜等作物[7]。新疆甜瓜根腐病在甜瓜的整個生育期都能感病,種子藥劑處理、播種藥土覆蓋及定植后藥劑灌根等措施對其有一定的防效[7]。劉心剛等[8]從西藏設(shè)施西瓜病株上分離到的病原菌,通過形態(tài)學(xué)鑒定和ITS rDNA序列比對鑒定為腐皮鐮刀菌,人工接種可侵染黃瓜和西瓜。楊穎等[9]采用幼苗離體接種法對267份薄皮甜瓜種質(zhì)資源進行根腐病抗性鑒定,篩選到多份抗源材料。吳會杰等[10]明確了引起甘肅皋蘭地區(qū)甜瓜根腐病的主要病原菌為尖孢鐮孢菌甜瓜?;停‵. oxysporum f. sp. Melonis)及黑點根腐病菌(Monosporascus cannonballus)。
近年來,浙江省寧波、臺州、衢州等多個瓜類產(chǎn)區(qū)發(fā)生西甜瓜等瓜類作物萎蔫、死亡現(xiàn)象,其中包括采用葫蘆或南瓜砧木嫁接的西甜瓜,初步判斷可能是感染了除枯萎病菌外的其他土傳病害,具體病原菌種類尚未確定。筆者在2017—2021年開展了浙江省內(nèi)瓜類種植基地病害調(diào)查,采集了西瓜、甜瓜和包括嫁接瓜類的萎蔫病株,通過分離根部病原菌、形態(tài)學(xué)觀察及基因序列分析等相關(guān)研究,確定了引起瓜類根部腐爛的主要病原菌腐皮鐮刀菌并測定了該病原菌對多種殺菌劑的敏感性情況,以期為病害的科學(xué)防控提供理論依據(jù)。
1 材料和方法
1.1 瓜類根腐病病害田間癥狀調(diào)查
2017—2021年在浙江省寧波鄞州、臺州臨海、杭州蕭山、溫州蒼南和衢州常山等地的瓜類種植基地采集冬瓜、西瓜、甜瓜、葫蘆砧木嫁接西瓜和南瓜砧木嫁接西瓜等瓜類萎蔫病株,選取根莖部有腐爛癥狀的瓜類樣品共計65株。
1.2 病原菌分離與純化
采用組織分離法[11],切取小塊根部發(fā)病組織于1%次氯酸鈉溶液浸泡消毒1 min,無菌水漂洗3次晾干,置于含有25 mg·L-1鏈霉素的馬鈴薯葡萄糖瓊脂培養(yǎng)基(potato dextrose agar,PDA)培養(yǎng)基上,25 ℃培養(yǎng)箱中培養(yǎng),長出菌落后再分離純化。將分離純化的菌株轉(zhuǎn)接至PDA斜面,4 ℃冰箱保存?zhèn)溆谩?/p>
1.3 病原菌鑒定
1.3.1 病原菌形態(tài)學(xué)鑒定 將病原菌接種于PDA培養(yǎng)基上,25 ℃黑暗培養(yǎng)5 d后,觀察并拍照記錄菌落形態(tài)、分生孢子形態(tài)等,作為病原菌形態(tài)學(xué)分類依據(jù)。
1.3.2 病原菌基因序列分析 病原菌基因組采用簡便快速的菌絲DNA提取辦法,具體操作步驟如下:用滅菌牙簽從PDA平板上刮取菌絲約100 mg,加500 μL DNA提取裂解液(0.2 mol·L-1 Tris-HCl、0.05 mol·L-1乙二胺四乙酸、0.02 mol·L-1 NaCl、質(zhì)量分?jǐn)?shù)1%的十二烷基磺酸鈉),充分研磨混勻,室溫靜止10 min;13 200 r·min-1 4 ℃離心5 min,取上清液加750 μL無水乙醇混合均勻,離心棄上清液;沉淀用體積分?jǐn)?shù)70%乙醇洗滌,室溫干燥后溶于30 μL TE緩沖液(pH 8.0),-20 ℃保存?zhèn)溆?。PCR擴增引物為核糖體內(nèi)轉(zhuǎn)錄間隔區(qū)(internal transcribed spacer,ITS)的通用引物對ITS1(5-TCCGTAGGTGAACCTGCGG-3)和ITS4(5-TCCTCCGCTTATTGATATGC-3)[12],蛋白翻譯延長因子1-α(translation elongation factor 1-α,TEF1-α)通用引物對ef1(5-ATGGGTAAGGA(A/G)GACAAGAC-3)和ef2 (5-GGA(G/A) GTACCAGT(G/C)ATCATGTT-3)[13]。PCR反應(yīng)的擴增體系為: DNA模板1 μL(約0.4 ng),引物對(ef1+ef2或ITS1+ITS4)各0.2 μmol·L-1[生物工程(上海)股份有限公司合成],dNTP 0.2 μmol·L-1,MgCl2 2 mmol·L-1,1×緩沖液(上海博彩生物科技有限公司),聚合酶1.5 U,雙蒸水補足至25 μL。PCR反應(yīng)條件為:95 ℃預(yù)變性3 min,94 ℃變性30 s,53 ℃退火30 s,72 ℃延伸30 s,進行35個循環(huán),最后72 ℃延伸5 min。PCR產(chǎn)物送往生物工程(上海)股份有限公司進行測序。采用DNAMAN軟件與NCBI網(wǎng)站BLAST分析程序進行序列比對,采用MEGA X最大相似自然法(Maximun Likelihood method)進化樹分析[14]。
1.4 病原菌的寄主?;詼y定
分離鑒定得到的根腐病原菌對不同瓜類寄主的致病力采用黃化苗下胚軸接種法[15]。取遮光培養(yǎng)的子葉展平的甜瓜銀蜜58、西瓜西農(nóng)8號、中國南瓜壯士、葫蘆強根幼苗,將根腐病菌株接種于含有50 mg·L-1青霉素和50 mg·L-1利福平的PDA平板25 ℃暗培養(yǎng)5 d后,用直徑0.8 cm的打孔器打取菌絲塊接種于幼苗下胚軸處,以空白培養(yǎng)基替代菌餅作對照。將接種后的下胚軸用浸濕的吸水紙包裹保濕,4 d后觀察結(jié)果。每處理3個重復(fù)共15株,試驗重復(fù)2次?!?”為未發(fā)病,“+”為接種位置變褐,“++”為病斑擴展,病斑長;“+++”為病斑擴展,繞莖枯死。
1.5 病原菌對不同殺菌劑的敏感性測定
1.5.1 供試藥劑 根據(jù)殺菌劑的種類,分別選擇二羧酰亞胺類殺菌劑96.0%異菌脲(iprodione)、咪唑類殺菌劑95.0%咪鮮胺(prochloraz)、甲氧基丙烯酸酯類殺菌劑96.0%嘧菌酯(azoxystrobin)、苯并咪唑類殺菌劑95.0%多菌靈(carbendazim)和三唑類殺菌劑96.0%三唑酮(triadimefon),以上原藥均由江西正邦生物化工有限公司提供。
1.5.2 病原菌對不同殺菌劑的敏感性 7個病原菌對5種殺菌劑的敏感性測定采用菌絲生長速率法,即打取直徑0.5 cm的病原菌菌絲盤,接種于含不同殺菌劑質(zhì)量濃度的PDA平板中心,以不含藥PDA平板為空白對照。5種含藥平板的終質(zhì)量濃度見表1。25 ℃培養(yǎng)箱培養(yǎng)5 d后采用十字交叉法測量菌落直徑,每個濃度重復(fù)3皿,試驗重復(fù)2次。菌絲生長抑制率/%=(對照菌落直徑-含藥平板菌落直徑)/(對照菌落直徑-菌餅直徑)×100。
1.5.3 數(shù)據(jù)分析 試驗數(shù)據(jù)采用DPS軟件,以不同殺菌劑濃度的對數(shù)值為自變量(x),對應(yīng)濃度菌絲生長抑制率作為因變量(y),用統(tǒng)計回歸法求出室內(nèi)毒力回歸曲線,求出殺菌劑對根腐病菌菌絲生長的有效中濃度EC50。
2 結(jié)果與分析
2.1 瓜類根腐病田間癥狀
西瓜、甜瓜等瓜類作物感染根腐病后,發(fā)病初期部分葉片輕微黃化,葉片失水萎蔫,坐果后整株萎蔫干枯死亡(圖1-A),根莖部呈褐色水漬狀腐爛,病部腐爛處的維管束變褐色(圖1-B),但未腐爛的地上部分根莖部維管束一般不變褐色(圖1-D)。根莖部發(fā)病部位后期變糟,組織破碎,僅留下絲狀維管束(圖1-B~C)。
2.2 病原菌分離
2017—2021年浙江省內(nèi)西瓜、甜瓜等瓜類作物根部腐爛的樣品中分離純化獲得的45株菌株中,根據(jù)菌株的形態(tài)學(xué)觀察分為4種類型,其中腐皮鐮刀菌有25株,檢出率為55.6%(25/45);尖孢鐮刀菌F. oxysporum有10株,檢出率為22.2%(10/45);織球殼菌Plectosphaerella cucumerina有5株,檢出率為11.1%(5/45);其他病原菌占11.1%(5/45)。
根據(jù)科赫氏法則,采用下胚軸接種法,將分離純化的腐皮鐮刀菌、尖孢鐮刀菌和織球殼菌分別接種于西瓜幼苗上,均可造成西瓜苗莖部褐色病斑。造成瓜類根腐病的病原菌包括腐皮鐮刀菌、尖孢鐮刀菌和織球殼菌,并且腐皮鐮刀菌為優(yōu)勢病原菌。
2.3 瓜類根腐病菌鑒定
2.3.1 病原菌形態(tài)學(xué)特征 從引起瓜類根腐病的優(yōu)勢病原菌腐皮鐮刀菌中選取不同寄主、在PDA培養(yǎng)基上菌落形態(tài)一致的代表菌株7株(表2)。在PDA培養(yǎng)基上生長7 d時菌落呈淺粉色,有少量白色薄絨狀氣生菌絲,PDA平板上可直接產(chǎn)孢(圖2-A~B)。顯微鏡下觀察分生孢子,大型分生孢子呈梭形,兩端鈍圓,有2~4個隔膜,大小為(22.5~35.0) μm×(2.5~3.5) μm(圖2-C);小型分生孢子呈橢圓形或卵圓形,0~1個隔膜,大小為(5.0~18.0) μm×(2.5~3.0) μm(圖2-D)。根據(jù)形態(tài)特征初步將其鑒定為腐皮鐮刀菌。
2.3.2 病原菌基因序列分析 利用TEF1-α和ITS通用引物分別擴增7個病原菌DNA,將獲得的PCR產(chǎn)物進行測序。測序結(jié)果在NCBI網(wǎng)頁進行BLAST序列比對,擴增的蛋白翻譯延長因子1-α(TEF1-α)的片段長度為735 bp,與腐皮鐮刀菌的翻譯延長因子1-α(登錄號:KR935896.1)的同源性為99%,擴增的核糖體內(nèi)轉(zhuǎn)錄間隔區(qū)(ITS)的片段長度為544 bp,與腐皮鐮刀菌的ITS(登錄號:MK250905.1)的同源性為97%。病原菌的TEF1-α和ITS序列利用MEGA X軟件進行進化樹分析,分離獲得的7個菌株與腐皮鐮刀菌聚為一簇(圖3),結(jié)合菌株的形態(tài)學(xué)特征,確定這些病原菌為腐皮鐮刀菌。
2.4 病原菌寄主?;詼y定
選取有代表性的腐皮鐮刀菌根腐病病原菌7株(菌株清單見表2),對不同瓜類的致病力采用黃化苗下胚軸接種法測定,接種4 d后觀察植株的發(fā)病情況。結(jié)果表明,從西瓜、葫蘆和甜瓜等病株上分離的腐皮鐮刀菌均可侵染甜瓜、西瓜、葫蘆和南瓜等瓜類作物,不同菌株間的致病力有所不同(表3)。圖4為菌株FS36接種不同瓜類作物的發(fā)病情況,西瓜、葫蘆和南瓜接種后幼苗莖部病斑延長變褐色,甜瓜接種后病斑繞莖7 d枯死。將不同瓜類作物的各3個病斑進行病原菌重分離,原接種菌的檢出率達(dá)100%。結(jié)果表明,分離到的腐皮鐮刀菌可侵染多種瓜類作物,且病原菌無明顯寄主?;?。
2.5 瓜類根腐病原菌對不同殺菌劑的敏感性
測試的7個腐皮鐮刀菌對5種殺菌劑的敏感性存在明顯差異(表4)。測定的7個腐皮鐮刀菌引起的瓜類根腐病菌對多菌靈、咪酰胺和撲海因藥劑敏感。其中,咪酰胺對病原菌的抑制作用最強,平均EC50為0.135 mg·L-1;其次為多菌靈和撲海因,平均EC50分別為1.262和7.805 mg·L-1。而三唑酮和嘧菌酯類藥劑對該類菌株抑制作用不明顯。其中,嘧菌酯的抑制作用最弱,所有測試菌株的EC50均大于800 mg·L-1,三唑酮的EC50均大于638.307 mg·L-1。
3 討 論
引起土傳病害的鐮刀菌種類多、寄主范圍廣[16-17],鐮刀菌的分類鑒定十分復(fù)雜,傳統(tǒng)的鐮刀菌種級別是以分生孢子、分生孢子梗、厚垣孢子、菌落形態(tài)和產(chǎn)生色素等綜合特征進行確定[18],但病原菌的這些綜合特征容易受外界環(huán)境的影響導(dǎo)致分類不準(zhǔn)確。因此,病原菌形態(tài)學(xué)特征結(jié)合基因序列來鑒定鐮刀菌十分有必要[19]。利用鐮刀菌在種水平上的保守的特異性序列TEF1-α和ITS區(qū)段,可進行病原菌快速、準(zhǔn)確鑒定。筆者在本研究中結(jié)合病原菌的形態(tài)學(xué)特征和TEF1-α和ITS序列片段鑒定到浙江省內(nèi)引起不同瓜類根腐病的主要病原菌為腐皮鐮刀菌。
筆者在本研究中采用了黃化苗下胚軸接種法鑒定了腐皮鐮刀菌對不同瓜類作物的致病性,并從接種部位重新分離獲得該病原菌。比較了孢子液澆灌法[8]和浸根法[9]的發(fā)病時間,需要10~25 d,而黃化苗下胚軸接種法發(fā)病時間最短,只需要4 d即可觀察結(jié)果,發(fā)病癥狀直觀,操作簡便,重復(fù)性好。因此,黃化苗下胚軸接種法適合大量篩選瓜類抗病材料,為抗病品種篩選提供技術(shù)支撐。本研究中測試的從不同瓜類作物上分離獲得的腐皮鐮刀菌均可不同程度侵染西瓜、甜瓜、葫蘆和南瓜等幼苗,因此這些瓜類作物之間輪作并不能解決根腐病問題,同時采用葫蘆和南瓜砧木嫁接也可能導(dǎo)致根腐病的發(fā)生,表明腐皮鐮刀菌根腐病對瓜類生產(chǎn)存在潛在風(fēng)險。
腐皮鐮刀菌可在土壤中長期存活,土壤帶菌是設(shè)施瓜類根腐病初侵染源之一,而且病原菌主要集中在0~15 cm土層中,瓜類連茬加劇了根腐病的發(fā)生[20]。目前,瓜類作物除了與水稻等輪作外,根腐病的主要防治措施仍是化學(xué)防治。有研究者發(fā)現(xiàn)75%無菌·戊唑醇、40%氟硅醇、15%苯醚甲環(huán)唑·丙環(huán)唑?qū)︾牭毒z的抑制有較好的效果[21],田間采用50%多菌靈可濕性粉劑600倍液、50%甲基托布津600倍液等灌根可起到防治效果[2]。筆者在本研究中開展的室內(nèi)毒力分析表明,殺菌劑咪酰胺、多菌靈、撲海因?qū)Ωょ牭毒鸬墓项惛∮休^好的防治效果,平均EC50分別為0.135、1.262、7.805 mg·L-1,而嘧菌酯和三唑酮對根腐病的防治效果不佳,平均EC50均分別大于800、638.307 mg·L-1。筆者在本研究中只開展了藥劑對病原菌離體菌絲抑制的影響試驗,尚未開展田間防效試驗。由于藥劑施用到土壤中,不少成分會被土壤顆粒吸收,能否真正起到病害防治效果還有待于進一步驗證,同時藥劑對瓜類作物生長的影響也需要進一步考察。
4 結(jié) 論
筆者在本研究中首次開展了浙江省內(nèi)瓜類根腐病病原菌的分離鑒定,結(jié)合形態(tài)學(xué)和基因序列分析,確定為主要由腐皮鐮刀菌引起的根腐病。對致病力分析發(fā)現(xiàn),腐皮鐮刀菌可侵染多種瓜類作物,不存在明顯寄主?;浴J覂?nèi)毒力分析表明咪酰胺、多菌靈和撲海因這3種殺菌劑對腐皮鐮刀菌菌絲生長有明顯的抑制作用,為田間病害防治提供了理論依據(jù)。
參考文獻 References:
[1] 林燚. 設(shè)施西瓜根腐病發(fā)生規(guī)律及防治技術(shù)[J]. 現(xiàn)代農(nóng)業(yè)科技,2006(10):79-80.
LIN Yi. Occurrence regularity and control techniques of root rot of protected watermelon[J]. Modern Agricultural Science and Technology,2006(10):79-80.
[2] 楊來新,羅國亮,阿不力米提,蔣業(yè)基,努爾買買提. 新疆甜瓜根腐病發(fā)生危害及防治[J]. 植物保護,2004,30(4):86-87.
YANG Laixin,LUO Guoliang,A Bulimiti,JIANG Yeji,NU Ermaimaiti. Occurrence,harm and control of melon root rot in Xinjiang[J]. Plant Protection,2004,30(4):86-87.
[3] 王惠哲,李淑菊,馬德華,董金皋. 黃瓜根腐病致病病原的鑒定[J]. 華北農(nóng)學(xué)報,2003,18(2):74-77.
WANG Huizhe,LI Shuju,MA Dehua,DONG Jingao. Identification of the pathogen of cucumber root rot[J]. Acta Agriculturae Boreali-Sinica,2003,18(2):74-77.
[4] 劉保才,李才華,夏新葉,王自安. 西瓜根腐病和枯萎病的癥狀識別與防治[J]. 中國西瓜甜瓜,2004,17(6):39.
LIU Baocai,LI Caihua,XIA Xinye,WANG Zian. Symptom identification and control of watermelon root rot and Fusarium wilt[J]. China Watermelon and Muskmelon,2004,17(6):39.
[5] 蔣薇. 西瓜根腐病病原學(xué)研究及防治方法的初探[D]. 武漢:華中農(nóng)業(yè)大學(xué),2014.
JIANG Wei. Study on etiology and preliminary control methods of watermelon root rot[D].Wuhan:Huazhong Agricultural University,2014.
[6] SUMNER D. Etiology and control of root rot of summer squash in Georgia[J]. Plant Disese Report,1976,60:923-927.
[7] 楊來新,羅國亮,阿不力米提. 新疆甜瓜根腐病研究初報[J]. 新疆農(nóng)業(yè)科學(xué),2004,41(3):185-189.
YANG Laixin,LUO Guoliang,A Bulimiti. A study on the muskmelon root rot in Xinjiang uygur autonmous region[J]. Xinjiang Agricultural Sciences,2004,41(3):185-189.
[8] 劉心剛,楊成德,王振. 西藏設(shè)施西(黃)瓜根腐病的分離與鑒定[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報,2018,53(2):80-85.
LIU Xingang,YANG Chengde,WANG Zhen. Isolation and identification of root rot pathogens on protected cultivation watermelons and cucumbers in Tibet[J]. Journal of Gansu Agricultural University,2018,53(2):80-85.
[9] 楊穎,耿麗華,王建設(shè),宋曉華. 甜瓜根腐病病原分離與抗源鑒定[J]. 華北農(nóng)學(xué)報,2010,25(4):218-220.
YANG Ying,GENG Lihua,WANG Jianshe,SONG Xiaohua. Isolation of root rot pathogen and resistance evaluation of melon materials[J]. Acta Agriculturae Boreali-Sinica,2010,25(4):218-220.
[10] 吳會杰,嚴(yán)蕾艷,郭珍,彭斌,康保珊,劉莉銘,古勤生. 黑點根腐病菌和鐮孢菌復(fù)合侵染引起的甜瓜根腐病的鑒定[J]. 中國瓜菜,2021,34(10):15-19.
WU Huijie,YAN Leiyan,GUO Zhen,PENG Bin,KANG Baoshan,LIU Liming,GU Qinsheng. Identification of melon root rot pathogen of Monosporascus cannonballus and Fusarium oxysporum f. sp. melonis[J]. China Cucurbits and Vegetables,2021,34(10):15-19.
[11] 董漢松. 植病研究法[M]. 北京:中國農(nóng)業(yè)出版社,2012.
DONG Hansong. Research methods of plant disease[M]. Beijing:China Agriculture Press,2012.
[12] WHITE T J,BRUNS T D,LEE S B,TAYLOR J W. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes[A]// MICHAEL A I. PCR protocols: A guide to methods and applications. London:Academic Press, 1990: 315-322.
[13] GEISER D M,DEL MAR JIM?NEZ-GASCO M,KANG S,MAKALOWSKA I,VEERARAGHAVAN N,WARD T J,ZHANG N,KULDAU G A,ODONNELL K. FUSARIUM-ID v. 1.0:A DNA sequence database for identifying Fusarium[J]. European Journal of Plant Pathology,2004,110(5/6):473-479.
[14] KUMAR S,STECHER G,LI M,KNYAZ C,TAMURA K. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution,2018,35(6):1547-1549.
[15] 楊瑾,汪孝璊,葉文武,鄭小波,王源超. 黃淮海地區(qū)大豆種質(zhì)資源對疫霉根腐病的抗性鑒定[J]. 大豆科學(xué),2020,39(1):12-22.
YANG Jin,WANG Xiaomen,YE Wenwu,ZHENG Xiaobo,WANG Yuanchao. Identification of soybean resistance to Phytophthora sojae in the germplasm resources from Huanghuaihai region of China[J]. Soybean Science,2020,39(1):12-22.
[16] 康鋒,王賢磊,李冠. 新疆甜瓜枯萎病、根腐病病原菌鑒定[J]. 新疆農(nóng)業(yè)科學(xué),2010,47(6):1166-1171.
KANG Feng,WANG Xianlei,LI Guan. Identification on pathogen of wilt disease and root rot of melon in Xinjiang[J]. Xinjiang Agricultural Sciences,2010,47(6):1166-1171.
[17] 楊成德,王振,代萬安,郝蓉蓉,劉心剛,楊杰. 西藏設(shè)施茄子鐮孢根腐病病原的分離及鑒定[J]. 植物保護,2015,41(3):123-126.
YANG Chengde,WANG Zhen,DAI Wanan,HAO Rongrong,LIU Xingang,YANG Jie. Isolation and identification of the pathogen of eggplant root rot in Tibet Autonomous Region[J]. Plant Protection,2015,41(3):123-126.
[18] 陳鴻逵,王拱辰. 浙江鐮刀菌志[M]. 杭州:浙江科學(xué)技術(shù)出版社,1992.
CHEN Hongkui,WANG Gongchen. Fusarium records of Zhejiang Province[M]. Hangzhou:Zhejiang Science & Technology Press,1992.
[19] 張俊忠,陳秀蓉,楊成德,王進明. 東祁連山高寒草地土壤5種鐮孢菌的形態(tài)鑒定和ITS rDNA分析[J]. 草原與草坪,2010,30(2):33-37.
ZHANG Junzhong,CHEN Xiurong,YANG Chengde,WANG Jinming. ITS rDNA sequence analysis and phenotype identification of 5 Fusarium spp. in alpine grassland soil in eastern Qilian Mountains[J]. Grassland and Turf,2010,30(2):33-37.
[20] 張作剛. 溫室西葫蘆根腐病發(fā)生規(guī)律[J]. 山西農(nóng)業(yè)(致富科技),2008(11):35.
ZHANG Zuogang. Occurrence regularity of root rot of zucchini in greenhouse[J]. Shanxi Agriculture (Zhifu Technology),2008(11):35.
[21] 劉心剛. 西藏設(shè)施西瓜鐮孢根腐病病原鑒定及藥劑篩選[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2018.
LIU Xingang. The identification and fungicide selection of pathogen of greenhouse watermelon Fusarium root rot in Tibet Autonomous Region[D]. Lanzhou:Gansu Agricultural University,2018.