• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Regularization Method for a Parameter Identification Problem in a Non-linear Partial Differential Equation

    2023-09-23 12:04:36NAIRThambanandROYSampritaDas

    NAIR M.Thamban and ROY Samprita Das

    1 Department of Mathematics,BITS Pilani,K K Birla Goa Campus,Zuarinager,Goa 403726,India.

    2 Department of Mathematics and Statistics,IISER Kokota,Nadia,West Bengal 741246,India.

    Abstract. We consider a parameter identification problem associated with a quasilinear elliptic Neumann boundary value problem involving a parameter function a(·) and the solution u(·),where the problem is to identify a(·) on an interval I:=g(Γ) from the knowledge of the solution u(·) as g on Γ,where Γ is a given curve on the boundary of the domain Ω?R3 of the problem and g is a continuous function.The inverse problem is formulated as a problem of solving an operator equation involving a compact operator depending on the data,and for obtaining stable approximate solutions under noisy data,a new regularization method is considered.The derived error estimates are similar to,and in certain cases better than,the classical Tikhonov regularization considered in the literature in recent past.

    Key Words: Ill-posed;regularization;parameter identification.

    1 Introduction

    Let Ω be a bounded domain in R3withC1,1boundary.Consider the problem of finding a weak solutionu∈H1(Ω) of the partial differential equation

    with boundary condition

    wherea∈H1(R) andj∈L2(?Ω).One can come across this type of problems in the steady state heat transfer problem withubeing the temperature,athe thermal conductivity which is a function of the temperature,andjthe heat flux applied to the surface.In this regard,the following result is known (see[1-3]):

    Theorem 1.1.Let a≥κ0>0a.e.for some constant κ0andThen there exists u∈H1(Ω)such that(1.1)and(1.2)are satisfied.If,in addition,with p>3,then u ∈

    In view of the above theorem,we assume that,

    Supposeγ:[0,1]→?Ω is aC1-curve on?Ω andg:?!鶵 such thatg?γ∈C1([0,1]),where Γ is the range ofγ.One of the inverse problems associated with (1.1)-(1.2) is:

    Problem (P):To identify an a∈H1(R)on I:=g(Γ)such that the corresponding u satisfies(1.1)-(1.2)along with the requirement

    In the following we shall use the same notation fora∈H1(R) and for its restriction onIas a function inH1(I).

    We shall see that the Problem (P) is ill-posed,in the sense that the solutiona|Idoes not depend continuously on the datagandj(see Section 2).To obtain a stable approximate solution for the Problem (P),we use a new regularization method which is different from some of the standard ones in the literature.We discuss this method in Section 3.

    The existence and uniqueness of solution for the Problem (P) is known under some additional conditions onγandg,as specified in Section 2 (see,e.g.,[3,4]).In [2] and[3] the problem of finding a stable approximate solution of the problem is studied by employing Tikhonov regularization with noisy data.In [2],with the noisy datagδ,in place ofg,satisfying‖g-gδ‖L2(Γ)≤δ,convergence rateis obtained whenevera∈H4(I) and its trace is Lipschitz on?Ω,whereaδis the approximate solution obtained via Tikhonov regularization.In [3],the rateis obtained without the additional assumption ona,where noise injas well asgis also considered as

    It is stated in[3]that“the rateis possible with respect toH1-norm,provided some additional smoothness conditions are satisfied”;however,the details of the analysis is missing.

    Under our newly introduced method,we obtain the above type of error estimates using appropriate smoothness assumptions.In particular we prove that,ifg0∈R is such thatI=[g0,g1]and ifa(g0) is known or is approximately known,and the perturbed datajδandgδbelong toW1-1/p,p(?Ω) forp>3 andC1(Γ),respectively,satisfying (1.5),then the convergence rate iswith respect toL2-norm.With additional assumption that the exact solution is inH3(I) we obtain a convergence rateO(δ2/3) with respect toL2-norm.Again,in particular,ifg?γis inH4([0,1]),the rateO(δ2/3) with respect toL2-norm is obtained under a weaker condition on perturbed datagδ,namely,gδ∈L2(Γ) with‖g-gδ‖L2(Γ)≤δ.Also,in the new method we do not need the assumption ongδmade in [3] which isgδ(Γ)?g(Γ).Thus some of the estimates obtained in this paper are improvements over the known estimates,and are also better than the expected best possible estimate,namelyO(δ3/5),in the context of Tikhonov regularization,as mentioned in[3].

    The paper is organized as follows:In Section 2 we present a theorem which characterize the solution of the inverse Problem (P) in terms of the solution of the Laplace equation with an appropriate Neumann condition.Also,the inverse problem is represented as the problem of solving a linear operator equation,where the operator is written as a composition of three injective bounded operators,one of which is a compact operator,and prove some properties of these operators.The new regularization method is defined in Section 3,and error estimates with noisy as well as exact data are derived.In Section 4 we present error analysis with some relaxed conditions on the perturbed data.In Section 5 a procedure is described to relax a condition on the exact data and corresponding error estimate is derived.In Section 6 we illustrate the procedure of obtaining a stable approximate solution to the Problem (P).

    2 Operator theoretic formulation

    Throughout the paper we denote the range of the functiong:?!鶵 asI:=[g0,g1],that isg0andg1are the left and right end-points of the closed intervalg(γ([0,1])).

    The following theorem,proved in[4],helps us to identify the solution of the Problem (P).

    Theorem 2.1.The Problem (P) has a unique solution,and it is the unique a∈H1(I)such that

    where M is a constant andsatisfies

    It is known that ifj ∈W1-1/p,p(?Ω) forp>3,thenvsatisfying (2.2)-(2.3) belongs toW2,p(Ω),and

    for some constantC>0(see Theorems 2.3.3.2 and 2.4.2.7 in[5]).

    In view of Theorem 2.1,the inverse Problem (P) can be restated as follows:Givenjandgas in the Problem (P),letsatisfy (2.2) and (2.3) along with the condition

    Then,a∈H1(I) is the solution of the Problem (P) if and only if

    The above equation can be represented as an operator equation

    wherevjis the solution of (2.2)-(2.5) and the operatorT:L2(I)→L2[0,1]is defined by

    Theorem 2.2.The operator T:L2(I)→L2[0,1]defined in(2.7)is an injective compact operator of infinite rank.

    Proof.Note that for everyw∈L2(I) and for everys,τ ∈[0,1],we have

    Sinceg?γis continuous,the set{Tw:‖w‖L2(I)≤1}is equicontinuous and uniformly bounded inC[0,1].Hence,Tis a compact operator fromL2(I) toC[0,1].Since,the inclusionC[0,1]?L2[0,1]is continuous,it follows thatT:L2(I)→L2[0,1]is also a compact operator.We note thatTis injective.Hence,Tis of infinite rank.

    It is to be observed that the compact operatorTdefined in (2.7) depends on theg.Thus,problem of solving the operator equation (2.6) based on the data (g,j) is non-linear as well as ill-posed.In order to propose a new regularization method for obtaining stable approximate solutions,we represent the operatorTas a composition of three operators,that is,

    where,forr∈{0,1},

    are defined as follows:

    Clearly,T1,T2,T3are linear operators and

    Here,we used the convention thatH0(I):=L2(I).

    By the above representation ofT,the operator equation (2.6) can be split into three equations:

    To prove some properties of the operatorsT1,T2,T3,we specify the requirements onj,gandγ,namely the following.

    Assumption 2.1.Let j∈W(1-1/p),p(?Ω)with p>3and=0.Let γ:[0,1]→?Ωbe a C1-curve on ?Ωand g:Γ→Rbe such that g∈C1(Γ),

    for some positive constants Cγ,,Cg and.

    Next we state a result from analysis which will be used in the next result and also in many other results that follow.

    Lemma 2.1.Let h1and h2be two continuous functions on intervals J1and J2respectively,such that h2(J2)=J1.Also,letbe continuous with.Then,

    We shall also make use of the following proposition.

    Proposition 2.1.Let Cg,Cγ,be as in Assumption2.1.Then for any w∈L2(I),

    Proof.By Lemma 2.1 and the inequalities (2.14) and (2.15) in Assumption 2.1,we have

    From the above,we obtain the required inequalities in (2.16).

    Theorem 2.3.Let r∈{0,1},and let

    be defined as in(2.8),(2.9)and(2.10),respectively.Then,T2is a compact operator,and for every w∈L2(I),

    In particular,T1and T3are bounded operators with bounded inverse from their ranges.

    Proof.SinceH1(I) andH2(I) are compactly embedded inL2(I) (see,e.g.,[6]),T2is a compact operator of infinite rank.Now,letw∈H1(I) andτ ∈I.Then

    Hence,using the fact that (T1(w))′=wand (T1(w))′′=w′,we have

    Thus,(2.17) is proved.By the inequalities in (2.16) we obtain

    for everyw ∈L2(I).The inequalities in (2.17) and (2.19) also show thatT1andT3are bounded operator with bounded inverse from their ranges.

    3 The new regularization

    We know that the Problem (P) is ill-posed.We may also recall that the operator equation (2.6) is equivalent to the system of operator equations (2.11)-(2.13),wherein Eq.(2.12) is ill-posed,sinceT2is a compact operator of infinite rank.Thus,in order to regularize (2.6),we shall replace Eq.(2.12) by a regularized form of it using a family of bounded operators,α>0.

    Note thatT2:H2(I)→L2(I) is defined by

    for eachα>0.

    Theorem 3.1.For α>0,let:H2(I)→L2(I)be defined as in(3.1)Then,

    In particular,is a bounded operator with.Further,

    Proof.We observe that,for anyw∈H2(I),

    In order to define a regularization family forT2,we introduce the space

    Note that,forw∈H2(I),w∈Wif and only if

    for someξ ∈H1(I) satisfyingξ(g1)=0.

    Now,we prove some results associated withW.

    Proposition 3.1.The space W defined in(3.2)is a closed subspace of H2(I)and

    where Q:H2(I)→H2(I)is the orthogonal projection onto W.

    Proof.Let (wn) inWbe such thatwn →w0inH2(I) for somew0∈H2(I).By a Sobolev imbedding Theorem [6],H2(I) is continuously imbedded in the spaceC1(I) withC1-norm.Therefore,w0∈C1(I),and

    Thus,sincewn ∈W,in particular

    Hencew0∈W.ThusWis closed.Now,letQ:H2(I)→H2(I) be the orthogonal projection ontoW.Then,fory∈L2(I) andw∈Wwe have,

    Proposition 3.2.Let α>0.Let L:H2(I)→H2(I)be defined by

    for every x∈H2(I),t∈I.Then we have the following.

    (i) For anyx∈H2(I),Lx∈C∞(I)?H2(I),α(Lx)′′=Lxand.

    (ii)Lis a bounded linear operator.

    (iii) The mapid-Lis a projection ontoW,whereidis the identity map onH2(I).

    Proof.Clearly,Lis a linear operator,and for anyx ∈H2(I),we haveLx ∈C∞(I)?H2(I) andα(Lx)′′=Lx.To show thatLis continuous,let (xn) be a sequence inH2(I) such that‖xn-x‖H2(I)→0 for somex∈H2(I).By a Sobolev imbedding Theorem[6],H2(I) is continuously imbedded in the spaceC1(I) withC1-norm,and so we have|xn(g0)-x(g0)|→0 and|x′n(g1)-x′(g1)|→0 asn→∞.Using this,it can be shown thatLis continuous.Now again by definition ofL,for anyx∈H2(I) we have

    so that (id-L)(x-Lx)=x-Lx-L(x-Lx)=x-Lx.Hence,using the definition of the spaceW,we haveid-Lis a projection ontoW.

    We shall use the notation

    whereLis the bounded operator as in Proposition 3.2.

    Theorem 3.2.Let0<α<1.Then,for every w∈W,

    Proof.First we observe,by integration by parts,that forw1,w2∈W,Hence,for everyw∈W,

    Since 0<α<1,for everyw∈W,

    This completes the proof.

    At this point let us note that,by (3.4),is bounded below onW.Henceforth,we shall use the same notation forand its restriction toW,that is,

    and the adjoint of this operator will be denoted.The following lemma is used to prove some important properties of,which plays an important role in formulating the new regularization method.Its proof follows from properties of closed range operators,using some standard tools of functional analysis (e.g.,for (3.7) below,see Theorem 11.1.10 in[7]).

    Lemma 3.1.Let H1and H2be Hilbert spaces and let S:H1→H2be a bounded linear operator with closed range.Then,

    Suppose,in addition,that there exist c>0such that‖Sx‖≥c‖x‖for all x∈H1.Then

    Further,if‖·‖0is any norm on H1and if c0>0is such that‖Sx‖≥c0‖x‖0for all x∈H1,then

    where S?:=(S*S)-1S*,the generalized inverse of S.Here,R(S)and N(S)respectively,denote the range and null space of the operator S.

    Corollary 3.1.Let0<α<1andbe as in(3.6).Then for every y∈L2(I),

    Proof.TakingH1=WandH2=L2(I) in Lemma 3.1,the inequalities in (3.10) and (3.11) follow from (3.9) by taking the norm‖·‖0as‖·‖H2(I)and‖·‖H1(I)respectively,onWand by using (3.4) and (3.5),respectively.

    LetRα:L2(I)→Wforα>0 be defined by

    We note that,by Corollary 3.1,Rαis a bounded operator fromL2(I) toW(with respect to the norm‖·‖H2(I)),for eachα>0.Since,we have

    Next,we prove that{Rα}α>0,defined as in (3.12),is a regularization family forT2:W →L2(I).Towards this aim,we first prove the following theorem.

    Theorem 3.3.For α>0,let Rα be as in(3.12),and let CL be as in(3.3).Then the following results hold.

    Proof.(i) Letw∈W.By (3.13),we have

    Hence,using (3.10),

    Thus,‖RαT2w‖H2(I)≤2‖w‖H2(I)for everyw∈W.

    (ii) Letw∈W∩H4(I).Let us note thatw′′is in the domain ofT2and hence is inH2(I)(may not be inW).By Proposition 3.2,w′′-Lw′′∈Wand.Thus,using the above fact,along with the fact thatis in the domain ofT2,by (3.13) and (i) above,we have

    we obtain the required inequality.

    (iii) Forw∈W,using (3.11),we have.Thus,the proof is complete.

    Lemma 3.2.The space W ∩H4(I)is dense in W.

    Proof.Letw ∈W.SinceH4(I) is dense inH2(I) as a subspace ofH2(I) (see,e.g.,[6]),there exists a sequence (wn) inH4(I) such that

    Now,defineP:H2(I)→Wby

    SinceH2(I) is continuously imbedded inC1(I)[6],(3.14) implies that|wn(g0)-w(g0)|→0 andasn→0.Thus,asIis bounded we have

    Again by definition ofPandWwe havePwn∈W∩H4(I) andPw=w.Hence from (3.14) and (3.15) we have the proof.

    Theorem 3.4.Let w∈W,and let{Rα}α>0be as in(3.12).Then

    In particular,{Rα}α>0is a regularization family for T2.

    Proof.By Theorem 3.3,(RαT2) is a uniformly bounded family of operators fromWtoWand‖RαT2w-w‖H2(I)→0 asα→∞for everyx ∈W ∩H4(I).SinceW ∩H4(I) is dense inW(see Lemma 3.2),by a result in functional analysis (see Theorem 3.11 in[7]),we obtain‖RαT2w-w‖H2(I)→0 asα→∞for everyw∈W.Thus{Rα}α>0is a regularization family forT2.

    Throughout,we assume thata0∈H1(I) is the unique solution of the Problem (P).Thus,Eqs.(2.11)-(2.13) have solutions namely,ζ0,b0anda0,respectively.That is,

    Having obtained the regularization family{Rα}α>0forT2as in (3.12),we may replace the solutionb0of Eq.(2.12) by

    The regularized solutionaαfor the Problem (P) is defined along the following lines:

    Sincebα ∈W ?R(T1),each of the above equations has unique solution.In fact,ζ0=T2b0withb0=T1a0,wherea0is the unique solution of (2.6).Note that,the operator equation (3.20) has a unique solution,becauseis bounded below,and (3.21) has a unique solution asT1is injective with rangeW,andbα ∈W.Hence we have,aα(g1)=0.Thus to obtain convergence of{aα}toa0asα→0,it is necessary thata0(g1)=0.Therefore,in this section,we assume that,

    We shall relax this condition in Section 5,by appropriately redefining regularized solutions.

    3.1 Error estimates under exact data

    Forα>0,letaαbe defined via Eqs.(3.19)-(3.21).Also,Leta0be the unique solution to the Problem (P) satisfying (3.22).Then,we look at the estimates for the error term (a0-aα) in bothL2(I) andH1(I) norms in the following theorem.

    Theorem 3.5.The following results hold.

    3.If a0∈H3(I),then with CL is as in(3.3),

    Proof.By our assumption,a0(g1)=0.Therefore,by definition ofT1and the spaceW,we haveb0=T1(a0)∈W.Now let us first observe that,by the definition ofbα

    Hence,by the inequality (2.17),forr∈{0,1},we have,

    and hence,by Theorem 3.4,‖a0-aα‖H1(I)→0 asα→0.Thus we have proved (1).

    Also,sinceb0∈W,from (3.23) and Theorem 3.3(iii),we have

    which proves (2).Now,leta0∈H3(I).Thenb0∈H4(I).Sinceb0∈W,we haveb0∈W ∩H4(I).Hence proof of (3) follows from (3.23) and Theorem 3.3(ii).

    3.2 Error estimates under noisy data

    In practical situations the observations of the datajandgmay not be known accurately and we may have some noisy data instead.In this section we assume that the noisy datagεandjδare such that

    for some known noise levelεandδ,respectively.At this point,let us note that a weaker condition on perturbed datajδ,for examplejδ ∈L2(?Ω),is not very feasible to work with.This is because,in that case the corresponding solutionvjδof (2.3)-(2.5) withjδin place ofj,is not continuous and hence its restriction on Γ does not make sense.In practical situations,if such a perturbed data arise,one may work with an appropriate approximation which is inW1-1/p,p(?Ω) withp>3.For the perturbed datagε,in the next section we consider the case when it is in a more general space which isL2(Γ).

    Corresponding to the dataj,jδas above,we denote

    Lemma 3.3.Let γ0be a C1curve onR2and letΓ0={(x,γ0(x))∈R2:d0≤x ≤d1} for some d0,d1inRwith d0<d1.Then

    Proof.Let.Then,using H¨older’s inequality we have

    Lemma 3.4.Let w∈H1(?Ω)and γ be a curve on ?Ωsuch that|γ′(t)|is bounded away from0as in(2.14).Then there exists C0>0such that

    Proof.Letw∈H1(?Ω).Since Ω is withC1boundary,

    for some elementsω1,···,ωm ∈H1(R2)(see,e.g.,[5,6]).Also,there exists a set{σ1,···,σm}of diffeomorphisms from some neighbourhoods in?Ω to R2,which satisfies

    For anyi ∈{1,···,m},sinceσiis a diffeomorphismσi?γis a curve in R2.Asis compact andσiis one-one there exists constantCσ>0 such thatfor allx ∈γ([0,1]) and 1≤i ≤m.Hence,by Lemma 2.1,(3.30) and property ofγalong with (2.14),we obtain

    Hence,using (3.28) and (3.29),we get

    This completes the proof.

    Proposition 3.3.Let.Let(Ω)be the solution of(2.3)-(2.5)within place of j,such that it satisfies(2.1).Then there existssuch that

    Proof.Sinceis inW1-1/p,p(?Ω),we know thatand

    for some constantC5>0 (see inequality (2.4)).By trace theorem for Sobolev spaces[5],and by continuous imbedding ofW(2-1/p),p(?Ω) intoW1,p(?Ω),we haveW2-1/p,p(?Ω)?W1,p(?Ω) and

    for some constantsC6,C7>0.

    Thus,using (3.31),(3.32) and withvin place ofwin Lemma 3.4,we have,

    Corollary 3.2.Let j be as in Assumption2.1and jδ satisfy(3.24)and(3.26).Let f and fδ be as in(3.27).Then

    whereis as in Proposition3.3.

    Proof.By Proposition 3.3 we have

    Lemma 3.5.For ε>0,

    where Cg andare as in(2.15).In particular,if0<ε≤Cg/2then

    Proof.For anysin[0,1],we have

    by (2.15),we obtain (3.34).The relations in (3.35) are obvious by the assumption onε.

    Remark 3.1.Since,γ′satisfies (2.14),and,(gε)′satisfies (3.35) forε<Cg/2,it follows thatgε(Γ) is a non-degenerate closed interval,that is,Iε:=gε(Γ)=for somewith.

    The following lemma will help us in showing thatI∩Iεis a closed and bounded (nondegenerate) interval.

    Lemma 3.6.Let ?1,?2be in C([ξ1,ξ2])for some ξ1and ξ2inR,and let η>0be such that

    Let I1:=?1([ξ1,ξ2])=[a1,b1]and I2:=?2([ξ1,ξ2])=[a2,b2]for some a1,b1,a2and b2inR.If a1<b1and a2<b2and η>0is such that

    and I1∩I2=[a,b]is a non-degenerate interval,that is,a<b.

    Proof.Supposea1<b1anda2<b2.Since,for some,and since,we obtain

    Thus,(3.38) is proved.

    To prove the remaining,let us first consider the casea1≤a2.Then,,where=min{b2,b1}.Note that,by (3.37) and (3.39),we have

    Thus,b1>a2,and also,asb2>a2we have,

    Next,leta1>a2.In this case,,where.Note,again by (3.37) and (3.39),that

    Thus,b2>a1,and also,asb1>a1we have,

    Hence,combining both the cases,we have the proof.

    Remark 3.2.Lets1ands0in [0,1] be such thatg0=g(γ(s0)) andg1=g(γ(s1)).Let us recall thatI:=[g0,g1]andIε:=.Sincegandgεare inC1(Γ),we haveg?γandgε?γare inC1([0,1]).Also,

    Thus,by Lemma 3.6,we have

    Hence,takingε<(g1-g0)/4,we have

    and thus,2ε<min{(g1-g0),.Hence by Lemma 3.6,I∩Iεis a closed and bounded non-degenerate interval.Let us denote this interval by.Thus,

    Next,we shall make use of the following lemma which can be proved using the Sobolev imbeding theorem[6].

    Lemma 3.7.There exists a constant C>0such that for any closed interval J,

    where CJ:=Cmax{4,(2|J|+1)}.In particular,for any interval J0such that J0?J,

    Ify∈W1,∞(J1) then using (3.42) we obtain

    and additionally ify′′∈L∞(J1),then

    Lemma 3.8.Let J1and J2be closed intervals such that J2?J1and let CJ1be as in Lemma3.7.Let y∈H2(J1),then we have the following.

    Proof.LetJ1=[a,b]andJ2=[c,d]for somea≤bandc≤d.IfJ1=J2thenJ1J2=?,and in that case the result holds trivially.So let us consider the cases when eithera<cord<b,or both holds.Without loss of generality let us assume thata<candd<b.Lety∈H2(J1).Then by (3.42)yandy′are inL∞(J1).Thus takingJ0=[a,c]in (3.43) we have

    and takingJ0=[d,b]in (3.43) we have

    Hence we have (i).Next,additionally if,y′′∈L∞(J1),havingJ0=[a,c]in (3.44) we obtain

    and havingJ0=[d,b]in (3.44) we obtain

    Hence we have (ii).

    Lemma 3.9.Let ?1,?2,I1,I2and η be as in Lemma3.6satisfying all the assumptions there.Then,for any interval I3?I1∩I2and y∈C1(I1)

    Assume,further,that ?1,?2∈C1([ξ1,ξ2])satisfyingfor some constants C?1,C?2>0.Then,for y∈H2(I1)

    withand CI is as in Lemma3.7.

    Proof.By Lemma 3.6,we haveI1∩I2to be a closed non-degenerate interval.LetI3be an interval inI1∩I2.Then fory∈C1(I1) using fundamental theorem of calculus and H¨older’s inequality we have

    Hence,using (3.42) we have (3.46).

    Now,additionally letε ≤Cg/2.Then,by (2.14) and (3.35)gεandγare bijective,and so (gε?γ)-1is continuous.Thusis a closed non-degenerate interval.In other words

    Theorem 3.6.Letbe as defined in(3.52).Then,for ζ ∈W,

    Proof.Letζ ∈W.For anys∈[0,1],by (2.14) and (2.15),we have

    By (3.50) and (3.51),we have

    respectively.Nowζ ∈W ?H2(I).Then,by definition ofT3and,we have

    Hence,taking?1asg?γand?2asgε?γin Lemma 3.9,we have

    This completes the proof.

    Theorem 3.7.The map,defined as in(3.52),is bounded linear and bounded below.In fact,for every,

    where Cγ,and Cg,are as in(2.14)and(2.15),respectively.

    Proof.Clearly,is a linear map.Since (2.14) and (3.35) hold,using Lemma 2.1,and (3.52) we obtain

    Hence we have the proof.

    Now,by Theorem 3.7,we know thatis a bounded linear operator which is bounded below.Thus using Lemma 3.1,the operator

    is a bounded linear operator and is the generalized inverse of.The following theorem,which also follows from Lemma 3.1,shows that the family

    is in fact uniformly bounded.

    Theorem 3.8.For every ζ ∈L2([0,1]),

    whereare as in(2.14)and(2.15).

    In order to obtain an approximate solution of (2.6) under the nosy data (jδ,gε) satisfying (3.25) and (3.26),we adopt the following operator procedure:First we consider the following operator equation

    belongs toL2(I).Next,we consider the operator equation

    Letbα,ε,δbe the unique solution of Eq.(3.56).Thus by solving the operator equations (3.55) and (3.56) we obtainbα,ε,δ.Sincebα,ε,δ∈W ?R(T1),is the solution of the equation

    We show thataα,ε,δis a candidate for an approximate solution to the Problem (P).

    Lemma 3.10.Under the assumptions in Assumption2.1on(j,g),let a0∈H1(I)be the solution of T(a)=fj.Assume further that a0(g1)=0.For ζ ∈L2(I),let bα,ζ ∈H2(I)be such that

    and let.Then

    where Cα>0is such that Cα →0as α→0.In addition,if a0∈H3(I),then

    Here CL is as(3.3).

    Proof.Letb0=T1(a0).Then,asa0(g1)=0,we haveb0∈W.Now,by definition ofaα,ζand,H1(I) andH2(I) norms,forr∈{0,1}

    Hence,forr∈{0,1},

    By Theorem 3.4 we have

    Also,by Theorem 3.3-(iii) we have

    Again,using (3.10) and (3.11),we have

    Thus combining (3.61),(3.62) and (3.64) we have (3.57) with

    and combining (3.61),(3.63) and (3.65) we have (3.58).

    Next,leta0∈H3(I),b0=T1(a0)∈W ∩H4(I).Then,using theorem 3.3-(ii) we have,forr∈{0,1},

    Thus combining (3.61),(3.64) and (3.66) we have (3.59),and combining (3.61),(3.65) and (3.66) we have (3.60).

    Now,we prove one of the main theorems of this paper.

    Theorem 3.9.Let ε <min{(g1-g0)/4,Cg/2}.Let a0,g and j be as in Lemma3.10.Let gε ∈C1(Γ),jδ ∈W1-1/p,p(?Ω)with p>3,ζε,δ be the solution of(3.55),andwhere bα,ε,δ is the solution of(3.56).Also,let gε and jδ satisfy(3.25)and(3.26),respectively.Then

    where Cα>0is such that Cα →0as α→0.

    In addition if a0∈H3(I),then

    Now by definition,bα,ε,δis the unique solution of Eq.(3.56).Thus,withζε,δin place ofζin Lemma 3.10,we have the proof.

    Remark 3.3.Leta0andaα,ε,δbe as defined in Theorem 3.9.Then (3.67) and (3.68) take the forms

    respectively,whereCα>0 is such thatCα→0 asα→0,and if,in addition,a0∈H3(I),then (3.69) and (3.70) take the forms

    respectively,whereK1,K2,K3,K4are positive constants independent ofα,ε,δandCL ≥‖id-L‖,whereLis the bounded operator as in Proposition 3.2.Then,choosingandε=δin (3.67) we have

    Thus using the new regularization method we obtain a result better than the orderO(1) in[3]obtained using Tikhonov regularization.On choosingα=δ=εin (3.68) we have

    which is same as the estimate obtained in[3].Next,under the source conditiona0∈H3(I) and forandε=δ,(3.69) gives the order as

    This estimate is similar to a result obtained in [2] with source conditiona0∈H4(I) and trace ofa0being Lipschitz which is stronger than the source condition needed in our result,whereas under the same source conditiona0∈H3(I),the choice ofα=δ2/3andε=δin (3.70) gives the rate as

    This is better than the rateO(δ3/5) mentioned in[3]as the best possible estimate underL2(I) norm (under realistic boundary condition) using Tikhonov regularization.

    4 Relaxation of assumption on perturbed data

    In the previous section we have carried out our analysis assuming that the perturbed datagεis inC1(Γ),along with (3.25).This assumption can turn out to be too strong for implementation in practical problems.Hence,here we consider a weaker and practically relevant assumption on our perturbed datagε,namelygε ∈L2(Γ) with

    What we essentially used in our analysis in Section 3 to derive the error estimates is thatgε?γis close tog?γin appropriate norms.Here,we considerin place ofgε?γ,where Πh:L2([0,1])→L2([0,1]) is the orthogonal projection onto a subspace ofW1,∞([0,1]),and we show thatis close tog?γin appropriate norms,and then obtain associated error estimates.For this purpose,we shall also assume more regularity ong?γ,namely,g?γ∈H4([0,1]).

    Let Πh:L2([0,1])→L2([0,1]) be the orthogonal projection onto the spaceLhwhich is the space of all continuous real valued piecewise linear functionswon[0,1]defined on a uniform partition 0=t0<t1<···tN=1 of mesh sizeh,that is,ti:=(i-1)hfori=1,···(N+1) andh=1/N.Thus,w ∈Lhif and only ifw ∈C[0,1] such thatw|[ti-1,ti]is a polynomial of degree at most 1.Let.

    In the following,forw ∈L2([0,1]) andτh ∈Th,we use the notationandwheneverw|τhbelong toHm(τh) andWm,∞(τh),respectively.As a particular case of inverse inequality stated in Lemma 4.5.3 in[8],form∈{0,1},we have

    whereis a positive constant.

    Proposition 4.1.Let w ∈L2([0,1]),m ∈N∪{0} and τh ∈Th.Then the following inequalities hold.

    where C0:=2C[0,1]with C[0,1]as in(3.42)andis as in(4.2).

    Proof.Iffor somej∈N∪{0},then using (3.42) and the fact thatτhis of lengthh,we obtain

    whereI0:=[0,1].Hence,we have

    Thus,takingC0=2CI0,we have (4.3).

    By repeatedly using (3.42) and then by (4.3),we obtain

    As we have takenC0=2CI0,we have the proof of (4.4).

    Since Πhis an orthogonal projection,from (4.2) we obtain,

    and,by repeatedly using (4.3) we have

    Hence we have the proof of (4.5).

    For simplifying the notation,we shall denote

    Theorem 4.1.Let τh ∈Th and(4.6)be satisfied.Then,the following inequalities hold.

    Proof.Using triangle inequality we have

    Assumption (2.14),Lemma 2.1 and (4.1) imply

    so that,using (4.2) and the fact that Πhis an orthogonal projection,we have

    By (4.4) and (4.5),

    Thus,using (4.7),(4.10) and (4.12),and taking,we have (i).By (4.4) and (4.5),

    Hence,using (4.8) and (4.11),and takingwe have (ii).

    To prove (iii) and (iv),lets∈[0,1].Note that

    Using (2.14) and (2.15) the above implies

    Hence using (ii) we have (iii) and (iv).

    From (iii) and (iv) in Theorem 4.1 we obtain the following corollary.

    Corollary 4.1.Let h be such that

    Hence,combining (4.26) and (4.27) we have (4.21),and combining (4.26) and (4.28) we have (4.22).Hence,is bounded linear and bounded below.Since,satisfies (4.21) and (4.22),from Lemma 3.1,we obtain (4.23).

    Using the fact that Πhis a projection,and Lemma 2.1 and (2.14),we obtain,

    and,using the fact that Πhis an orthogonal projection,and (4.5),

    Now,ζ ∈Wimplies.Hence,taking?1and?2asandrespectively,in the first part of Lemma 3.9,(3.42) and (4.31),we have,

    Now,by (3.42),ζ ∈Wimpliesζ ∈W1,∞(I).Hence,as (4.33) and (4.34) hold,by Lemma 3.8-(i) and then by (3.42),we have

    Thus,from (4.35) we have (4.24).

    Ifζ ∈H3(I),then,since (4.33) and (4.34) hold,by Lemma 3.8-(ii) and then by (3.42),

    Thus,from (4.35) we have (4.25).

    Proposition 4.3.Let a0and g be as defined in Lemma3.10.Let h and ε satisfy the relations in(4.13)and(4.16).Let gε ∈L2(I)be such that(4.1)is satisfied.Then,b0=T1(a0)satisfies,

    and,in addition,if a0∈H2(I),then,

    Proof.Since,handεsatisfy (4.13),for anyτh ∈Th,as (4.17) holds,by Lemma 3.8-(i) and then by (3.42),we have

    and,ifa0∈H2(I),b0∈H3(I) and so,by Lemma 3.8-(ii) and then by (3.42),

    Theorem 4.3.Let a0,g and j be as in Lemma3.10.Let gε∈L2(I),jδ∈W1-1/p,p(?Ω)with p>3.Also,let gε and jδ satisfy(3.26)and(4.1),respectively,and h and ε satisfy the relations in(4.13)and(4.16),and.Then the following results hold.

    In the above Cα>0is such that Cα →0as α→0,b0=T1(a0),

    and C0,CL,Cγ are constants as defined in(2.14), (2.15), (3.42), (4.3),Proposition3.2,Theorem4.1-(ii) respectively.

    Proof.By definition ofζε,δ,h,

    Hence,from (4.46) and (4.47) we have

    Thus,from (4.38),(4.45) and (4.48) we have

    Ifa0∈H2(I) thenb0∈H3(I),and thus from (4.39),(4.45) and (4.48) we have,

    Our aim is to find an estimate for the error term (a0-aα,ε,δ,h) inL2(I) andH1(I) norms.Nowbα,ε,δ,his the unique solution of equation (4.37).Thus,by Lemma 3.10 we need an estimate of‖ζε,δ,h-b0‖L2(I)in order to find our required estimates.Inequalities (4.49) and (5.19) give us estimates of‖ζε,δ,h-b0‖L2(I)under different conditions onb0.Hence,takingζε,δ,hin place ofζin Lemma 3.10 we have the proof.

    Remark 4.1.Suppose

    Then,forε=δandh=δ1/2,(4.13) and (4.16) are satisfied.Hence,by Theorem 4.3,we have the following:

    2.Ifa0∈H3(I) andα=δ2/3,then

    3.Choosingα=δ,we have

    4.Ifa0∈H2(I),then

    Resultsin (1) and (2) above are analogous to the corresponding results fora0-aα,ε,δin Remark 3.3.The estimate in (4) is same as the corresponding estimate in Remark 3.3,except for the fact that here we need an additional condition thata0∈H2(I).

    5 With exact solution having non-zero value at g1

    In the previous two sections we have considered the exact solution with assumption thata0(g1)=0.Here we consider the case whenbut is assumed to be known.Leta0(g1)=c.Sincea0is the solution to the Problem (P),by (2.6) we havefj=T(a0) which implies

    Now by definition ofTwe have

    Thus,combining (5.1) and (5.2) we have

    Hencea0-cis the solution of the following operator equation,

    where clearlyfj-c(gγ-g0)∈L2([0,1]).Also,(a0-c)(g1)=0.Now,let us define

    Thenb0,c ∈W.Thus,the analysis of the previous two sections can be applied here to obtain a stable approximate solution of Eq.(5.4).Let,wherebc,αis the solution to the following equation.

    whereζcis the solution of the equation

    Now,letgεandjδbe the perturbed data as defined in Theorem 4.3.Also,letgbe such thatg?γ∈H4([0,1]).Letbe the solution of the following equation

    Then we have the following theorem.

    Theorem 5.1.Let a0,c and b0,c be as defined in the beginning of the section.Let g and j be as defined in Lemma3.10,and gγ∈H4([0,1]).Let h and ε satisfy(4.13)and(4.16),respectively.Also,let gε ∈L2(Γ),jδ ∈W1-1/p,p(?Ω)with p>3,and gε and jδ satisfy(3.26)and(4.1)respectively.Let,and let

    where Cα>0is such that Cα →0as α→0.Further,we have the following.

    Ifa0,c ∈H2(I),from (4.39),(5.14) and (5.17) we have,

    By definition,bc,α,ε,δ,his the unique solution of Eq.(5.8).Also,a0,c ∈H2(I)∩Wimpliesb0,c ∈H3(I)∩W.Thus,puttingζc,ε,δ,hin place ofζin Lemma 3.10,we have the proof using (4.49) and (5.19).

    From Theorem 5.1,we see thatc+ac,α,ε,δ,his a stable approximate solution of the Problem (P),with error estimates obtained from Theorem 5.1.

    Remark 5.1.Let us relax the assumption on the exact solutiona0even more.Let us assume thata0(g1) is not equal to the known numbercbut is known to be“close”to it,i.e,

    Thus,using similar arguments as in the proof of Theorem 5.1,we obtain estimates for

    Using the fact that

    we obtain (ac,α,ε,δ,h+c) as a stable approximate solution to the Problem (P),and obtain the corresponding error estimates.

    6 Illustration of the procedure

    In order to find a stable approximate solution of the Problem (P) using the new regularization method we have to undertake the following.

    Letjδ ∈W1-1/p,p(?Ω) withp>3,gε ∈L2(?Ω) be the perturbed data satisfying (3.26) and (4.1) respectively,and letAlso let us assumeg?γ ∈H4([0,1]).Then,by the following steps we obtain the regularized solutionaα,ε,δ.

    Acknowledgement

    The work on this paper was completed while the authors were at Department of Mathematics,I.I.T.Madras.The authors thank the referee (s) for positive comments and for many useful suggestions which helped to improve the presentation of the first draft of the paper.

    亚洲精品久久久久久婷婷小说| 午夜两性在线视频| av欧美777| 大香蕉久久网| 免费人妻精品一区二区三区视频| 国产高清videossex| 人妻人人澡人人爽人人| 国产在线一区二区三区精| 欧美黄色片欧美黄色片| 久久免费观看电影| 国产男女内射视频| 久久久久网色| 国产主播在线观看一区二区| 中文字幕另类日韩欧美亚洲嫩草| 日韩一卡2卡3卡4卡2021年| 黄色怎么调成土黄色| 老司机深夜福利视频在线观看 | 日韩一卡2卡3卡4卡2021年| 久久青草综合色| 亚洲欧美日韩另类电影网站| 国产不卡av网站在线观看| 日本a在线网址| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区二区免费欧美 | 久9热在线精品视频| 男女国产视频网站| 9热在线视频观看99| 欧美黄色片欧美黄色片| 亚洲人成电影观看| 欧美日韩亚洲国产一区二区在线观看 | 欧美av亚洲av综合av国产av| 51午夜福利影视在线观看| 国产国语露脸激情在线看| 青春草亚洲视频在线观看| 9热在线视频观看99| 美女午夜性视频免费| 亚洲性夜色夜夜综合| 午夜老司机福利片| 搡老熟女国产l中国老女人| 在线亚洲精品国产二区图片欧美| 欧美日本中文国产一区发布| 国产欧美日韩综合在线一区二区| 精品国产乱子伦一区二区三区 | 狠狠狠狠99中文字幕| bbb黄色大片| 欧美另类一区| 精品国产乱子伦一区二区三区 | 少妇人妻久久综合中文| 热re99久久国产66热| 成人av一区二区三区在线看 | 咕卡用的链子| 欧美+亚洲+日韩+国产| 十八禁网站网址无遮挡| 久久精品久久久久久噜噜老黄| 精品一区二区三区av网在线观看 | 好男人电影高清在线观看| 国产欧美亚洲国产| 麻豆国产av国片精品| 青春草亚洲视频在线观看| 亚洲精品成人av观看孕妇| 国产主播在线观看一区二区| 免费人妻精品一区二区三区视频| 亚洲国产精品一区三区| 建设人人有责人人尽责人人享有的| 91麻豆精品激情在线观看国产 | 午夜精品国产一区二区电影| 免费高清在线观看日韩| 国产成人欧美在线观看 | 丁香六月欧美| 午夜福利视频在线观看免费| a级毛片在线看网站| 欧美另类亚洲清纯唯美| 亚洲精品第二区| 80岁老熟妇乱子伦牲交| 国产成人影院久久av| 久久ye,这里只有精品| 国产老妇伦熟女老妇高清| 伊人久久大香线蕉亚洲五| www.av在线官网国产| 女警被强在线播放| 王馨瑶露胸无遮挡在线观看| av在线老鸭窝| av网站免费在线观看视频| 久久久国产一区二区| 老司机影院成人| 久久国产精品男人的天堂亚洲| 欧美激情高清一区二区三区| 国产精品欧美亚洲77777| 欧美日韩精品网址| h视频一区二区三区| 天天操日日干夜夜撸| 免费久久久久久久精品成人欧美视频| 亚洲精品在线美女| 欧美日韩中文字幕国产精品一区二区三区 | 狠狠狠狠99中文字幕| 欧美另类亚洲清纯唯美| 国产精品一二三区在线看| 久久av网站| 亚洲国产欧美一区二区综合| 高潮久久久久久久久久久不卡| 老汉色∧v一级毛片| 国产欧美亚洲国产| 中文字幕色久视频| 久久久久网色| 亚洲男人天堂网一区| 国产一区二区三区av在线| 国产成人av激情在线播放| 国产成人欧美| 午夜福利免费观看在线| 久久久国产一区二区| 国产精品1区2区在线观看. | 免费在线观看影片大全网站| 精品人妻熟女毛片av久久网站| 欧美精品一区二区免费开放| 法律面前人人平等表现在哪些方面 | 成在线人永久免费视频| 人妻久久中文字幕网| 欧美性长视频在线观看| 国产伦理片在线播放av一区| 成年人黄色毛片网站| 国产av国产精品国产| 黑人巨大精品欧美一区二区蜜桃| 国产伦人伦偷精品视频| av天堂久久9| 亚洲欧美激情在线| 女性生殖器流出的白浆| 超色免费av| 午夜久久久在线观看| 欧美国产精品va在线观看不卡| 亚洲成人免费av在线播放| 91成年电影在线观看| 国产麻豆69| 日韩免费高清中文字幕av| 国产又爽黄色视频| cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| 麻豆乱淫一区二区| 午夜福利在线免费观看网站| 国产亚洲午夜精品一区二区久久| 婷婷成人精品国产| 狠狠婷婷综合久久久久久88av| 婷婷丁香在线五月| 超碰97精品在线观看| 久久精品人人爽人人爽视色| 一级片'在线观看视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧洲日产国产| 91字幕亚洲| 久久人妻福利社区极品人妻图片| 成人影院久久| 日韩欧美国产一区二区入口| 母亲3免费完整高清在线观看| 久久午夜综合久久蜜桃| 亚洲伊人色综图| 亚洲国产精品一区二区三区在线| 91大片在线观看| 12—13女人毛片做爰片一| 91成年电影在线观看| 亚洲综合色网址| 黑人巨大精品欧美一区二区mp4| 99国产精品免费福利视频| 视频区图区小说| 夜夜骑夜夜射夜夜干| 精品一品国产午夜福利视频| 一区二区av电影网| 一二三四在线观看免费中文在| 亚洲男人天堂网一区| 菩萨蛮人人尽说江南好唐韦庄| 色婷婷久久久亚洲欧美| 亚洲国产日韩一区二区| 人妻久久中文字幕网| 建设人人有责人人尽责人人享有的| 日韩熟女老妇一区二区性免费视频| 99热国产这里只有精品6| 亚洲专区字幕在线| 欧美黑人欧美精品刺激| 大片电影免费在线观看免费| 欧美日韩亚洲高清精品| 人成视频在线观看免费观看| 国产av国产精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲熟女精品中文字幕| 777久久人妻少妇嫩草av网站| www.999成人在线观看| 少妇人妻久久综合中文| 亚洲欧美清纯卡通| 久久精品国产亚洲av香蕉五月 | 久久精品亚洲av国产电影网| 亚洲精品国产av成人精品| 精品人妻在线不人妻| 亚洲熟女精品中文字幕| 国产精品一区二区精品视频观看| 老司机影院毛片| 久久久久精品国产欧美久久久 | 高清黄色对白视频在线免费看| 国产精品一区二区在线不卡| 久久久国产欧美日韩av| 男人操女人黄网站| 97人妻天天添夜夜摸| 国产欧美日韩精品亚洲av| 爱豆传媒免费全集在线观看| 欧美 日韩 精品 国产| 男女免费视频国产| 亚洲 欧美一区二区三区| 国产精品麻豆人妻色哟哟久久| 久久久久国内视频| 亚洲欧美清纯卡通| 女性生殖器流出的白浆| 黑人欧美特级aaaaaa片| 午夜影院在线不卡| 亚洲国产av新网站| 国产成人欧美| 日本a在线网址| 黄色怎么调成土黄色| 少妇精品久久久久久久| 久久香蕉激情| 欧美日韩av久久| 日本精品一区二区三区蜜桃| 高清av免费在线| 飞空精品影院首页| 高清黄色对白视频在线免费看| 精品国产乱子伦一区二区三区 | 国产成人av激情在线播放| 一个人免费看片子| 国产成人一区二区三区免费视频网站| 麻豆乱淫一区二区| 精品福利永久在线观看| 99久久99久久久精品蜜桃| 久热这里只有精品99| 精品国产乱码久久久久久小说| 国产精品熟女久久久久浪| 亚洲第一青青草原| 女人精品久久久久毛片| 建设人人有责人人尽责人人享有的| 丝袜美腿诱惑在线| 美女福利国产在线| 人妻一区二区av| 日韩大片免费观看网站| 三上悠亚av全集在线观看| cao死你这个sao货| 一本久久精品| 90打野战视频偷拍视频| 精品国内亚洲2022精品成人 | 丝袜脚勾引网站| 国产精品九九99| 免费久久久久久久精品成人欧美视频| 91成人精品电影| 超色免费av| 一本久久精品| 人人妻人人澡人人爽人人夜夜| 男女高潮啪啪啪动态图| 在线观看一区二区三区激情| 亚洲欧美成人综合另类久久久| 久热爱精品视频在线9| 美女脱内裤让男人舔精品视频| 青春草亚洲视频在线观看| 午夜影院在线不卡| 女人精品久久久久毛片| 日韩欧美国产一区二区入口| 欧美成狂野欧美在线观看| 男人爽女人下面视频在线观看| 19禁男女啪啪无遮挡网站| 国产精品 欧美亚洲| www.自偷自拍.com| 波多野结衣一区麻豆| 欧美国产精品va在线观看不卡| 大香蕉久久网| 男女高潮啪啪啪动态图| 一区福利在线观看| 国产一区二区在线观看av| 一二三四在线观看免费中文在| 亚洲九九香蕉| 黑人操中国人逼视频| 亚洲成人国产一区在线观看| 国产成人啪精品午夜网站| 99久久人妻综合| 亚洲五月婷婷丁香| 日韩 亚洲 欧美在线| 91av网站免费观看| 搡老熟女国产l中国老女人| 精品人妻熟女毛片av久久网站| svipshipincom国产片| 精品人妻1区二区| 一区在线观看完整版| 一级a爱视频在线免费观看| 十八禁网站免费在线| 日本猛色少妇xxxxx猛交久久| 老熟女久久久| 又大又爽又粗| 老司机亚洲免费影院| 女性生殖器流出的白浆| 啦啦啦视频在线资源免费观看| 80岁老熟妇乱子伦牲交| 亚洲欧洲日产国产| 日韩精品免费视频一区二区三区| 爱豆传媒免费全集在线观看| 国产深夜福利视频在线观看| av福利片在线| 国产高清视频在线播放一区 | 成人国产一区最新在线观看| 精品熟女少妇八av免费久了| 999久久久精品免费观看国产| 中文字幕最新亚洲高清| h视频一区二区三区| 国产一区二区在线观看av| 精品国产国语对白av| 99国产精品免费福利视频| 亚洲精品国产色婷婷电影| 男人添女人高潮全过程视频| 中文字幕色久视频| 成人国产一区最新在线观看| 热99re8久久精品国产| 热re99久久精品国产66热6| 母亲3免费完整高清在线观看| 高清欧美精品videossex| 19禁男女啪啪无遮挡网站| 欧美中文综合在线视频| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 999久久久国产精品视频| 亚洲人成电影观看| 国产精品国产三级国产专区5o| 天天操日日干夜夜撸| 欧美人与性动交α欧美软件| 国产伦人伦偷精品视频| 亚洲欧美一区二区三区久久| 性高湖久久久久久久久免费观看| 免费一级毛片在线播放高清视频 | tocl精华| 另类精品久久| 久久精品亚洲av国产电影网| 久久久精品区二区三区| a在线观看视频网站| 日韩 亚洲 欧美在线| 国产成人精品久久二区二区91| 精品国产国语对白av| 国产精品.久久久| 日日夜夜操网爽| 亚洲国产精品999| 欧美国产精品一级二级三级| 国产精品久久久人人做人人爽| 免费久久久久久久精品成人欧美视频| h视频一区二区三区| 成人三级做爰电影| 在线观看免费视频网站a站| 91麻豆av在线| 美女中出高潮动态图| 亚洲国产欧美在线一区| 日韩电影二区| 国产精品欧美亚洲77777| 国产淫语在线视频| svipshipincom国产片| 国产精品香港三级国产av潘金莲| 多毛熟女@视频| av欧美777| 国产亚洲欧美精品永久| 人妻 亚洲 视频| 法律面前人人平等表现在哪些方面 | 99热国产这里只有精品6| 悠悠久久av| 欧美人与性动交α欧美精品济南到| 天堂俺去俺来也www色官网| 中亚洲国语对白在线视频| 下体分泌物呈黄色| 亚洲精品日韩在线中文字幕| 黑人巨大精品欧美一区二区mp4| 1024视频免费在线观看| 天堂俺去俺来也www色官网| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区精品视频观看| 久久久久国内视频| 超碰97精品在线观看| 成年人黄色毛片网站| 久久久久久免费高清国产稀缺| 汤姆久久久久久久影院中文字幕| 欧美日韩黄片免| 青草久久国产| 中文字幕制服av| 日本一区二区免费在线视频| 99国产极品粉嫩在线观看| 99热网站在线观看| 午夜福利视频在线观看免费| 大片电影免费在线观看免费| 国产精品久久久人人做人人爽| 精品一区在线观看国产| 他把我摸到了高潮在线观看 | 欧美久久黑人一区二区| 人妻一区二区av| 国产成人av激情在线播放| 99re6热这里在线精品视频| 国产高清国产精品国产三级| 久久久国产欧美日韩av| 精品国产乱码久久久久久小说| 久久久久久久国产电影| 中文字幕人妻熟女乱码| 国产日韩欧美视频二区| 交换朋友夫妻互换小说| 日韩一区二区三区影片| 如日韩欧美国产精品一区二区三区| 热re99久久精品国产66热6| 后天国语完整版免费观看| 欧美日韩黄片免| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁观看日本| 日本撒尿小便嘘嘘汇集6| 精品亚洲成a人片在线观看| 免费不卡黄色视频| 午夜影院在线不卡| 丰满人妻熟妇乱又伦精品不卡| 80岁老熟妇乱子伦牲交| 精品一区二区三区av网在线观看 | 少妇裸体淫交视频免费看高清 | 国产成人精品在线电影| 欧美人与性动交α欧美软件| 亚洲国产欧美一区二区综合| 久久久精品区二区三区| 国产欧美日韩综合在线一区二区| av在线app专区| 中文字幕色久视频| 午夜福利一区二区在线看| 欧美少妇被猛烈插入视频| 宅男免费午夜| 看免费av毛片| 成在线人永久免费视频| 岛国在线观看网站| a在线观看视频网站| 亚洲精品中文字幕在线视频| 国产精品秋霞免费鲁丝片| 丁香六月天网| 久久久国产一区二区| 在线永久观看黄色视频| 国产伦理片在线播放av一区| 黄色a级毛片大全视频| 91麻豆精品激情在线观看国产 | 国产av精品麻豆| 欧美 亚洲 国产 日韩一| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩另类电影网站| 欧美人与性动交α欧美精品济南到| 91字幕亚洲| 成人国产av品久久久| 亚洲,欧美精品.| 91老司机精品| 亚洲av电影在线进入| 欧美人与性动交α欧美软件| 麻豆av在线久日| 999精品在线视频| 久久这里只有精品19| 99国产极品粉嫩在线观看| 亚洲第一欧美日韩一区二区三区 | 国产欧美亚洲国产| 一本久久精品| 男女边摸边吃奶| 欧美亚洲日本最大视频资源| 99久久精品国产亚洲精品| 亚洲国产毛片av蜜桃av| svipshipincom国产片| 国产精品二区激情视频| 欧美日韩国产mv在线观看视频| 99精国产麻豆久久婷婷| 水蜜桃什么品种好| 成年人黄色毛片网站| 嫩草影视91久久| 大码成人一级视频| 另类亚洲欧美激情| 黄色毛片三级朝国网站| 香蕉丝袜av| 老熟妇乱子伦视频在线观看 | 老司机影院成人| 亚洲精品久久久久久婷婷小说| 飞空精品影院首页| 爱豆传媒免费全集在线观看| 国产一卡二卡三卡精品| 男男h啪啪无遮挡| 国产亚洲精品久久久久5区| 国产精品久久久久久精品电影小说| 桃红色精品国产亚洲av| 午夜视频精品福利| 欧美一级毛片孕妇| 国产一区二区三区在线臀色熟女 | 亚洲激情五月婷婷啪啪| 三上悠亚av全集在线观看| 国产精品亚洲av一区麻豆| 国产精品香港三级国产av潘金莲| 色视频在线一区二区三区| 日韩视频一区二区在线观看| av免费在线观看网站| 久9热在线精品视频| 91成人精品电影| 欧美另类一区| 国产亚洲欧美在线一区二区| 欧美激情久久久久久爽电影 | 男女高潮啪啪啪动态图| 国产在线免费精品| 国产老妇伦熟女老妇高清| 国产黄频视频在线观看| 亚洲av成人不卡在线观看播放网 | 精品人妻熟女毛片av久久网站| 91九色精品人成在线观看| 国产成人精品无人区| 亚洲三区欧美一区| 99精品久久久久人妻精品| 精品亚洲成a人片在线观看| 免费av中文字幕在线| 十八禁网站网址无遮挡| 99国产精品一区二区三区| 嫁个100分男人电影在线观看| 午夜精品国产一区二区电影| 高清av免费在线| 国产欧美日韩精品亚洲av| 又黄又粗又硬又大视频| 日韩大码丰满熟妇| 日韩制服丝袜自拍偷拍| 熟女少妇亚洲综合色aaa.| 久久久久精品人妻al黑| av电影中文网址| 最新的欧美精品一区二区| 黑人巨大精品欧美一区二区蜜桃| 午夜成年电影在线免费观看| 国产亚洲欧美在线一区二区| 欧美日韩av久久| av福利片在线| 精品视频人人做人人爽| 日日爽夜夜爽网站| 亚洲av欧美aⅴ国产| 黑人巨大精品欧美一区二区mp4| 精品国产一区二区久久| 亚洲精品久久成人aⅴ小说| 窝窝影院91人妻| 大型av网站在线播放| 另类精品久久| 少妇的丰满在线观看| 一本一本久久a久久精品综合妖精| 搡老熟女国产l中国老女人| 亚洲精品久久久久久婷婷小说| 乱人伦中国视频| 精品一区在线观看国产| 久久国产精品大桥未久av| 亚洲五月色婷婷综合| 黄色片一级片一级黄色片| 午夜免费观看性视频| 99国产精品99久久久久| 中亚洲国语对白在线视频| 日韩制服丝袜自拍偷拍| www.精华液| 免费在线观看完整版高清| 国产成人av激情在线播放| 亚洲中文av在线| 午夜福利视频精品| 久久免费观看电影| 99久久人妻综合| 亚洲精品国产色婷婷电影| 日韩视频一区二区在线观看| 亚洲熟女毛片儿| 国产麻豆69| 国产不卡av网站在线观看| 精品久久久精品久久久| 成人手机av| 免费黄频网站在线观看国产| 黄色a级毛片大全视频| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲高清精品| 午夜成年电影在线免费观看| 久久女婷五月综合色啪小说| 亚洲欧美激情在线| 国产精品秋霞免费鲁丝片| kizo精华| 国产精品久久久久成人av| 国产熟女午夜一区二区三区| 亚洲国产毛片av蜜桃av| av国产精品久久久久影院| 久久久久久久久久久久大奶| 国产精品影院久久| 中文精品一卡2卡3卡4更新| 国产精品九九99| 久久国产精品影院| 日韩大片免费观看网站| 国产一区二区三区综合在线观看| 欧美日韩精品网址| 日本撒尿小便嘘嘘汇集6| 深夜精品福利| 99国产精品一区二区三区| 欧美日韩一级在线毛片| 精品一品国产午夜福利视频| 王馨瑶露胸无遮挡在线观看| 91国产中文字幕| 精品国产一区二区三区四区第35| 91精品伊人久久大香线蕉| 男女边摸边吃奶| 久久久国产欧美日韩av| 亚洲色图综合在线观看| 麻豆av在线久日| 丝袜喷水一区| 亚洲精品av麻豆狂野| 亚洲av国产av综合av卡| 欧美精品高潮呻吟av久久| 中文字幕av电影在线播放| 亚洲国产欧美一区二区综合| 丁香六月天网| 日日夜夜操网爽| 又大又爽又粗| 久久国产精品男人的天堂亚洲| 一区二区三区四区激情视频| av网站免费在线观看视频| 国产日韩欧美亚洲二区| 免费在线观看日本一区| 久久久久久久久久久久大奶| videos熟女内射| av在线播放精品| 丝袜人妻中文字幕| 国产一区有黄有色的免费视频| 国产免费视频播放在线视频| 桃红色精品国产亚洲av| 日韩电影二区| 一区二区三区乱码不卡18|