• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unifying Convolution and Transformer Decoder for Textile Fiber Identification

    2023-09-22 14:30:34XULuoli許羅力LIFenying李粉英CHANGShan

    XU Luoli(許羅力), LI Fenying(李粉英), CHANG Shan(常 姍)*

    1 College of Computer Science and Technology, Donghua University, Shanghai 201620, China 2 Silicon Engineer Group, ZEKU Technology (Shanghai), Shanghai 201203, China

    Abstract:At present, convolutional neural networks (CNNs) and transformers surpass humans in many situations (such as face recognition and object classification), but do not work well in identifying fibers in textile surface images. Hence, this paper proposes an architecture named FiberCT which takes advantages of the feature extraction capability of CNNs and the long-range modeling capability of transformer decoders to adaptively extract multiple types of fiber features. Firstly, the convolution module extracts fiber features from the input textile surface images. Secondly, these features are sent into the transformer decoder module where label embeddings are compared with the features of each type of fibers through multi-head cross-attention and the desired features are pooled adaptively. Finally, an asymmetric loss further purifies the extracted fiber representations. Experiments show that FiberCT can more effectively extract the representations of various types of fibers and improve fiber identification accuracy than state-of-the-art multi-label classification approaches.

    Key words:non-destructive textile fiber identification; transformer decoder; asymmetric loss

    0 Introduction

    Apparel is one of the necessities in people’s daily life. The type and the content of fibers have a significant impact on clothing comfort, warmth, and perspiration conduction, and other factors[1-3]. Therefore, worldwide countries stipulate that textiles on the market must be clearly marked with fiber types and contents. However, some producers deliberately label cheap fibers as superior fibers to make profits, significantly harming the interests of consumers. Hence, the identification of fibers is one of the major concerns of market regulators and consumers. The commonly employed fiber identification approaches[4-10], such as burning fibers, fiber solubility, and microscopic observation, rely mostly on manual operation which is inefficient, time-consuming, costly, and susceptible to operator conditions. The above methods are not suitable for large-scale rapid test by regulators and for the convenient use by ordinary consumers. Therefore, it is an inevitable trend to develop automatic identification technology for textile fibers[8-13]. Infrared automatic identification technology, which was introduced into the field of fiber identification without breaking textiles[8-10], was once very popular with fiber testing agencies, research institutes and customs. However, this method requires prior knowledge of the fiber type of the tested clothes and can only detect a few types of fibers. In addition, the equipment is expensive. Automatic fiber identification using images of textile surfaces has become a new topic thanks to advancements in camera technology and the ability of neural networks to extract features[12-13]. Fengetal.[12]proposed a DenseNet-based multi-branch recognition framework to transform fiber identification into a multi-label classification task. Ohietal.[13]presented an ensemble architecture based on the lightweight network Xception, and it required fewer training parameters and achieved higher accuracy for single-component fiber identification than previous models[12].

    In fact, a large number of textiles are made of two or more types of fibers. The previous works are all based on convolutional neural networks (CNNs) which have excellent performance in single-label image classification. However, the inherent shortcomings of CNNs in multi-label classification, for example, poor recognition of small objects[14], make these studies unsatisfactory when it comes to identifying fine and blended fibers in clothing. Recently, a lot of work has been done to improve the image multi-label recognition ability of CNNs, such as jointly mining label dependency or semantic dependency with recurrent neural networks (RNNs)[14-16]and catching label relevance of multi-label image recognition with graph convolutional networks (GCNs)[17-20]. Textile fibers are very fine (e.g., about 20 μm in diameter for wool fibers, 10 μm for cotton fibers and several micrometers for chemical fibers), which makes it difficult to achieve desired results with the aforementioned methods.

    Different from CNNs that utilize convolutional kernels to extract object features, the transformer network[21-23]employs attention mechanisms to obtain global contextual information and extract target features, and has achieved great success in natural language processing tasks. Dosovitskiyetal.[24]introduced the transformer to computer vision tasks. They split an image into a number of patches and fed each patch as a word in natural language processing into a stacked transformer encoder architecture for image classification. Since then, numerous improved transformer encoder architectures have been applied to image recognition tasks[25-27]. Nevertheless, when an input image is split into multiple patches, the above transformer-based frameworks do not take into account the peculiarities of fiber shapes in fabrics, such as fiber curls, overlaps, and tangles, which aggravates the imbalance of fiber types during modeling and leads to low accuracy in fiber identification.

    To handle the above problems, this work proposes a model that unifies CNNs and transformer decoders for textile fiber identification, called FiberCT. FiberCT utilizes CNNs to gradually extract fiber features with more advanced semantic information and then sends them to the transformer decoders. The multi-head self-attention mechanism is used to extract label features, and the multi-head cross-attention mechanism is utilized to locate the fiber features of each label to adaptively extract the desired features from the data to identify each type of fibers in the image. The contributions are as follows.

    1) A framework for identifying fibers in textile surface images called FiberCT is presented. FiberCT takes advantages of CNN feature extraction and transformer multi-head attention mechanisms to effectively solve the problems of sample imbalance and small sample sizes. It is the first application of the transformer decoder architecture to fiber identification without tearing textiles.

    2) A dataset of textile surface images with accurate labeling information, such as textile categories and fiber types, is collected.

    3) It is discovered in experiments that the transformer decoder’s cross-attention module can greatly increase fiber identification accuracy.

    1 Proposed Method

    Each type of fibers has its own unique surface characteristics. In the process of weaving, only physical blending and entanglement occur, so the unique surface characteristics of various fibers in blended textiles have not fundamentally changed. By deeply mining the visual features of various fibers, the accuracy of fiber identification can be improved in the case of small samples. Hence, FiberCT for image-based non-destructive textile fiber identification is proposed, which absorbs the aforementioned ideas and significantly addresses sample imbalance and small sample size challenges. As shown in Figs. 1(a) and 1(b), the overall framework of FiberCT is very simple. It contains a CNN backbone for the fiber spatial feature extraction module (FSFE-Module) and a set of transformer decoders for the fiber component decoding module (FCD-Module). The representations extracted by CNNs usually contain features from different fibers. Multi-head cross-attention operations in the transformer decoder in Fig.1(c) automatically learn the fiber features of each label through continuous querying[28-29], thereby reducing the blending between representations of different fiber types. In addition, an asymmetric loss[30]is introduced to further purify the extracted representations.

    Fig.1 FiberCT framework:(a) FSFE-Module; (b) FCD-Module; (c) transformer decoder architecture

    1.1 Fiber feature extraction

    The FSFE-Module adopts a standard CNN backbone[31](ResNet50 by default) to extract fiber spatial features as shown in Fig.1(a). Given a textile fiber imageI∈RH×W×3as input, we extract its spatial featuresFs∈Rh×w×c0through the CNN backbone, whereHandWare the height and the width of input images,handware the height and the width of feature maps, andc0is the dimension of features. The features are then projected from dimensionc0to dimensioncin the linear projection layer to match the desired query dimension, and the projected features are reshaped toF∈Rh×w×c.They are sent to transformer decoders as keys and values along with queries (label embeddings)Q0∈RK×cand then perform cross-attention to pool type-related features, whereKis the number of fiber types.

    1.2 Fiber component decoding

    (1)

    (2)

    MH(Q,K,V)=Concat(A1,A2, ,Ah)WO,

    (3)

    whereQ,KandVare the query, the key and the value, respectively;CKis the dimension of the key;Ahis theh-th attention function;WOdenotes the weight parameter.

    (4)

    Subsequently, each label embedding gets better class-related features and updates itself according to

    (5)

    whereW1andW2are learnable weight parameters;b1andb2are bias parameters.

    The label embeddingQ0∈RK×cis a learnable parameter that is updated layer by layer and gradually gets contextual information related to the input fiber images through multi-head cross-attention, thus implicitly establishing a relationship with the data.

    At the last layer (layerL) of the transformer decoder, the queried feature vectorQL∈RK×cforKtypes of fibers is acquired, and then the feature of each type of fibersQL,k∈Rc,k= 1, 2, ,K, is projected to a logit value using a linear projection layer[29]followed by

    (6)

    whereWkandbkare parameters in the linear layer;P=[P1,P2, ,Pk]T∈RKrepresents the predicted probabilities of fiber types.

    1.3 Loss function

    The multi-head cross-attention in transformer decoders has been able to identify fiber types well, but the imbalanced fiber features in each image and small sample problems may interfere with the fiber classification effect. In order to better deal with the above problems, a simplified asymmetric loss is introduced, which has a good effect on alleviating the distribution of long-tail data in multi-label classification[30].

    Given a textile fiber image as input, our model predicts its fiber type probabilitiesP=[P1,P2, ,Pk]T∈RK.Then, the loss for each training sample is calculated by

    (7)

    whereykis a binary label to indicate if the image has labelk;γ+andγ-are hyperparameters with default values,γ+=0 andγ-=1.The total loss is calculated by averaging this loss over all samples in the training dataset.

    2 Experiments

    To evaluate the proposed approach, FiberCT was compared to a number of state-of-the-art multi-label image classification architectures, including CU-Net and FabricNet for fiber identification in textile surface images. The average precision (AP) on each type of fibers and the mean average precision (mAP) over all types were adopted for evaluation. To better demonstrate the performance of the model, the overall precision (OP), the overall recall (OR), and the overall F1 measurement (OF1) were presented for further comparison, as well as the per-type precision (CP), the per-type recall (CR) and the per-type F1 measurement (CF1). In general, CF1, OF1 and mAP are comprehensive and hence are the most important metrics among all the above[12-13]. Since different thresholds might affect the experimental results, the threshold was set to be 0.5 in all experiments for comparison.

    2.1 Implementation details

    2.1.1Dataset

    In the experiments, fabric surface images were taken by optical magnifiers at many clothes stores. A total of 26 types of fibers and 173 textile categories (fabrics with different blending ratios of the same types of fibers were one category) were collected. Figure 2 shows the statistical distribution of fabric components.

    Fig.2 Statistics on fabric component dataset

    In practice, only one fabric from the same brand and series was sampled to maximize the diversity of data. Five images at different points on each fabric were collected using commercially available optical magnifiers with a magnification of 50 times, and the magnifiers were connected to mobile devices via WIFI as shown in Fig.3.

    Fig.3 Equipment and sampling procedures for collecting textile surface images:(a) a magnifier; (b) a magnifier connected to mobile devices via WIFI

    Each time an image of a fabric was taken, the magnifier was rotated randomly to reduce the influence of textile textures, colors, pattern sizes and pattern directions on fiber identification. Figure 4 shows samples of three different fabrics. Label information of fabrics including fiber types and contents was also collected.

    2.1.2Experimentalsetup

    The proposed method FiberCT was evaluated on the fabric image dataset described in the previous subsection. In the experiment, 80% of the dataset was randomly selected from each fabric for training and 20% for validation. All images were resized to 224×224 as the input resolution and the size of the output feature from ResNet50 was 7×7×2 048. In the experiment,c=c0=2 048, so the size of the final output features in the FSFE-Module was 7×7×2 048. The extracted fiber features were fed into the FCD-Module after adding positional encodings and reshaping. For the FCD-Module, two transformer decoder layers were utilized for label feature updating. Following the last transformer decoder, a linear projection layer was added to calculate logit predictions for all fiber types. In the multi-head attention function,his 4. Flipping, brightness change, contrast change and zooming were used for data augmentation. All tested models were initialized with ImageNet trained weights, and they were further trained on the fabric image dataset. The model was trained 100 times using the Adam[33]optimizer with a batch size of 128, a true weight decay of 0.01, hyperparametersβ1of 0.9 andβ2of 0.999 9, and a learning rate of 0.000 1.

    2.2 Fiber identification performance

    Table 1 compares the performances of different multi-label image classification models, and the best results are shown in bold. The first three models (SSGRL[18], ML-GCN[19]and MS-CMA[34]) are GCN-based frameworks, while the next three models(C-Trans[35], TDRG[36]and M3TR[37]) are transformer encoder-based frameworks, and CU-Net[12]and FabricNet[13]are fiber identification models without breaking fabrics.

    Table 1 Comparison of FiberCT and state-of-the-art methods on fabric image dataset

    FiberCT consistently outperforms previous approaches on most major metrics (except CR and OR), demonstrating that FiberCT is more suitable for non-destructive textile fiber identification. Furthermore, it is noted that GCN-based networks surpass transformer encoder-based models in terms of fiber identification accuracy. This could be due to fiber entanglements, occlusions, and deformations during the textile weaving process. The variety of these changes and the small sample lead to unsatisfactory accuracy for all models, and transformer encoder-based models may exacerbate these adverse effects when the image is split into patches.

    2.3 Ablation studies

    To demonstrate the effectiveness of different components of FiberCT on textile fiber identification, ablation experiments were performed as shown in Table 2. FiberCT consists of an FSFE-Module (default ResNet50) and an FCD-Module (transformer decoder). Additionally, an asymmetric loss function (ASL) is incorporated into the framework. FiberCT ? FCD is the FiberCT without the FCD-Module. FiberCT ?ASL is the FiberCT without the ASL.

    Table 2 Performance of FiberCT with various backbones and components

    FiberCT performs marginally better (an increase in mAP of approximately 0.7%) in fiber recognition than FiberCT?ASL, implying that the ASL can further purify the extracted fiber representation as mentioned above. This effect is also demonstrated by the comparison of FiberCT?FCD and the baseline. FiberCT?ASL outperforms the baseline and FiberCT?FCD with an increase in mAP of 13.5% and 12.6%, respectively, demonstrating that the FCD-Module based on the transformer decoder can efficiently identify different types of fibers.

    3 Conclusions

    In this paper, a framework named FiberCT is proposed for textile fiber identification without breaking textiles. FiberCT employs convolutions to extract spatial features of fibers in the textile surface image and multi-head cross-attention modules in the transformer to adaptively decode different types of fabric components. Experiments demonstrate that the multi-head cross-attention modules in the transformer utilize label embeddings to query the existence of a type of fiber label and pool fiber type-related characteristics, which is extremely useful for textile fiber identification. Furthermore, the ASL can help FiberCT perform even better.

    九色国产91popny在线| 国产av麻豆久久久久久久| 伦理电影大哥的女人| 日韩欧美国产一区二区入口| 久久久久久久久久黄片| 一区二区三区免费毛片| 亚洲av不卡在线观看| 99久久精品一区二区三区| 欧美三级亚洲精品| 久久中文看片网| 最近中文字幕高清免费大全6 | 亚洲第一电影网av| h日本视频在线播放| 婷婷精品国产亚洲av在线| 国产男人的电影天堂91| 欧美色视频一区免费| 亚洲不卡免费看| 国产亚洲精品av在线| 悠悠久久av| 亚洲av.av天堂| 欧美成人a在线观看| 久久久久性生活片| 中文字幕av在线有码专区| 人妻夜夜爽99麻豆av| 少妇丰满av| 可以在线观看的亚洲视频| 91麻豆av在线| 亚洲va日本ⅴa欧美va伊人久久| 午夜免费成人在线视频| 听说在线观看完整版免费高清| 午夜爱爱视频在线播放| 看黄色毛片网站| 成人av一区二区三区在线看| 哪里可以看免费的av片| 国产美女午夜福利| 日韩欧美在线乱码| 久久久午夜欧美精品| 亚洲国产欧美人成| 免费在线观看成人毛片| 伦精品一区二区三区| 此物有八面人人有两片| 国内毛片毛片毛片毛片毛片| 99热这里只有是精品在线观看| 精品久久久久久久人妻蜜臀av| 在线观看免费视频日本深夜| 99久久精品热视频| 国模一区二区三区四区视频| 直男gayav资源| 成年版毛片免费区| 国产蜜桃级精品一区二区三区| 欧美黑人巨大hd| 内地一区二区视频在线| 婷婷精品国产亚洲av| 最新中文字幕久久久久| 日韩欧美精品免费久久| 精品一区二区三区av网在线观看| 色哟哟哟哟哟哟| 欧美黑人欧美精品刺激| 简卡轻食公司| 在线国产一区二区在线| 少妇人妻一区二区三区视频| 日日干狠狠操夜夜爽| 91麻豆av在线| 熟女电影av网| 亚洲熟妇中文字幕五十中出| 51国产日韩欧美| 免费一级毛片在线播放高清视频| av天堂在线播放| 我要看日韩黄色一级片| 特大巨黑吊av在线直播| 精品不卡国产一区二区三区| 哪里可以看免费的av片| 麻豆精品久久久久久蜜桃| 91在线观看av| 3wmmmm亚洲av在线观看| 99riav亚洲国产免费| 老师上课跳d突然被开到最大视频| 日韩中文字幕欧美一区二区| 色哟哟·www| 欧美xxxx性猛交bbbb| 天堂av国产一区二区熟女人妻| ponron亚洲| 琪琪午夜伦伦电影理论片6080| 简卡轻食公司| 日本熟妇午夜| 最新中文字幕久久久久| 1024手机看黄色片| a级一级毛片免费在线观看| 久久久久久九九精品二区国产| 国产一区二区在线av高清观看| bbb黄色大片| 亚洲中文日韩欧美视频| 一级a爱片免费观看的视频| 久久6这里有精品| 精品99又大又爽又粗少妇毛片 | 男女视频在线观看网站免费| 男女那种视频在线观看| 大型黄色视频在线免费观看| 嫩草影院新地址| 精品日产1卡2卡| 国产精品一区二区三区四区免费观看 | 亚洲国产高清在线一区二区三| 日韩欧美三级三区| 午夜激情欧美在线| 欧美激情久久久久久爽电影| 欧美黑人欧美精品刺激| 久久精品国产亚洲网站| 网址你懂的国产日韩在线| 黄色女人牲交| bbb黄色大片| 中国美白少妇内射xxxbb| 成人三级黄色视频| 午夜免费激情av| 黄色欧美视频在线观看| 日本与韩国留学比较| 一夜夜www| 精品久久久久久成人av| av在线蜜桃| 色哟哟·www| 久久99热6这里只有精品| 日本熟妇午夜| 日本精品一区二区三区蜜桃| 97超级碰碰碰精品色视频在线观看| 国产成人一区二区在线| www.色视频.com| 精品欧美国产一区二区三| 99久久精品一区二区三区| 国产三级在线视频| 国模一区二区三区四区视频| 国产精品人妻久久久久久| 精品久久久久久,| 一个人观看的视频www高清免费观看| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三区视频在线观看免费| 色哟哟·www| 亚洲一区高清亚洲精品| 欧美最新免费一区二区三区| 国产一区二区激情短视频| 精品无人区乱码1区二区| 免费看光身美女| 久久久成人免费电影| 亚洲国产色片| 欧美激情久久久久久爽电影| 有码 亚洲区| 夜夜夜夜夜久久久久| 成人国产综合亚洲| 丰满人妻一区二区三区视频av| 精品一区二区三区视频在线| 欧美激情久久久久久爽电影| 国产一区二区在线av高清观看| 国产亚洲欧美98| 国产黄片美女视频| 色综合站精品国产| 亚洲精品456在线播放app | 午夜精品久久久久久毛片777| 人人妻人人看人人澡| 美女大奶头视频| 一区二区三区免费毛片| 亚洲无线观看免费| 亚洲av美国av| 一级av片app| 三级男女做爰猛烈吃奶摸视频| 国产精品一区二区三区四区久久| 精品午夜福利视频在线观看一区| 两个人的视频大全免费| 91在线精品国自产拍蜜月| 中文在线观看免费www的网站| 99久久久亚洲精品蜜臀av| 美女xxoo啪啪120秒动态图| 内地一区二区视频在线| 人人妻,人人澡人人爽秒播| а√天堂www在线а√下载| 黄色丝袜av网址大全| 1000部很黄的大片| 少妇猛男粗大的猛烈进出视频 | 亚洲人成网站在线播| av.在线天堂| 国产一区二区三区在线臀色熟女| 乱码一卡2卡4卡精品| 国产精品综合久久久久久久免费| 亚洲av第一区精品v没综合| 级片在线观看| 无遮挡黄片免费观看| www.www免费av| 国产激情偷乱视频一区二区| 99久久精品热视频| 免费高清视频大片| 麻豆av噜噜一区二区三区| 国产黄片美女视频| 俄罗斯特黄特色一大片| 午夜久久久久精精品| 22中文网久久字幕| 一区二区三区免费毛片| 亚洲中文日韩欧美视频| 热99在线观看视频| 亚洲人成伊人成综合网2020| 永久网站在线| 欧美激情在线99| 欧美一级a爱片免费观看看| 人人妻人人澡欧美一区二区| 亚洲av免费高清在线观看| 国产精品99久久久久久久久| 国产高清视频在线观看网站| 非洲黑人性xxxx精品又粗又长| 看免费成人av毛片| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 国产高潮美女av| 岛国在线免费视频观看| 免费人成在线观看视频色| 美女大奶头视频| 欧美色视频一区免费| 成人高潮视频无遮挡免费网站| 亚洲国产欧洲综合997久久,| 亚洲不卡免费看| 国产三级中文精品| 亚洲精品影视一区二区三区av| 日日摸夜夜添夜夜添小说| 3wmmmm亚洲av在线观看| 亚洲成a人片在线一区二区| 国产老妇女一区| 国产精品精品国产色婷婷| 又爽又黄a免费视频| 男人舔奶头视频| 在线观看午夜福利视频| 日韩国内少妇激情av| 国产精品一区二区三区四区久久| 久久久久久久久久久丰满 | 日本欧美国产在线视频| 国产精品乱码一区二三区的特点| a级毛片免费高清观看在线播放| 久久精品国产鲁丝片午夜精品 | 久久久久久久久久久丰满 | 久久久国产成人免费| 少妇熟女aⅴ在线视频| 免费高清视频大片| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区av在线 | www.www免费av| 欧美日韩国产亚洲二区| 国产精品人妻久久久影院| 国产单亲对白刺激| 国产爱豆传媒在线观看| 97热精品久久久久久| 国产伦在线观看视频一区| 在线免费观看的www视频| 成人鲁丝片一二三区免费| av在线蜜桃| 久久亚洲真实| 欧美日韩瑟瑟在线播放| 亚洲性夜色夜夜综合| 国产大屁股一区二区在线视频| 国产av在哪里看| 国产精华一区二区三区| 国语自产精品视频在线第100页| a级毛片免费高清观看在线播放| 中文字幕人妻熟人妻熟丝袜美| 自拍偷自拍亚洲精品老妇| 久久国内精品自在自线图片| 国产毛片a区久久久久| 成人特级av手机在线观看| 国产av一区在线观看免费| 国产精品无大码| 人妻少妇偷人精品九色| 欧美最新免费一区二区三区| 亚洲av熟女| 午夜视频国产福利| 国产av不卡久久| 尤物成人国产欧美一区二区三区| 精品久久久久久久久亚洲 | 97人妻精品一区二区三区麻豆| 真人一进一出gif抽搐免费| 看十八女毛片水多多多| 欧美激情在线99| 在线播放无遮挡| 五月玫瑰六月丁香| 精品久久久久久久久久久久久| 亚洲乱码一区二区免费版| 久久久色成人| 在线天堂最新版资源| 亚洲七黄色美女视频| 亚洲av中文字字幕乱码综合| 五月玫瑰六月丁香| 久久久久久久亚洲中文字幕| 色综合亚洲欧美另类图片| 蜜桃亚洲精品一区二区三区| 国产av在哪里看| 麻豆成人午夜福利视频| 麻豆久久精品国产亚洲av| 嫩草影院入口| 婷婷亚洲欧美| 69人妻影院| 午夜日韩欧美国产| 五月玫瑰六月丁香| 国产 一区 欧美 日韩| 国产午夜精品久久久久久一区二区三区 | 日韩欧美免费精品| 国产欧美日韩精品一区二区| 国产精品一区二区三区四区久久| 国产色爽女视频免费观看| 精品国产三级普通话版| 国产v大片淫在线免费观看| 欧美又色又爽又黄视频| 一级黄片播放器| 欧美日韩黄片免| 亚洲av熟女| 日日摸夜夜添夜夜添av毛片 | 91在线观看av| 综合色av麻豆| 真人做人爱边吃奶动态| 亚洲内射少妇av| 精品久久久久久久久久免费视频| 日韩欧美三级三区| 精品久久久久久久久久久久久| 国产不卡一卡二| 色视频www国产| 日韩精品青青久久久久久| 久久久色成人| 国产高潮美女av| 欧美成人一区二区免费高清观看| h日本视频在线播放| 国产伦人伦偷精品视频| 国产精品99久久久久久久久| 天美传媒精品一区二区| 色5月婷婷丁香| 国产一区二区激情短视频| 男女那种视频在线观看| 天堂动漫精品| 黄色欧美视频在线观看| 九色成人免费人妻av| 精品一区二区三区av网在线观看| 国产精品一区二区三区四区久久| 免费观看精品视频网站| 有码 亚洲区| 亚洲三级黄色毛片| 国产成人福利小说| 可以在线观看毛片的网站| 久久久久久久久久黄片| 国内精品久久久久精免费| 91麻豆精品激情在线观看国产| 国产久久久一区二区三区| 久久精品久久久久久噜噜老黄 | 亚洲一级一片aⅴ在线观看| 九九爱精品视频在线观看| eeuss影院久久| 亚洲一区高清亚洲精品| 美女免费视频网站| 校园春色视频在线观看| 久久精品久久久久久噜噜老黄 | 亚洲熟妇中文字幕五十中出| 内射极品少妇av片p| 听说在线观看完整版免费高清| 久久久久久久久中文| 久久人人爽人人爽人人片va| 日日夜夜操网爽| 五月玫瑰六月丁香| 99精品在免费线老司机午夜| 国产成人福利小说| 午夜免费男女啪啪视频观看 | 热99re8久久精品国产| 12—13女人毛片做爰片一| 亚洲欧美日韩高清专用| 日本免费一区二区三区高清不卡| 精品无人区乱码1区二区| 欧美+亚洲+日韩+国产| 日韩 亚洲 欧美在线| 1000部很黄的大片| 狂野欧美白嫩少妇大欣赏| 又粗又爽又猛毛片免费看| 可以在线观看的亚洲视频| 22中文网久久字幕| 国产日本99.免费观看| 国产高潮美女av| 国产真实乱freesex| 欧美一区二区精品小视频在线| 亚洲四区av| 亚洲第一区二区三区不卡| 久久久久九九精品影院| 我的老师免费观看完整版| 在现免费观看毛片| 国产高清视频在线播放一区| 人妻少妇偷人精品九色| 午夜免费成人在线视频| 蜜桃亚洲精品一区二区三区| 成人国产麻豆网| 久久久久久久久久久丰满 | 日本撒尿小便嘘嘘汇集6| 国产三级中文精品| 在线看三级毛片| 国产精品福利在线免费观看| 成年女人毛片免费观看观看9| 国产三级在线视频| 欧美极品一区二区三区四区| 亚洲综合色惰| 免费观看精品视频网站| 噜噜噜噜噜久久久久久91| 91狼人影院| 嫩草影院新地址| 色综合色国产| 一边摸一边抽搐一进一小说| 欧美日韩黄片免| 99精品久久久久人妻精品| 国产高清视频在线播放一区| 麻豆精品久久久久久蜜桃| 国产一区二区三区av在线 | 国产视频内射| 亚洲成人中文字幕在线播放| 在线播放国产精品三级| 免费不卡的大黄色大毛片视频在线观看 | 日本在线视频免费播放| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 午夜福利欧美成人| 老女人水多毛片| 亚州av有码| 成人欧美大片| 最近视频中文字幕2019在线8| 韩国av一区二区三区四区| 国内毛片毛片毛片毛片毛片| 老熟妇乱子伦视频在线观看| 男插女下体视频免费在线播放| 不卡一级毛片| 欧美xxxx性猛交bbbb| 欧美日本亚洲视频在线播放| 精品99又大又爽又粗少妇毛片 | 看黄色毛片网站| 我要搜黄色片| 国产白丝娇喘喷水9色精品| 18禁裸乳无遮挡免费网站照片| 亚洲电影在线观看av| 午夜精品久久久久久毛片777| 国产精品久久久久久亚洲av鲁大| 男人狂女人下面高潮的视频| 午夜a级毛片| 国产 一区 欧美 日韩| 99在线人妻在线中文字幕| 18+在线观看网站| 一夜夜www| 亚洲精品一卡2卡三卡4卡5卡| 在线观看午夜福利视频| 欧美一区二区精品小视频在线| 日本撒尿小便嘘嘘汇集6| 搡老岳熟女国产| 亚洲第一电影网av| 床上黄色一级片| 在线观看舔阴道视频| 亚洲av熟女| 国产老妇女一区| 麻豆成人午夜福利视频| 亚洲自拍偷在线| 亚洲美女搞黄在线观看 | 一本一本综合久久| 神马国产精品三级电影在线观看| 91精品国产九色| 国产精品久久久久久精品电影| 黄色欧美视频在线观看| 极品教师在线免费播放| 国产乱人伦免费视频| 久久午夜亚洲精品久久| 亚洲精品一区av在线观看| 午夜福利成人在线免费观看| 深夜精品福利| 日日摸夜夜添夜夜添av毛片 | 免费在线观看影片大全网站| 色视频www国产| 亚洲美女视频黄频| 毛片一级片免费看久久久久 | 男女之事视频高清在线观看| av天堂中文字幕网| 熟女人妻精品中文字幕| 欧美日韩精品成人综合77777| 老师上课跳d突然被开到最大视频| 九色成人免费人妻av| 国产成人一区二区在线| 成人无遮挡网站| 亚洲人成网站在线播放欧美日韩| 日韩 亚洲 欧美在线| 亚洲精品日韩av片在线观看| 亚洲天堂国产精品一区在线| 亚洲精品国产成人久久av| 日韩国内少妇激情av| www.www免费av| 大型黄色视频在线免费观看| 成人亚洲精品av一区二区| 亚州av有码| netflix在线观看网站| 成人午夜高清在线视频| 国产精品久久久久久久电影| 在线看三级毛片| 男女做爰动态图高潮gif福利片| 亚洲人成网站高清观看| av在线天堂中文字幕| 波野结衣二区三区在线| 18禁黄网站禁片午夜丰满| 亚洲自拍偷在线| 一本精品99久久精品77| 亚洲最大成人av| 国产精品国产高清国产av| 日本欧美国产在线视频| 国产一区二区三区av在线 | 一卡2卡三卡四卡精品乱码亚洲| 88av欧美| 中文资源天堂在线| 18禁裸乳无遮挡免费网站照片| 久久热精品热| 九九爱精品视频在线观看| 亚洲熟妇熟女久久| 亚洲最大成人中文| 欧美色视频一区免费| 精品人妻视频免费看| 久久久久精品国产欧美久久久| 国产成人福利小说| 国产精品一区二区三区四区免费观看 | 午夜激情欧美在线| 男女做爰动态图高潮gif福利片| 窝窝影院91人妻| 欧美激情在线99| 亚洲成人久久性| 女人被狂操c到高潮| 丰满的人妻完整版| 日韩在线高清观看一区二区三区 | 天天一区二区日本电影三级| 免费观看的影片在线观看| 99国产极品粉嫩在线观看| 在线播放国产精品三级| 国产一区二区三区在线臀色熟女| 在线a可以看的网站| 国产精品美女特级片免费视频播放器| 男女下面进入的视频免费午夜| 国产精品电影一区二区三区| 狠狠狠狠99中文字幕| 午夜福利在线观看免费完整高清在 | 亚洲无线在线观看| 在线观看66精品国产| 国产中年淑女户外野战色| 一区福利在线观看| 赤兔流量卡办理| 日本 欧美在线| 男人舔奶头视频| 99久久成人亚洲精品观看| 成人特级av手机在线观看| 国产精品1区2区在线观看.| 亚州av有码| 成人永久免费在线观看视频| 久久久久九九精品影院| 无遮挡黄片免费观看| 国产在线精品亚洲第一网站| 制服丝袜大香蕉在线| 动漫黄色视频在线观看| 欧美3d第一页| 国产男人的电影天堂91| 又黄又爽又免费观看的视频| 日韩 亚洲 欧美在线| 99久久精品热视频| 中文资源天堂在线| 国产亚洲av嫩草精品影院| 成人三级黄色视频| 国产精品电影一区二区三区| 欧美成人a在线观看| 午夜福利在线在线| av在线老鸭窝| 搡老妇女老女人老熟妇| 色哟哟哟哟哟哟| 校园春色视频在线观看| 色综合站精品国产| 欧美区成人在线视频| 久久99热6这里只有精品| 美女高潮喷水抽搐中文字幕| 搞女人的毛片| 国产精品一区www在线观看 | a级一级毛片免费在线观看| 中亚洲国语对白在线视频| 免费看a级黄色片| 九色国产91popny在线| 日本爱情动作片www.在线观看 | 亚洲熟妇熟女久久| 亚洲经典国产精华液单| 国产视频内射| 亚洲av成人av| 又黄又爽又免费观看的视频| 国产成人av教育| 他把我摸到了高潮在线观看| 欧美+日韩+精品| 久久久色成人| 久久这里只有精品中国| 尾随美女入室| 日本欧美国产在线视频| 一区福利在线观看| 国产精品野战在线观看| 亚洲五月天丁香| 人人妻,人人澡人人爽秒播| 精品久久久久久久久久免费视频| 欧美zozozo另类| 午夜福利在线在线| 黄色欧美视频在线观看| 性插视频无遮挡在线免费观看| 波多野结衣高清无吗| 亚洲av成人精品一区久久| 亚洲aⅴ乱码一区二区在线播放| 久久欧美精品欧美久久欧美| 精品久久久久久久久久免费视频| 欧美在线一区亚洲| 国产男靠女视频免费网站| 亚洲人成网站高清观看| 亚洲黑人精品在线| 亚洲精品一区av在线观看| 日韩大尺度精品在线看网址| 最近最新免费中文字幕在线| 国产一区二区三区av在线 | 国产成人a区在线观看| 国产伦人伦偷精品视频| 日韩一本色道免费dvd| 国产精品一区二区免费欧美| 欧美zozozo另类| 亚洲精品一区av在线观看|