• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于6σ穩(wěn)健優(yōu)化的減速器接觸參數(shù)優(yōu)化及誤差控制研究

    2023-09-18 14:18:32謝忠兵盧銀菊王建國
    機(jī)械設(shè)計與研究 2023年3期
    關(guān)鍵詞:印痕錐齒輪齒面

    謝忠兵, 盧銀菊, 劉 濤, 王建國

    (1.內(nèi)江職業(yè)技術(shù)學(xué)院 智能制造與汽車學(xué)院,四川 內(nèi)江 641000, E-mail: xiezhong1999@163.com;2.電子科技大學(xué) 機(jī)械與電氣工程學(xué)院,成都 611731;3.內(nèi)江富晟機(jī)械制造有限公司,四川 內(nèi)江 641000)

    在減速器的作用下,不僅能夠使傳動裝置具有更強(qiáng)的承載能力,而且還可大大加強(qiáng)機(jī)傳動系統(tǒng)的穩(wěn)定性;在硬齒面齒輪的作用下,能夠明顯增強(qiáng)減速器的傳動效率及使用壽命。在應(yīng)用過程中,錐齒輪通常會出現(xiàn)形變、加工誤差以及安裝誤差等問題[1-2]。在實際運轉(zhuǎn)期間,因為安裝誤差的影響,導(dǎo)致錐齒輪出現(xiàn)大幅變化的傳動誤差曲線,造成齒輪副產(chǎn)生沖擊、振動等現(xiàn)象,難以確保齒輪副的穩(wěn)定運行,從而導(dǎo)致系統(tǒng)可靠性的大幅下降[3-5]。所以,為了盡可能控制安裝偏差,保證系統(tǒng)的整體穩(wěn)定性,需對嚙合特性進(jìn)行持續(xù)優(yōu)化,此同樣是改善錐齒輪齒面的關(guān)鍵舉措[6-8]。

    蔡香偉等[9]采取解析計算的形式針對由于安裝誤差造成的嚙合性能變化進(jìn)行分析,并且著重探究了V/H檢驗與敏感度矩陣間的互相作用;基于上述研究成果,吳訓(xùn)成[10]利用顯示方式推測出接觸點在公切面上順著垂直方向產(chǎn)生的安裝誤差敏感度,并且構(gòu)建起相應(yīng)的計算公式以達(dá)到主動設(shè)計齒面的目的。唐進(jìn)元等[11]針對各種預(yù)設(shè)點位下的安裝誤差靈敏度分別進(jìn)行測試,且對預(yù)設(shè)錐齒輪主動設(shè)計方式加以調(diào)整,獲得最佳的點位參數(shù),促進(jìn)誤差靈敏度系數(shù)的顯著降低;蘇進(jìn)展[12]針對差曲面展開全曲率調(diào)整,進(jìn)而在錐齒輪安裝過程中得到良好的誤差敏感度,利用優(yōu)化計算得出能夠使誤差敏感度下降的參數(shù)設(shè)置,通過量化算法明確齒面印痕的參數(shù),且得出多種誤差下印痕參數(shù)的變化特征,基于以上各種參數(shù)建立相應(yīng)的敏感度矩陣,同時通過仿真模型實施驗證分析。趙玉龍等[13]為了避免安裝誤差造成的影響,基于面齒輪傳動的嚙合方式,采取展成加工的形式,獲得關(guān)于弧線齒面齒輪副的精準(zhǔn)嚙合模型,同時推導(dǎo)出含有安裝誤差的弧線齒面齒輪齒面方程,提出可以準(zhǔn)確計算弧線齒面齒輪齒面接觸應(yīng)力和主曲率的方法。李家琦等[14]在空間曲面嚙合機(jī)理的前提下,建立起共軛曲面的數(shù)理模型;以曲面綜合為基礎(chǔ),提出能夠建立齒面修形梯度曲面的具體方法,為嚙合形態(tài)仿真和復(fù)雜齒面拓?fù)湓O(shè)計提供了可行性強(qiáng)、精準(zhǔn)度高的方式。 陳季凌等[15]為了把握齒面接觸性能參數(shù)與三維粗糙度參數(shù)間的具體關(guān)系,基于統(tǒng)計學(xué)理論進(jìn)一步分析其相關(guān)性,利用遺傳算法優(yōu)化后的BP神經(jīng)網(wǎng)絡(luò)建立預(yù)測模型,避免參數(shù)冗余情況,為齒面抗疲勞的設(shè)計與制造提供相應(yīng)的理論參考。

    本文在分析安裝誤差的前提下,按照印痕特征采取6σ穩(wěn)健優(yōu)化的方式建立目標(biāo)函數(shù),采取MonteCarlo算法進(jìn)行抽樣,通過多島遺傳算法來優(yōu)化二階接觸參數(shù)且對安裝誤差進(jìn)行調(diào)整,比較分析確定性優(yōu)化方法與本文所提優(yōu)化方法的不同,最終結(jié)果說明本文提出的穩(wěn)健性方法可有效達(dá)到可靠性要求。

    1 考慮安裝誤差承載接觸模型

    錐齒輪嚙合時,在嚙入和嚙出過程中齒面始終維持相切的狀態(tài),利用加載齒輪接觸分析(load tooth contact analysis, ITCA)對錐齒輪副的接觸環(huán)節(jié)進(jìn)行仿真分析。將安裝誤差E作為關(guān)鍵影響因素,采取局部綜合法實施分析,優(yōu)化齒面加工參數(shù)可獲得ITCA的表達(dá)公式[13]:

    (1)

    式中:E=[Hp,Hg,V,Σ],代表的是安裝誤差向量;sg、sp、θg、θp、φr1和φr2分別代表輪曲面相應(yīng)結(jié)構(gòu)參數(shù)。

    ITCA并未結(jié)合載荷因素產(chǎn)生的影響,以ITCA進(jìn)行分析,獲得如下所示的計算公式:

    (2)

    式中:F代表柔度矩陣;p代表載荷矢量;w代表間距矢量;Θ代表的是在輪齒彈性形變過程形成的大輪轉(zhuǎn)角;d代表間距矢量;r1和r2分別代表的是小、大輪接觸點的回轉(zhuǎn)半徑矢量;T1代表的是小輪的輸入扭矩;n為嚙合部位接觸離散點的數(shù)目。

    在安裝誤差下對ITCA進(jìn)行計算時,對回轉(zhuǎn)半徑矢量和間距向量進(jìn)行坐標(biāo)轉(zhuǎn)換,據(jù)此獲得安裝誤差情形下相應(yīng)的承載接觸分析ITCA表達(dá)式:

    (3)

    2 考慮安裝誤差的6σ穩(wěn)健設(shè)計

    2.1 6σ穩(wěn)健設(shè)計理論

    采取6σ穩(wěn)健優(yōu)化方法實施處理屬于統(tǒng)計學(xué)方法范疇,在初期設(shè)計時可優(yōu)先構(gòu)建安裝誤差概率模型,開展嚙合質(zhì)量分析[16],按照6σ方法判斷所有隨機(jī)變量造成的嚙合性能變化情況,據(jù)此明確滿足嚙合規(guī)律及可靠性的最優(yōu)解。采用6σ方法實施優(yōu)化設(shè)計,具體步驟如下:首先,在某個設(shè)計點處隨機(jī)設(shè)立干擾信號;其次,利用算法得到與均值點接近的樣本數(shù)據(jù),進(jìn)而實現(xiàn)對該方案穩(wěn)健性和可靠度的驗證。確定性優(yōu)化方法與6σ穩(wěn)健優(yōu)化方法的差異分析結(jié)果如圖1所示[17]。

    按照如下模型表達(dá)式展開穩(wěn)健優(yōu)化設(shè)計:

    (4)

    式中:y代表輸出響應(yīng);μxi和μy代表設(shè)計變量;σxi和σy代表輸出響應(yīng)方差;X代表隨機(jī)變量,X=[x1,…,xi,…,xn];xli和xui分別代表xi的下限和上限;n表示σ水平,當(dāng)n=6時,可獲得6σ穩(wěn)健模型,且其可行性達(dá)到99.99%。通過與確定性方法的對比可以發(fā)現(xiàn),6σ穩(wěn)健方法能夠在遠(yuǎn)離約束邊界的情況下獲得可靠性的優(yōu)化解。目標(biāo)函數(shù)f(x)構(gòu)建后,在隨機(jī)變量變化幅度是±Δx1時,目標(biāo)函數(shù)則會出現(xiàn)±Δf1的大幅變化,處在穩(wěn)健設(shè)計點處;在隨機(jī)變量變化是±Δx2時,目標(biāo)函數(shù)則會出現(xiàn)±Δf2的小幅變化,有效限制穩(wěn)定性解失效率且縮小波動范圍,結(jié)果如圖1所示。

    2.2 基于ITCA優(yōu)化設(shè)計數(shù)學(xué)模型

    對包含安裝誤差的ITCA,并且對齒面印痕中心當(dāng)量IE(x′+y′)進(jìn)行優(yōu)化,再利用齒面印痕特征當(dāng)量以明確相應(yīng)的約束表達(dá)式,得到如下所示的6σ穩(wěn)健優(yōu)化模型:

    (5)

    (6)

    (7)

    ▲圖1 穩(wěn)健性優(yōu)化模型

    表1 安裝誤差邊界設(shè)置

    表2 接觸邊界設(shè)置

    根據(jù)公式(5)和(6)可知,通過6σ穩(wěn)健優(yōu)化獲得的目標(biāo)函數(shù),處在印痕中心部位的當(dāng)量值滿足平均性能目標(biāo),使得均值達(dá)到最低水平。在安裝誤差出現(xiàn)變化的狀況下,可得到符合動性能目標(biāo)的輸出響應(yīng)結(jié)果,此時的標(biāo)準(zhǔn)差達(dá)到最小值。

    在利用6σ穩(wěn)健模型分析的過程中,可保證方案符合適用性需求,同時在錐齒輪傳動期間得到固定不變的安裝誤差。6σ穩(wěn)健優(yōu)化的詳細(xì)步驟如圖2所示。

    3 算例

    本文選取某航空錐齒輪傳動過程進(jìn)行6σ優(yōu)化處理,輪坯的基本參數(shù)如表3所示、初始二階接觸參數(shù)如表4所示。安裝誤差體現(xiàn)出隨機(jī)正態(tài)分布的特征,將標(biāo)準(zhǔn)差值當(dāng)作極限值;二階接觸參數(shù)均體現(xiàn)出分布均勻的狀態(tài),結(jié)果如表1和2所示。首先,利用敏感度系數(shù)對確定性實施優(yōu)化;其次,采取六西格瑪設(shè)計分析方式,針對多目標(biāo)優(yōu)化的線性加權(quán)均值進(jìn)行計算。

    表3 輪坯基本參數(shù)

    表4 初始接觸參數(shù)

    ▲圖2 考慮安裝誤差的6σ穩(wěn)健優(yōu)化流程圖

    采用6σ方法進(jìn)行分析,通過優(yōu)化正態(tài)隨機(jī)安裝誤差而獲得二階接觸參數(shù),利用MonteCarlo抽樣方法進(jìn)行隨機(jī)抽樣100次,再針對齒面印痕(包含安裝誤差)的進(jìn)行ITCA計算。每個參數(shù)的計算結(jié)果如表5和6所示。

    表5 印痕特征響應(yīng)結(jié)果

    表6 傳動誤差響應(yīng)結(jié)果

    通過對各方案的響應(yīng)數(shù)據(jù)分析可以看出,并未通過優(yōu)化的初始參數(shù)深受安裝誤差造成的影響,印痕中心波動較大,此時產(chǎn)生的傳動誤差為2.43σ,且并未實現(xiàn)穩(wěn)健約束的目的,存在失效情況。利用確定性優(yōu)化方法,提高了安裝誤差的穩(wěn)定性,且可靠度在99.9%以上,這時印痕中心會出現(xiàn)大幅波動,所以沒有產(chǎn)生優(yōu)化邊界,存在相應(yīng)的缺陷;6σ優(yōu)化方法有利于印痕特征產(chǎn)生更加穩(wěn)定的安裝誤差,并且其可靠度在99.995%以上,波動范圍均沒有超出優(yōu)化邊界,同時使得印痕中心不會再出現(xiàn)較大幅度的波動,得到更強(qiáng)穩(wěn)定性的齒輪系統(tǒng)。

    為了對每個方案的控制性能進(jìn)行對比,基于傳動誤差變化曲線和ELTCA分析印痕,通過對圖3的分析可知,各二階接觸參數(shù)相應(yīng)的印痕特點也有著明顯的不同,使得各種安裝誤差下的傳動誤差得到明顯優(yōu)化。與確定性優(yōu)化方法相比,6σ優(yōu)化方法可使傳動誤差波動降低30%,因此可知6σ穩(wěn)健設(shè)計的可行性更強(qiáng)。

    ▲圖3 齒輪傳動特性對比

    4 結(jié)論

    (1) 未優(yōu)化參數(shù)安裝誤差印痕中心波動較大;利用確定性優(yōu)化方法,提高了安裝誤差的穩(wěn)定性,可靠度在99.9%以上,波動范圍均沒有超出優(yōu)化邊界,得到更強(qiáng)穩(wěn)定性的齒輪系統(tǒng)。

    (2) 各二階接觸參數(shù)相應(yīng)的印痕特點也有明顯不同,使得各種安裝誤差下傳動誤差得到明顯優(yōu)化。與確定性優(yōu)化方法相比,6σ優(yōu)化方法可使傳動誤差波動降低30%,因此可知6σ穩(wěn)健設(shè)計的可行性更強(qiáng)。

    猜你喜歡
    印痕錐齒輪齒面
    陳若鵬作品
    大眾文藝(2022年13期)2022-07-27 11:14:30
    基于NURBS理論的漸開線齒輪齒面修復(fù)
    20CrMnTiH鋼主動錐齒輪斷裂原因分析與對策
    山東冶金(2018年5期)2018-11-22 05:12:22
    作品(八)
    雙刀盤直齒錐齒輪銑齒機(jī)
    蝸牛的印痕
    基于BP神經(jīng)網(wǎng)絡(luò)的面齒輪齒面粗糙度研究
    安裝距可調(diào)的錐齒輪副傳動誤差測量
    高速動車組弧齒錐齒輪齒面疲勞點蝕失效分析
    17CrNiMo6齒輪軸齒面剝落原因分析
    大型鑄鍛件(2015年1期)2016-01-12 06:33:01
    大荔县| 昌宁县| 南部县| 兴仁县| 永泰县| 榆社县| 玛沁县| 邛崃市| 白城市| 隆回县| 南开区| 梅河口市| 汝城县| 石渠县| 外汇| 施甸县| 浪卡子县| 通渭县| 汝阳县| 商都县| 桂林市| 珠海市| 伊金霍洛旗| 石泉县| 攀枝花市| 惠州市| 西乌珠穆沁旗| 临泽县| 铜山县| 南漳县| 千阳县| 蚌埠市| 天全县| 平潭县| 博爱县| 新化县| 铁岭市| 南和县| 青海省| 麻栗坡县| 宁夏|