趙靖英 胡 勁 張雪輝 張文煜
基于鋰電池模型和分?jǐn)?shù)階理論的SOC-SOH聯(lián)合估計(jì)
趙靖英1胡 勁1張雪輝1張文煜2
(1. 省部共建電工裝備可靠性與智能化國家重點(diǎn)實(shí)驗(yàn)室(河北工業(yè)大學(xué)) 天津 300130 2. 國網(wǎng)冀北張家口風(fēng)光儲輸新能源有限公司 張家口 075000)
基于鋰電池荷電狀態(tài)(SOC)和健康狀態(tài)(SOH)的耦合關(guān)系,設(shè)計(jì)了SOC-SOH聯(lián)合估計(jì)系統(tǒng)。首先,構(gòu)建鋰電池等效電路模型和自適應(yīng)擴(kuò)展卡爾曼濾波(AEKF)算法,進(jìn)行鋰電池SOC估計(jì);其次,建立鋰電池分?jǐn)?shù)階模型,設(shè)計(jì)模糊控制器辨識分?jǐn)?shù)階模型參數(shù),基于分?jǐn)?shù)階模型參數(shù)和電池充電工況確立健康因子,引入麻雀搜索算法(SSA)改進(jìn)反向傳播神經(jīng)網(wǎng)絡(luò)(BPNN),進(jìn)行鋰電池SOH估計(jì);然后,集成SOC與SOH估計(jì)方法,設(shè)計(jì)聯(lián)合估計(jì)系統(tǒng);最后,設(shè)計(jì)鋰電池老化實(shí)驗(yàn)、動態(tài)應(yīng)力測試(DST)和US06動態(tài)實(shí)驗(yàn)方案,對比分析不同工況下不同算法的SOC-SOH聯(lián)合估計(jì)效果。結(jié)果表明,基于提出的SOC-SOH聯(lián)合估計(jì)方法,估計(jì)誤差小于1%,具有良好的估計(jì)特性。
鋰電池 分?jǐn)?shù)階模型 健康因子 荷電狀態(tài) 健康狀態(tài)
對于電池管理系統(tǒng)(Battery Management System, BMS),鋰電池荷電狀態(tài)(State of Charge, SOC)和健康狀態(tài)(State of Health, SOH)是體現(xiàn)系統(tǒng)運(yùn)行特性的關(guān)鍵狀態(tài)變量[1]。SOC定義為電池當(dāng)前電荷量與最大容量之比[2],反映了電池當(dāng)前電荷量的存儲狀態(tài);SOH通常由當(dāng)前最大容量或內(nèi)阻來定義[3],反映電池全生命周期尺度下的老化狀態(tài)。
對鋰電池SOC的準(zhǔn)確估計(jì),有助于提高電池能量利用率,防止過充電和過放電。工程實(shí)際中普遍采用安時(shí)積分法進(jìn)行鋰電池SOC估計(jì),但此方法無法克服累計(jì)誤差[4]?;诳柭鼮V波(Kalman Filter, KF)算法的SOC估計(jì)方法也得到普遍關(guān)注[5]。文獻(xiàn)[6-7]利用兩個(gè)擴(kuò)展卡爾曼濾波器(Extended Kalman Filter, EKF)同步估計(jì)電池模型參數(shù)和SOC,利用新息和殘差優(yōu)化噪聲協(xié)方差,提高了動態(tài)工況下SOC估計(jì)的精度。文獻(xiàn)[8]利用模糊控制器調(diào)控噪聲協(xié)方差,研究自適應(yīng)擴(kuò)展卡爾曼濾波(Adaptive Extended Kalman Filter, AEKF)算法,實(shí)現(xiàn)動態(tài)工況下SOC估計(jì)的快速收斂。文獻(xiàn)[9]利用Huber-M方法改進(jìn)KF算法,并將門控循環(huán)單元神經(jīng)網(wǎng)絡(luò)的輸出量作為觀測值,提高了鋰電池SOC估計(jì)的精度和收斂速度。文獻(xiàn)[10]考慮溫度影響,提出改進(jìn)的鋰電池雙極化模型,實(shí)現(xiàn)了添加溫度變量的SOC精確估計(jì)。
鋰電池SOH的精確估計(jì)有利于系統(tǒng)及時(shí)做出預(yù)警,保證長期安全運(yùn)行。國內(nèi)外研究中,SOH估計(jì)方法分為直接測量法、基于數(shù)據(jù)驅(qū)動和基于模型的估計(jì)方法等。直接測量法是在實(shí)驗(yàn)條件下利用庫倫計(jì)數(shù)法直接測量鋰電池容量[11],或?qū)﹄姵厥┘咏涣骷?,通過頻譜特征分析計(jì)算SOH[12-13]。直接測量法精度較高,但脫離實(shí)驗(yàn)室條件難以進(jìn)行?;跀?shù)據(jù)驅(qū)動的SOH估計(jì)方法是利用電池老化的外部特征作為健康因子(Health Factor, HF),基于機(jī)器學(xué)習(xí)等手段,構(gòu)建HF與SOH的非線性映射關(guān)系,實(shí)現(xiàn)鋰電池SOH估計(jì)[14]。文獻(xiàn)[15]在電池充電曲線中提取8個(gè)健康因子,利用相關(guān)向量機(jī)建立SOH估計(jì)模型。文獻(xiàn)[16]利用容量增量分析法提取健康因子,根據(jù)高斯回歸過程建立SOH估計(jì)模型,實(shí)現(xiàn)SOH的精確估計(jì)。文獻(xiàn)[17]將電池電壓、電流、溫度的時(shí)間序列作為健康因子,通過卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建SOH估計(jì)模型?;谀P偷腟OH估計(jì)方法是通過建立經(jīng)驗(yàn)?zāi)P?、等效電路模型或電化學(xué)模型來擬合電池外特性,辨識模型參數(shù)后進(jìn)行鋰電池SOH估計(jì)。文獻(xiàn)[18]通過建立鋰電池準(zhǔn)二維電極模型,刻畫鋰電池內(nèi)部反應(yīng)機(jī)理,評估鋰電池SOH。文獻(xiàn)[19]將鋰電池SOH指數(shù)經(jīng)驗(yàn)?zāi)P团c高斯過程回歸結(jié)合,實(shí)現(xiàn)鋰電池SOH預(yù)測。文獻(xiàn)[20]離線分析鋰電池交流阻抗譜,計(jì)算特征阻抗進(jìn)行鋰電池SOH估計(jì)。文獻(xiàn)[21]利用無跡卡爾曼濾波算法估計(jì)鋰電池二階RC模型的歐姆內(nèi)阻,基于歐姆內(nèi)阻進(jìn)一步估計(jì)鋰電池SOH。
鋰電池SOH與SOC之間存在耦合關(guān)系,在采用容量定義SOH時(shí),隨著SOH降低,鋰電池最大容量發(fā)生改變,若不對容量參數(shù)進(jìn)行修正,將導(dǎo)致SOC估計(jì)結(jié)果產(chǎn)生偏差。因此有學(xué)者提出SOC-SOH聯(lián)合估計(jì)。文獻(xiàn)[22]提出利用循環(huán)神經(jīng)網(wǎng)絡(luò)并行工作的策略,實(shí)現(xiàn)鋰電池SOC和SOH同步估計(jì)。文獻(xiàn)[23]利用KF算法,在估計(jì)鋰電池SOC的同時(shí),通過最小二乘法進(jìn)行容量觀測,實(shí)現(xiàn)鋰電池SOC和SOH的聯(lián)合估計(jì)。文獻(xiàn)[24]在門控循環(huán)單元循環(huán)神經(jīng)網(wǎng)絡(luò)估計(jì)鋰電池SOC的基礎(chǔ)上,結(jié)合卷積神經(jīng)網(wǎng)絡(luò)估計(jì)鋰電池SOH,建立SOC-SOH聯(lián)合估計(jì)系統(tǒng)。
基于鋰電池等效電路模型和KF算法估計(jì)鋰電池SOC已取得了較好應(yīng)用,但參數(shù)過多與估計(jì)精度低的問題限制了等效電路模型在SOH估計(jì)方法研究領(lǐng)域的應(yīng)用,SOC-SOH聯(lián)合估計(jì)的時(shí)效性有待進(jìn)一步提升。本文首先利用鋰電池二階RC模型結(jié)合AEKF算法實(shí)現(xiàn)鋰電池SOC估計(jì);其次基于分?jǐn)?shù)階微積分理論建立鋰電池分?jǐn)?shù)階模型,根據(jù)分?jǐn)?shù)階模型參數(shù)和電池充電容量與時(shí)間的關(guān)系確立健康因子,引入麻雀搜索算法(Sparrow Search Algorithm, SSA)優(yōu)化反向傳播神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network, BPNN),基于SSA-BPNN進(jìn)行鋰電池SOH估計(jì);然后修正電池容量,提出SOC-SOH聯(lián)合估計(jì)方法;最后設(shè)計(jì)鋰電池老化和動態(tài)實(shí)驗(yàn)方案,驗(yàn)證鋰電池SOC-SOH聯(lián)合估計(jì)方法的有效性。
鋰電池SOC為短期變量,卡爾曼濾波算法中需利用狀態(tài)方程矩陣相乘和求逆運(yùn)算,迭代獲取SOC估計(jì)值。鋰電池二階RC等效電路模型[6]如圖1所示,輸出時(shí)域表達(dá)式為二階指數(shù)形式,狀態(tài)方程簡單,可降低計(jì)算量,適用于SOC的高頻次短時(shí)計(jì)算,同時(shí)引入鋰電池端電壓實(shí)測值對模型輸出值進(jìn)行修正,滿足SOC估計(jì)精度需求。
圖1 鋰電池等效電路模型
根據(jù)圖1可構(gòu)建系統(tǒng)狀態(tài)方程為
式中,、分別為電池端電壓、電流;oc為開路電壓;L和S分別為電化學(xué)極化內(nèi)阻和濃差極化內(nèi)阻;S和L分別為S和L端電壓;s和l為時(shí)間常數(shù);c為電池最大容量;Δ為采樣間隔;為離散時(shí)間。
EKF作為KF算法之一,常被用于非線性系統(tǒng)狀態(tài)估計(jì)[4]?;贓KF算法進(jìn)行鋰電池SOC估計(jì)時(shí),噪聲協(xié)方差一般設(shè)置為固定值。但考慮復(fù)雜工況條件下,噪聲協(xié)方差會發(fā)生動態(tài)變化,需設(shè)計(jì)噪聲協(xié)方差自適應(yīng)策略,利用電池端電壓實(shí)測值和模型預(yù)測值計(jì)算系統(tǒng)過程誤差,根據(jù)卡爾曼增益,獲取動態(tài)噪聲協(xié)方差。因此,構(gòu)建AEKF算法估計(jì)鋰電池SOC,具體如下:
將式(1)和式(2)進(jìn)行變換得到
式中,、、、分別為系統(tǒng)狀態(tài)轉(zhuǎn)移矩陣、輸入矩陣、輸出矩陣和前饋矩陣;和分別為系統(tǒng)狀態(tài)向量和輸出值;k為系統(tǒng)輸入;、分別為系統(tǒng)過程噪聲及其協(xié)方差矩陣;、分別為系統(tǒng)測量噪聲及其協(xié)方差矩陣;(·)為正態(tài)分布。AEKF遞推過程如下。
1)時(shí)間更新
式中,為時(shí)刻的系統(tǒng)誤差協(xié)方差矩陣;下標(biāo)“+1|”表示基于時(shí)刻系統(tǒng)狀態(tài)對+1時(shí)刻系統(tǒng)狀態(tài)的遞推結(jié)果。
2)測量更新
式中,mea為電池端電壓測量值;+1為遞推的卡爾曼增益;e為單位矩陣;H為一階偏導(dǎo)向量。
3)進(jìn)行誤差協(xié)方差自適應(yīng)計(jì)算
式中,S+1為+1時(shí)刻的累計(jì)誤差。
定義鋰電池SOH為當(dāng)前最大容量c與額定容量rated之比,即
鋰電池RC模型的精度與RC環(huán)節(jié)的數(shù)量成正比[25],提升精度的同時(shí)會導(dǎo)致模型參數(shù)量過多、參數(shù)物理意義模糊等問題。文獻(xiàn)[26]指出鋰電池極化的分?jǐn)?shù)階特征。分?jǐn)?shù)階模型時(shí)域表達(dá)式具有無窮級數(shù)性質(zhì),雖然計(jì)算量大于整數(shù)階模型,但應(yīng)用于SOH估計(jì)低頻計(jì)算,能夠以更少參數(shù)和更高精度準(zhǔn)確地描述鋰電池極化與SOH的相關(guān)性,可解決整數(shù)階模型精度和參數(shù)過多之間的矛盾。因此,提出利用分?jǐn)?shù)階微積分理論優(yōu)化RC模型。
將二階RC模型擴(kuò)展至階,則階等效電路模型如圖2所示。
圖2 n階等效電路模型
恒流脈沖充、放電情況下,個(gè)RC環(huán)節(jié)可視為線性定常系統(tǒng),轉(zhuǎn)換至復(fù)頻域可得到傳遞函數(shù)為
式中,rc為RC串聯(lián)模塊端電壓;b為傳遞函數(shù)化簡后的分母項(xiàng)系數(shù)。
根據(jù)Oustaloup濾波器[27]原理,高階整數(shù)階傳遞函數(shù)可等效為分?jǐn)?shù)階傳遞函數(shù)。Oustaloup濾波器數(shù)學(xué)模型為
式中,和均為加權(quán)參數(shù);為分?jǐn)?shù)階算子階次,可取(0, 1)內(nèi)的有理數(shù),本文取0.4;H和L分別為頻段上、下限,本文選擇的頻段為10-8~108rad/s;模型階次即為濾波器階次。
將式(15)所示的整數(shù)階傳遞函數(shù)等效為式(18)所示的分?jǐn)?shù)階傳遞函數(shù),即可得到一個(gè)高精度、低參數(shù)維數(shù)的鋰電池分?jǐn)?shù)階模型。
式中,RC為分?jǐn)?shù)階傳遞函數(shù)模塊端電壓;和為分?jǐn)?shù)階傳遞函數(shù)分母項(xiàng)系數(shù)。
鋰電池SOH難以直接測量,需提取與SOH相關(guān)性較強(qiáng)的健康因子,間接地估計(jì)SOH。充電電流與時(shí)間積分是反映鋰電池容量信息的直接方法,因此充電時(shí)間可作為估計(jì)SOH的健康因子,但實(shí)際應(yīng)用中,人為因素導(dǎo)致鋰電池初始充電電量不固定,完整充電時(shí)間難以測量。綜合考慮,選擇以鋰電池電量20%為起始計(jì)時(shí)點(diǎn),至恒流充電結(jié)束的時(shí)間c作為健康因子。
鋰電池分?jǐn)?shù)階模型式(18)反映了鋰電池極化特性,選擇其中的、參數(shù)作為健康因子,和的采樣窗口設(shè)置為在鋰電池滿電狀態(tài)下恒流放電0~s。
為了量化c、、三個(gè)健康因子與SOH的相關(guān)程度,采用Spearman公式計(jì)算相關(guān)系數(shù),即
針對鋰電池分?jǐn)?shù)階模型參數(shù)、,提出一種在恒流脈沖激勵下,基于模糊控制器的時(shí)域辨識方法。
引入分?jǐn)?shù)階微積分定義式得到
分?jǐn)?shù)階拉氏反變換公式為
其中,Gamma函數(shù)定義為
當(dāng)輸入為階躍響應(yīng)時(shí),利用式(20)~式(24)對式(18)進(jìn)行拉式反變換,將第一個(gè)采樣點(diǎn)記為0時(shí)刻,則、反映了RC的時(shí)域變化率,可得到分?jǐn)?shù)階模塊端電壓時(shí)域表達(dá)式為
在采樣窗口內(nèi)建立端電壓擬合關(guān)系式為
采樣窗口內(nèi)的電壓擬合誤差表示為
設(shè)計(jì)模糊控制器辨識參數(shù)a、c,其原理如圖3所示,主要由六部分構(gòu)成:①計(jì)算控制器的輸入ΔU;②參數(shù)模糊化,包括論域和隸屬函數(shù);③根據(jù)經(jīng)驗(yàn)制定的知識庫;④模糊推理算法;⑤反模糊化,將模糊輸出量轉(zhuǎn)化為實(shí)際控制量a、c;⑥擬合誤差判定。
以采樣窗口內(nèi)的分?jǐn)?shù)階模型輸出和實(shí)測電壓做差的Δ作為輸入量,以參數(shù)、作為輸出量。Δ的論域劃分為五個(gè)等級:N+表示較大負(fù)值;N表示負(fù)值;ZS表示??;P表示正值;P+表示較大正值。采樣窗口時(shí)長論域分為兩個(gè)等級:A表示調(diào)整參數(shù);C表示調(diào)整參數(shù)。、迭代步長論域分為五個(gè)等級:BN表示大步長遞減;MN表示中步長遞減;Z表示小步長隨機(jī)增減;MP表示中步長遞增;BP表示大步長遞增。輸入輸出隸屬函數(shù)如圖4所示。
模糊控制器辨識參數(shù)原理為:
圖4 輸入輸出隸屬函數(shù)
3)重心法去模糊化,當(dāng)<時(shí),輸出。不大于端電壓測量精度的量級。
BPNN的權(quán)重初值具有隨機(jī)性,訓(xùn)練過程中易陷入局部最優(yōu)解??衫肧SA[28]優(yōu)化BPNN權(quán)重初值,得到權(quán)重全局最優(yōu)解;再根據(jù)SSA-BPNN模型建立健康因子與SOH的非線性映射關(guān)系。
構(gòu)建如圖5所示的BPNN全連接層神經(jīng)網(wǎng)絡(luò),輸入層節(jié)點(diǎn)個(gè)數(shù)為3,輸出層節(jié)點(diǎn)個(gè)數(shù)為1;隱含層數(shù)量為2,隱含層節(jié)點(diǎn)個(gè)數(shù)分別為5和3。設(shè)為BPNN各層之間連接權(quán)重構(gòu)成的麻雀種群矩陣,矩陣維數(shù)為×,表示個(gè)麻雀個(gè)體,每個(gè)個(gè)體包含維BPNN初始參數(shù)。
圖5 反向傳播神經(jīng)網(wǎng)絡(luò)
隨機(jī)初始化麻雀種群矩陣,利用輸出誤差構(gòu)建適應(yīng)度函數(shù)為
式中,input和output分別為BPNN的輸入和輸出的目標(biāo)值。
SSA-BPNN權(quán)重優(yōu)化流程如圖6所示,當(dāng)達(dá)到種群最大進(jìn)化次數(shù)時(shí),對比選擇輸出誤差最低的麻雀種群,獲取最優(yōu)權(quán)重初值。
圖6 SSA-BPNN權(quán)重優(yōu)化流程
鋰電池SOC與SOH存在耦合關(guān)系,隨著電池老化,SOH降低,c逐漸減小,導(dǎo)致放電倍率實(shí)際值偏高,影響SOC估計(jì)精度。準(zhǔn)確地估計(jì)鋰電池SOH,可保證鋰電池生命周期內(nèi)的SOC估計(jì)精度;同時(shí),準(zhǔn)確地估計(jì)SOC能夠確保提取有效的健康因子,提升鋰電池SOH估計(jì)精度。
SOC-SOH聯(lián)合估計(jì)系統(tǒng)框架如圖7所示,首先進(jìn)行SSA-BPNN的離線訓(xùn)練;傳感器采集電池電壓、電流數(shù)據(jù)后,辨識二階RC模型參數(shù);再將模型參數(shù)導(dǎo)入式(1)和式(2),結(jié)合AEKF估計(jì)鋰電池SOC;采樣窗口內(nèi),模糊控制器辨識鋰電池分?jǐn)?shù)階模型參數(shù)、;SSA-BPNN算法根據(jù)輸入的參數(shù)c、、估計(jì)鋰電池SOH;最后利用SOH估計(jì)值計(jì)算c,修正AEKF中c的值。
圖7 鋰電池SOC-SOH聯(lián)合估計(jì)系統(tǒng)框架
為了驗(yàn)證算法的有效性,選取8枚18650三元鋰電池作為實(shí)驗(yàn)對象,編號為1~8,額定容量為1 800 mA·h,最高電壓為4.2 V,截止電壓為2.5 V。電池測試平臺(CT-4008T-5V12A)如圖8所示。在室溫下進(jìn)行鋰電池循環(huán)老化實(shí)驗(yàn),采樣間隔為1 s。
圖8 電池測試平臺
設(shè)計(jì)三套實(shí)驗(yàn)方案如下:
方案一:采用標(biāo)準(zhǔn)恒流-恒壓充電方式,再通過1.1倍率放電至截止電壓,當(dāng)鋰電池最大容量衰減至80%時(shí)停止實(shí)驗(yàn)。
方案二:使用0.25、0.5、1、1.25、2等多種電流倍率組合設(shè)計(jì)動態(tài)應(yīng)力測試(Dynamic Stress Test, DST),驗(yàn)證城市普通路況下SOC估計(jì)方法的有效性。DST輸入電流激勵如圖9所示。
方案三:根據(jù)美國環(huán)境保護(hù)局(Environmental Protection Agency, EPA)標(biāo)準(zhǔn),設(shè)計(jì)鋰電池US06實(shí)驗(yàn)方案,電流激勵如圖10所示,驗(yàn)證高速度、高加速度極端路況下SOC估計(jì)方法的有效性。
圖9 DST輸入電流激勵
圖10 US06實(shí)驗(yàn)電流激勵
針對鋰電池不同工況下的實(shí)驗(yàn)方案,利用遺忘因子遞推最小二乘法(Recursive Least Squares with Forgetting Factor, FFRLS)辨識二階RC模型參數(shù)[9],結(jié)果如圖11和圖12所示。在DST、US06工況下,基于參數(shù)辨識結(jié)果的模型輸出誤差小于39.4 mV。
圖11 DST實(shí)驗(yàn)參數(shù)辨識結(jié)果
圖12 US06實(shí)驗(yàn)參數(shù)辨識結(jié)果
在兩種工況下,分別利用AEKF與EKF進(jìn)行鋰電池SOC估計(jì),結(jié)果如圖13和圖14所示。各算法估計(jì)SOC的最大誤差(Maximum Error, ME)、平均絕對誤差(Mean Absolute Error, MAE)、方均根誤差(Root Mean Squared Error, RMSE)見表1和表2。DST和US06工況下,基于EKF算法估計(jì)SOC時(shí)的ME均超過3%,而基于AEKF算法估計(jì)SOC時(shí)的ME均保持在1%以內(nèi),表明復(fù)雜工況下AEKF算法具有較強(qiáng)的魯棒性。其中,US06工況下,基于EKF算法估計(jì)SOC時(shí)的MAE和RMSE分別為1.35%和1.96%,而基于AEKF算法估計(jì)SOC時(shí)的MAE和RMSE僅為0.32%和0.38%,表明AEKF算法具有較高的SOC估計(jì)精度。
圖13 DST工況下SOC估計(jì)結(jié)果對比
圖14 US06工況下SOC估計(jì)結(jié)果對比
表1 DST工況下SOC估計(jì)誤差
Tab.1 The errors of SOC estimation under DST
表2 US06工況下SOC估計(jì)誤差
Tab.2 The errors of SOC estimation under US06
提取健康因子c、、,并驗(yàn)證其與SOH的相關(guān)性。隨著鋰電池逐漸老化,充電電壓變化如圖15所示。在鋰電池端電壓達(dá)到4.2 V之前采用恒流充電方式;當(dāng)電池端電壓達(dá)到4.2 V后,轉(zhuǎn)換為恒壓充電方式。圖15中,當(dāng)鋰電池端電壓處于區(qū)間[3.5 V, 3.8 V]時(shí),實(shí)際應(yīng)用中,該區(qū)間內(nèi)鋰電池電量較低,充電操作較為頻繁,且充電初始電量具有隨機(jī)性。為了確定c的初始計(jì)時(shí)點(diǎn),以充電階段SOC達(dá)到20%的時(shí)刻作為初始時(shí)刻,開始c的計(jì)時(shí)。根據(jù)式(19)計(jì)算得到健康因子c與SOH的Spearman相關(guān)系數(shù)達(dá)到0.96以上,表明兩者具有較強(qiáng)相關(guān)性。
圖15 電池老化過程充電電壓
隨著鋰電池逐漸老化,恒流放電電壓變化如圖16所示。隨著循環(huán)次數(shù)遞增,鋰電池外特性發(fā)生改變,在[0 s, 100 s]內(nèi)端電壓曲線的斜率逐漸減小,[100 s, 300 s]內(nèi)斜率絕對值增大,在2 500 s后迅速達(dá)到截止電壓。將、采樣窗口設(shè)置為[0 s, 300 s],可以統(tǒng)一采樣窗口上限,縮短采樣時(shí)間,符合實(shí)際應(yīng)用需求。
圖16 電池老化過程放電電壓
在采樣窗口內(nèi)獲取鋰電池分?jǐn)?shù)階模型參數(shù)、,初值選取[30, 100]和[5, 10]內(nèi)的有理數(shù)。對比恒流脈沖條件下的二階RC模型輸出精度與分?jǐn)?shù)階模型輸出精度,結(jié)果如圖17所示,各項(xiàng)誤差見表3。二階RC模型在區(qū)間[0 s, 50 s]的電壓輸出值與實(shí)際值最大誤差為27 mV,分?jǐn)?shù)階模型的最大誤差僅為0.15 mV,精度遠(yuǎn)高于二階RC模型,能夠充分體現(xiàn)鋰電池的極化特性。
圖17 鋰電池模型精度對比
表3 模型擬合誤差
根據(jù)式(19)計(jì)算得到、與SOH的Spearman相關(guān)系數(shù)均達(dá)到0.95以上,可見、與SOH均具有較強(qiáng)相關(guān)性。
將8枚鋰電池分為兩組:1~6號電池作為訓(xùn)練集,用于SSA-BPNN離線訓(xùn)練;7、8號電池作為驗(yàn)證集。訓(xùn)練集中,c根據(jù)SOC實(shí)際值獲得:利用實(shí)驗(yàn)平臺測量電池充電電量,得到SOC實(shí)際值,當(dāng)鋰電池SOC實(shí)際值大于或等于20%時(shí)開始c的計(jì)時(shí)。
以SSA-BPNN訓(xùn)練過程的適應(yīng)度表示訓(xùn)練誤差,種群適應(yīng)度曲線如圖18所示,可見種群進(jìn)化初期適應(yīng)度大于1.5%;隨著種群變化,訓(xùn)練效果逐漸增強(qiáng),種群數(shù)量為26時(shí)達(dá)到最佳適應(yīng)度。
圖18 種群適應(yīng)度曲線
非實(shí)驗(yàn)條件下,驗(yàn)證集的c只能根據(jù)SOC估計(jì)值得到,即基于充電階段SOC估計(jì)值達(dá)到20%時(shí)來獲取c。恒流恒壓(Constant Current Constant Voltage, CCCV)充電工況下的SOC估計(jì)結(jié)果對比如圖19所示,誤差見表4。由于AEKF算法和EKF算法的SOC估計(jì)誤差最大值分別為0.20%和2.23%,不同SOC估計(jì)精度會影響c初始測量點(diǎn)定位精度,進(jìn)而影響c測量精度,但總體誤差不大。
圖19 CCCV工況下的SOC估計(jì)結(jié)果對比
表4 CCCV工況下SOC估計(jì)誤差
Tab.4 The errors of SOC estimation under CCVC
對比基于AEKF和EKF獲取c時(shí)的SOH估計(jì)精度,結(jié)果如圖20和圖21所示。圖中,ΔSOH表示SOH估計(jì)值與真實(shí)值的相對誤差;驗(yàn)證集1表示基于AEKF獲取c時(shí)的SOH估計(jì)結(jié)果;驗(yàn)證集2表示基于EKF獲取c時(shí)的SOH估計(jì)結(jié)果。由圖20和圖21可知,驗(yàn)證集1最大誤差小于1%,驗(yàn)證集2最大誤差超過2%。結(jié)果表明,準(zhǔn)確估計(jì)SOC能夠提高SOH估計(jì)精度。
圖20 7號電池SOH估計(jì)結(jié)果和誤差
圖21 8號電池SOH估計(jì)結(jié)果和誤差
電池老化后容量降低,引入SOC-SOH聯(lián)合估計(jì)方法,基于式(14)和SOH估計(jì)值修正c,利用AEKF算法重新估計(jì)SOC,降低SOC估計(jì)誤差。選取處于老化狀態(tài)的7、8號電池,其實(shí)際容量由1 800 mA·h分別衰退至1 485 mA·h和1 445 mA·h。此時(shí),根據(jù)SOH估計(jì)值,將7、8號電池的c分別修正為1 492.4 mA·h和1 456.2 mA·h?;赾修正前后的數(shù)值設(shè)置,利用AEKF算法進(jìn)行SOC估計(jì),不同工況下兩枚電池的SOC估計(jì)結(jié)果如圖22~圖25所示。未修正c時(shí),兩枚鋰電池SOC估計(jì)最大誤差超過22%;而聯(lián)合估計(jì)方法修正c后,兩枚鋰電池SOC估計(jì)最大誤差均小于1%,SOC估計(jì)精度并未隨電池老化程度加深而變差,時(shí)效性較強(qiáng)。
圖22 7號電池US06工況下的SOC估計(jì)結(jié)果
圖23 8號電池US06工況下的SOC估計(jì)結(jié)果
圖24 7號電池DST工況下的SOC估計(jì)結(jié)果
圖25 8號電池DST工況下的SOC估計(jì)結(jié)果
SOH估計(jì)誤差影響c的修正精度。以8號電池為例,SOH實(shí)測值為80.3%,實(shí)測容量為1 445.4 mA·h?;趫D21中的兩組SOH估計(jì)值來修正c,取兩組ΔSOH分別為0.7%和2.2%,可得到修正后的c分別為1 456.2 mA·h和1 477.3 mA·h。對比不同ΔSOH時(shí)基于AEKF算法的SOC估計(jì)精度,結(jié)果如圖26和圖27所示?;讦OH=0.7%時(shí),SOC估計(jì)誤差最大值小于1%;基于ΔSOH=2.2%時(shí),SOC估計(jì)誤差最大值小于1.2%。結(jié)果表明,基于AEKF算法,ΔSOH對SOC估計(jì)精度產(chǎn)生的影響較小,聯(lián)合算法具有較高的魯棒性。
圖26 SOH精度對US06工況下SOC估計(jì)結(jié)果的影響
圖27 SOH精度對DST工況下SOC估計(jì)結(jié)果的影響
本文結(jié)合二階RC模型和AEKF算法構(gòu)建了鋰電池SOC估計(jì)方法;利用分?jǐn)?shù)階微積分理論改進(jìn)了鋰電池二階RC模型,將鋰電池分?jǐn)?shù)階模型應(yīng)用于SOH估計(jì);構(gòu)建了基于SSA-BPNN的鋰電池SOH估計(jì)模型,設(shè)計(jì)了一種基于鋰電池模型和分?jǐn)?shù)階理論的SOC-SOH聯(lián)合估計(jì)系統(tǒng)。得到如下結(jié)論:
1)通過老化和動態(tài)實(shí)驗(yàn)設(shè)計(jì),在不同工況下論證了基于AEKF算法的SOC估計(jì)精度優(yōu)勢和魯棒性。
2)提取了健康因子,計(jì)算得到健康因子與SOH的相關(guān)系數(shù)均高于0.95,驗(yàn)證了健康因子與SOH的相關(guān)性。
3)對鋰電池SOC估計(jì)與SOH估計(jì)的相互影響關(guān)系進(jìn)行分析,結(jié)果表明,基于本文所提出的SOC-SOH聯(lián)合估計(jì)系統(tǒng),不同動態(tài)工況下,鋰電池SOC估計(jì)最大誤差均低于1%,不同實(shí)驗(yàn)電池的SOH估計(jì)最大誤差均低于1%,驗(yàn)證了SOC-SOH聯(lián)合估計(jì)方法的有效性,且具有良好的精度和時(shí)效性。
[1] 朱麗群, 張建秋. 一種聯(lián)合鋰電池健康和荷電狀態(tài)的新模型[J]. 中國電機(jī)工程學(xué)報(bào), 2018, 38(12): 3613-3620, 21.
Zhu Liqun, Zhang Jianqiu. A new model of jointed states of charge and health for lithium batteries[J]. Proceedings of the CSEE, 2018, 38(12): 3613-3620, 21.
[2] Li Chaoran, Xiao Fei, Fan Yaxiang. An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit[J]. Energies, 2019, 12(9): 1592.
[3] Dai Houde, Zhao Guangcai, Lin Mingqiang, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7706-7716.
[4] 劉芳, 馬杰, 蘇衛(wèi)星, 等. 基于自適應(yīng)回歸擴(kuò)展卡爾曼濾波的電動汽車動力電池全生命周期的荷電狀態(tài)估算方法[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(4): 698-707.
Liu Fang, Ma Jie, Su Weixing, et al. State of charge estimation method of electric vehicle power battery life cycle based on auto regression extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 698-707.
[5] Ramadan H S, Becherif M, Claude F. Extended Kalman filter for accurate state of charge estimation of lithium-based batteries: a comparative analysis[J]. International Journal of Hydrogen Energy, 2017, 42(48): 29033-29046.
[6] 郝文美, 張立偉, 彭博, 等. 動車組鈦酸鋰電池荷電狀態(tài)估計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(增刊1): 362-371.
Hao Wenmei, Zhang Liwei, Peng Bo, et al. State of charge estimation of lithium titanate battery for electric multiple units[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 362-371.
[7] 裴磊. 基于平衡電壓的電動汽車鋰離子電池狀態(tài)估計(jì)方法研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2016.
[8] 宮明輝, 烏江, 焦朝勇. 基于模糊自適應(yīng)擴(kuò)展卡爾曼濾波器的鋰電池SOC估算方法[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(18): 3972-3978.
Gong Minghui, Wu Jiang, Jiao Chaoyong. SOC estimation method of lithium battery based on fuzzy adaptive extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3972-3978.
[9] 李超然, 肖飛, 樊亞翔, 等. 基于門控循環(huán)單元神經(jīng)網(wǎng)絡(luò)和Huber-M估計(jì)魯棒卡爾曼濾波融合方法的鋰離子電池荷電狀態(tài)估算方法[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(9): 2051-2062.
Li Chaoran, Xiao Fei, Fan Yaxiang, et al. A hybrid approach to lithium-ion battery SOC estimation based on recurrent neural network with gated recurrent unit and Huber-M robust Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2051-2062.
[10] 龐輝, 郭龍, 武龍星, 等. 考慮環(huán)境溫度影響的鋰離子電池改進(jìn)雙極化模型及其荷電狀態(tài)估算[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(10): 2178-2189.
Pang Hui, Guo Long, Wu Longxing, et al. An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2178-2189.
[11] Love C T, Virji M B V, Rocheleau R E, et al. State-of-health monitoring of 18650 4S packs with a single-point impedance diagnostic[J]. Journal of Power Sources, 2014, 266: 512-519.
[12] 駱凡, 黃海宏, 王海欣. 基于電化學(xué)阻抗譜的退役動力電池荷電狀態(tài)和健康狀態(tài)快速預(yù)測[J]. 儀器儀表學(xué)報(bào), 2021, 42(9): 172-180.
Luo Fan, Huang Haihong, Wang Haixin. Rapid prediction of the state of charge and state of health of decommissioned power batteries based on electrochemical impedance spectroscopy[J]. Chinese Journal of Scientific Instrument, 2021, 42(9): 172-180.
[13] Galeotti M, Cinà L, Giammanco C, et al. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy[J]. Energy, 2015, 89: 678-686.
[14] Guo Peiyao, Cheng Ze, Yang Lei. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442-450.
[15] Tian Jinpeng, Xiong Rui, Shen Weixiang. State-of-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10363-10373.
[16] 楊勝杰, 羅冰洋, 王菁, 等. 基于容量增量曲線峰值區(qū)間特征參數(shù)的鋰離子電池健康狀態(tài)估算[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(11): 2277-2287.
Yang Shengjie, Luo Bingyang, Wang Jing, et al. State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2277-2287.
[17] 李超然, 肖飛, 樊亞翔, 等. 基于卷積神經(jīng)網(wǎng)絡(luò)的鋰離子電池SOH估算[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(19): 4106-4119.
Li Chaoran, Xiao Fei, Fan Yaxiang, et al. An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119.
[18] Han Xuebing, Ouyang Minggao, Lu Languang, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part II: Pseudo-two-dimensional model simplification and state of charge estimation[J]. Journal of Power Sources, 2015, 278: 814-825.
[19] 王萍, 弓清瑞, 張吉昂, 等. 一種基于數(shù)據(jù)驅(qū)動與經(jīng)驗(yàn)?zāi)P徒M合的鋰電池在線健康狀態(tài)預(yù)測方法[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(24): 5201-5212.
Wang Ping, Gong Qingrui, Zhang Jiang, et al. An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5201-5212.
[20] 董明, 范文杰, 劉王澤宇, 等. 基于特征頻率阻抗的鋰離子電池健康狀態(tài)評估[J]. 中國電機(jī)工程學(xué)報(bào), 2022, 42(24): 9094-9105.
Dong Ming, Fan Wenjie, Liu Wangzeyu, et al. Health assessment of lithium-ion batteries based on characteristic frequency impedance[J]. Proceedings of the CSEE, 2022, 42(24): 9094-9105.
[21] 顏湘武, 鄧浩然, 郭琪, 等. 基于自適應(yīng)無跡卡爾曼濾波的動力電池健康狀態(tài)檢測及梯次利用研究[J]. 電工技術(shù)學(xué)報(bào), 2019, 34(18): 3937-3948.
Yan Xiangwu, Deng Haoran, Guo Qi, et al. Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3937-3948.
[22] Chaoui H, Ibe-Ekeocha C C. State of charge and state of health estimation for lithium batteries using recurrent neural networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 8773-8783.
[23] Wei Zhongbao, Zhao Jiyun, Ji Dongxu, et al. A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model[J]. Applied Energy, 2017, 204: 1264-1274.
[24] 李超然, 肖飛, 樊亞翔, 等. 基于深度學(xué)習(xí)的鋰離子電池SOC和SOH聯(lián)合估算[J]. 中國電機(jī)工程學(xué)報(bào), 2021, 41(2): 681-692.
Li Chaoran, Xiao Fei, Fan Yaxiang, et al. Joint estimation of the state of charge and the state of health based on deep learning for lithium-ion batteries[J]. Proceedings of the CSEE, 2021, 41(2): 681-692.
[25] Gomez J, Nelson R, Kalu E E, et al. Equivalent circuit model parameters of a high-power Li-ion battery: thermal and state of charge effects[J]. Journal of Power Sources, 2011, 196(10): 4826-4831.
[26] Zou Changfu, Zhang Lei, Hu Xiaosong, et al. A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors[J]. Journal of Power Sources, 2018, 390: 286-296.
[27] 齊乃明, 秦昌茂, 王威. 分?jǐn)?shù)階系統(tǒng)的最優(yōu)Oustaloup數(shù)字實(shí)現(xiàn)算法[J]. 控制與決策, 2010, 25(10): 1598-1600.
Qi Naiming, Qin Changmao, Wang Wei. Optimal Oustaloup digital realization of fractional order systems[J]. Control and Decision, 2010, 25(10): 1598-1600.
[28] Xue Jiankai, Shen Bo. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
Joint Estimation of the SOC-SOH Based on Lithium Battery Model and Fractional Order Theory
Zhao Jingying1Hu Jin1Zhang Xuehui1Zhang Wenyu2
(1. State Key Laboratory for Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China 2. State Grid Hebei Zhangjiakou Scenery Storage and Transportation New Energy Co. Ltd Zhangjiakou 075000 China)
Traditional state of charge (SOC) estimation algorithm of lithium battery is often based on equivalent circuit model, which has low accuracy and too many parameters. And the application of equivalent circuit model in state of health (SOH) estimation is limited because of the disadvantages. In addition, the capacity attenuation of lithium battery is often ignored to result in poor timeliness of SOC estimation. There is a coupling relationship between SOC and SOH of lithium battery. SOC-SOH joint estimation is an effective means during life cycle, but joint estimation model is relatively complex and imperfect, which doesn’t support the estimation requirements. This paper presented a joint SOC-SOH estimation model with equivalent circuit model and fractional order theory. By adaptive extended Kalman filter (AEKF) algorithm and capacity parameter modification method, the accuracy and the timeliness of the state estimation were improved.
Firstly, based on the second order RC model of lithium battery, the state equation was established. Considering the time-varying characteristics of noise covariance, dynamic noise covariance parameter was obtained by calculating the cumulative error, and AEKF algorithm was proposed to estimate the SOC of lithium battery. Secondly, aiming at the of excessive parameters in integer order model, the RC series module was simplified by fractional calculus theory to acquire a fractional order model with high precision and few parameters. The parameters were identified by fuzzy controller. Based on the charging conditions and the polarization characteristics of lithium battery, the interval constant current charging time and the fractional-order model parameters were determined as health factors. Thirdly,by use of SSA to optimize BP neural network for the global optimal solution of the weight, nonlinear relationship between health factors and SOH was analyzed to design SOH estimation model. Finally,considering the capacity attenuation of lithium battery and the measurement accuracy of health factors, SOH estimation value was used to modify the capacity parameters and SOC estimation value was used to determine the initial sampling point of health factor to develop a SOC-SOH joint estimation model.
Aging tests, dynamic condition tests of US06 and DST of lithium battery are designed to verify the joint SOC-SOH estimation model. In dynamic tests of US06 and DST, the results show that maximum error of SOC estimation accuracy based on AEKF algorithm and EKF algorithm is less than 1% and more than 3% respectively, which verified the effectiveness of SOC estimation model with AEKF algorithm. In aging tests, the effectiveness of health factors was verified and the influence of accuracy between SOC and SOH estimates was analyzed. The results show that the correlation coefficient between interval constant current charging time and SOH is greater than 0.96, the correlation coefficient between fractional order model parameters and SOH is greater than 0.95, which expressed the strong correlation of the health factors. The maximum errors of SOH estimation based on health factors acquired by AEKF and EKF were less than 1% and more than 2%, respectively, which showed the SOH estimation improvement with health factors acquired by AEKF. By capacity parameter modification, the maximum error of SOC estimation could decrease at less than 1%, while the maximum error of SOC estimation is more than 22% without modification. Meanwhile, with different capacity modification accuracies, the maximum errors of SOC estimation could be ensured to be less than 1.5%, which reduced the estimation errors and improved the timelines with the joint SOC-SOH estimation model.
The following conclusions can be drawn from the analysis: (1) Compared with EKF, the actual dynamic noise covariance is considered in AEKF algorithm proposed. It is more appropriate to establish SOC model to effectively improve SOC estimation accuracy. (2) Fractional order model can better reflect the polarization characteristics of lithium battery. With the health factors extracted based on charging conditions and fractional order model parameters, SOH estimation model established can reduce the estimation error. (3) AEKF algorithm is used to adaptively monitor the charging and discharging state of lithium battery to acquire accurate health factors. SOH estimation value is used to modify capacity parameters instead of fixed capacity parameters because of actual capacity attenuation. The joint estimation model designed is more suitable for the actual change. It has stronger timeliness and robustness.
Lithium battery, fractional order model, health factor, state of charge, state of health
TM912
10.19595/j.cnki.1000-6753.tces.221092
國家自然科學(xué)基金項(xiàng)目(51077097)和天津市科技支撐計(jì)劃重點(diǎn)項(xiàng)目(10ZCKFGX02800)資助。
2022-06-10
2023-02-01
趙靖英 女,1974年生,教授,碩士生導(dǎo)師,研究方向?yàn)殡姽ぱb備可靠性理論及應(yīng)用。E-mail:zhao_team@163.com(通信作者)
胡 勁 男,1997年生,碩士研究生,研究方向?yàn)殡姽ぱb備可靠性理論及應(yīng)用。E-mail:Hjin_hebut@163.com
(編輯 李冰)