• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field

    2023-09-05 08:47:18YangpengWang王楊鵬RujianZhang章如健YanYang楊燕QinWu吳琴ZhifeiYu于志飛andBingChen陳冰
    Chinese Physics B 2023年7期
    關鍵詞:楊燕陳冰

    Yangpeng Wang(王楊鵬), Rujian Zhang(章如健), Yan Yang(楊燕),Qin Wu(吳琴), Zhifei Yu(于志飛), and Bing Chen(陳冰)

    Department of Physics,Hefei University of Technology,Hefei 230009,China

    Keywords: nitrogen-vacancy centers,polar angle,quantum sensing

    1.Introduction

    Nitrogen-vacancy (NV) center particularly in the negative charge state in diamond is a promising solid-state system for quantum information processing and quantum sensing,[1–7]which can be initialized and detected by optical pumping.[6,8,9]The electron spin of NV center has long coherence time under ambient conditions.[10]Its electron spin state information can be easily extracted by optically detected magnetic resonance(ODMR) spectra.[9]Its electron spin is sensitive to multiple physical quantities,which makes it possible to be a promising quantum sensor for multiple physical quantities with high sensitivity and spatial resolution,such as electric field,[11,12]magnetic field,[13–16]temperature,[17,18]and crystal strain.[19,20]Accurate and reliable measurement of NV orientation is a crucial step when one attempts to utilize the NV centers for solidstate quantum sensing.

    For a single crystal sample,the orientation of the NV axis has four possibilities with knowledge of the crystalline facet in diamond.[21]However, NV centers are randomly distributed in diamond, and their positions and orientations are difficult to identify in the laboratory frame.Therefore, it is necessary to develop a fast and effective method to identify NV orientation for further potential applications.A traditional method to identify NV orientation is to measure ODMR spectra with a series of three-dimensional magnetic fields parallel to theX–Yplane and along theZaxis.[22]Takashimaet al.[23]proposed an improved method that can reduce the measurement time by half.The improved method only needs to measure a single dataset of ODMR spectra by rotating the magnetic field inX–Yplane and a group ODMR spectra of magnetic field in a single direction out ofX–Yplane.These methods are still time-consuming due to measuring plentiful ODMR spectra.For the NV ensembles experiment,the coordinates(X,Y,Z)often consist ofX,Y,andZaxes that are often considered to be along[110],[ˉ110],and[001]in terms of diamond lattice vectors, respectively.[24]Therefore, the actual orientations of NV axis are still unclear in real space.It is essential to develop a fast and effective method to determine the orientation of the NV axis for quantum sensing based on NV ensembles and single spins in single crystal sample.

    In this work, we propose a fast and effective method to simultaneously identify the orientation of four different NV axes assisted with a direction-known magnetic field in the laboratory frame.We just need to measure the ODMR spectra of three different kinds of NV centers and then employ the Nelder–Mead algorithm to calculate the orientation information of NV axis in bulk diamond.Polar angleθand azimuthal angleφare used to describe the orientation of NV axis in the laboratory frame.A directionknown magnetic field with vector orientation (θB,φB) =(50.29?,78.75?) is used in the experiment.We finally calculate that the orientation information of four different NV axes is (θNV0,φNV0) = (2.03±0.20?,287.48±23.04?) , (θNV1,φNV1) = (110.81±0.48?,331.57±0.44?), (θNV2,φNV2) =(107.69±0.27?,91.30±0.80?)and(θNV3,φNV3)=(109.97±0.84?,210.54±0.42?), respectively.In our approach, owing to only measuring three different kinds of ODMR spectra,the measurement time can be greatly reduced.

    In the experiment,ODMR spectra of NV1,NV2,and NV3centers are used to realize the identification of NV orientations,and ODMR spectra of NV0center is employed to verify the experimental results.By comparing the theoretical and experimental results of NV0’s ODMR resonance line, there are deviations of 1.16 MHz and 1.01 MHz with errors of 1.71%and 1.48%,respectively,for left and right resonance peaks of NV0center in the results,which means that our method is effective and accurate.

    2.Results and discussion

    2.1.Basic properties

    The diamond lattice consists of covalently bond carbon atoms that are tetrahedrally bonded to each other through sp3hybrid bonds (distance 1.44 ?A) with bond angle of 109.47?.The NV center in diamond is a point defect and consists of a substitutional nitrogen atom and an adjacent vacancy at the diamond lattice as shown in Fig.1(a).In the diamond lattice,there are four kinds of NV centers with different tetrahedral orientations referring to the laboratory frame due to theC3νsymmetry.

    Fig.1.(a)Schematics of the NV center in diamond.NV0,NV1,NV2,NV3 represent tetrahedral orientations for four kinds of NV centers referring to the laboratory frame.(b)Energy-level scheme of the NV center in diamond.The ground state (3A2) and excited state (3E) of NV center are both spin triplets,whose zero-splittings are Dgs=2.87 GHz and Des=1.43 GHz,respectively.Due to the Zeeman effect, the resonance lines between ms =0 and ms=±1 in 3A2 (3E)are separated around 2.87(1.43)GHz in an applied magnetic field.(c) Schematics of the experimental setup with a home-built confocal microscopy.The Gaussian beam is focused on the diamond and the fluorescence photons are collected by oil-immersion microscope objective.MW: microwave, HWP: half wave plate, PBS: polarization beam splitter,APD:single photon avalanche diode.

    The electron spin energy levels of the NV center are illustrated in Fig.1(b).Here, 532 nm laser pulse is used to pump the NV center from the ground state3A2to the excited state3E.The NV center’s electron spin can decay from the excited state3E to the ground state3A2by radiative transitions directly or spin-selective nonradiative inter-system crossings(ISC), which can enable optical initialization and readout of the electronic spin state.The electron spin can be manipulated by a microwave field resonant with the transitions betweenms=0 andms=±1 in3A2.

    2.2.Experimental setup

    The experiment is performed based on a purpose-built confocal microscope system as shown in Fig.1(c), which is employed to address and focus the 532 nm laser beam to the individual NV center.The diamond sample used in the experiment is a type-IIa, single-crystal synthetic diamond(element six).We use an acousto-optic modulator(AOM)to modulate the laser beam and to produce the required laser sequences.The produced laser beam passes through the single mode optical fiber and converts to a near-Gaussian beam.The fluorescence of the NV center can be collected by an oil-immersion microscope objective with NA=1.40 and filtered by pin hole and long pass filter.Finally, the fluorescence photons are detected by a single photon avalanche diode(APD).

    2.3.Theoretical analysis

    Under external magnetic field conditions,the spin HamiltonianHcan be written as the sum of zero-field splitting term,electron spin Zeeman splitting term, and local strain term in the NV center.His expressed as[25]

    whereDgs~2.87 GHz is zero-field splitting parameter,S=(Sx,Sy,Sz) is the spin matrices of spin-1 systems,μBis the Bohr magneton,geis theg-factor of electron,Bis the external magnetic field andE ~0 is the strain splitting due to imperfect axial symmetry.Considering that magnetic fieldBhas transverseB⊥[B⊥=(Bx,By)]and axialBzcomponents,and the strain splitting is approximately equal to zero in single-crystal synthetic bulk diamond.The spin Hamiltonian can be written as[25]

    andms=0,ms=?1,ms=+1 are the eigenvalues.The spin transition frequencies ofms=0→ms=?1 andms=0→ms=+1 are defined asν1andν2.The transition frequencies are given to the third order in by[26]

    wherehis the Planck constant,andαis the angle between the magnetic field and the NV axis.

    In experiment,we measure the ODMR spectra and obtain the transition frequenciesν1andν2by fitting resonant peaks with the Lorentzian function.The angleαbetween the magnetic field and the NV axis can be obtained by solving Eqs.(3)and (4).However, it is not enough to identify the orientation of NV axis because the angleαonly tells us that the possible NV orientation is a cone around the magnetic field as depicted in Fig.2(c).

    Fig.2.(a) and (b) Orientation of the NV axis NVi = (θNVi, φNVi)(i=1,2,3,4) and the orientation of the magnetic field B =(θB, φB).The brown arrow indicates the direction of the magnetic field, and the green arrow indicates the direction of the NV axis.(c)The possible direction position of NV axis corresponding to single ODMR spectra.In static magnetic field,the orientation of NV axis is possibly located at a conical surface calculated by ODMR spectra.

    Here, we define the angle (θNVi,φNVi) (i= 1, 2, 3,4) as the orientation of the NV axis and (θB,φB) as the orientation of the magnetic field in the laboratory frame(spherical coordinates), as shown in Figs.2(a) and 2(b),where the laboratory frame is transformed from the Cartesian coordinate system formed by three-dimensional coils withX-coils corresponding toX-axis,Y-coils corresponding toY-axis, andZ-coils corresponding toZ-axis in real space.Therefore, the orientation of the NV axis can be transformed into the vector NVi= (xNVi,yNVi,zNVi) =(sinθNVicosφNVi,sinθNVisinφNVi,cosφNVi) (i= 1, 2, 3, 4)andB=(xB,yB,zB)=(sinθBcosφB,sinθBsinφB,cosφB)in these Cartesian coordinates.In diamond lattice, the relationship between the NV axial vector and the magnetic field vector can be given as follows:

    where NVi, NVj(i,j=0, 1, 2, 3 andi/=j),αk(k=1, 2,3) represent the angles between the NV axis (NV1,NV2, and NV3)and the magnetic fieldB,as shown in Fig.1(a)).Based on Eqs.(5) and (6), we are able to calculate the final values of the four NV orientations using the Nelder–Mead algorithm and obtain the angleα.

    The Nelder–Mead algorithm is one of the best known algorithms for multidimensional unconstrained optimization without derivatives.For then-dimensional minimization problem minf(x), with a simpler description, the method for searching the minimum value is described as follows:(i) Generate initial valuesxl(l= 2,3,...,n+1) next tox0we give.(ii) Find minimum pointxmin thef(xl).(iii)Takexmas the new initial value, and repeat steps (i) and(ii) until local minimum appears.The constraint equation is minf(x) ==1(NVk·B ?cos(αk))2+=1(NVk·NV0?cos(109.47?))2+=2(NVk·NV1?cos(109.47?))2+=3(NVk·NV2?cos(109.47?))2, whereαkis the the angles between the NV axis and the magnetic field as shown in Eqs.(5) and (6), and NVkis the results of each search.In the experiment, first the initial value with four NV axis’parameters is randomly given, considering the internal bond angle (109.47?) of diamond crystal.Because the search result of the Nelder–Mead algorithm is the local minimum,some initial values with large numerical differences are given to find the absolute minimum of the equation minf(x).Then angles of first initial value are rotated fort(t=30?,60?,90?,120?,150?,180?)around theY-axis to produce a series of new initial values by rotation matrix.[27]Later,when a series of initial values are applied, the local minimum can be searched by the Nelder–Mead algorithm.Finally,when the absolute minimum appears,the NVkis the final search result.

    2.4.Results

    In the experiment,four kinds of NV centers close to each other(several microns)are selected through the difference of ODMR spectra.In the confocal microscope system the positions of laser focus and oil-immersion microscope objective are fixed.Therefore,the different NV centers in diamond can be moved to the same laser focus by nano-piezoelectric stage in order to ensure that each NV center is under the same magnetic field.Then, we sweep the microwave (MW) frequency and obtain the ODMR spectra.Compared to the continuous ODMR scheme, the pulsed ODMR scheme with a resonant MWπ-pulse and a read-out laser pulse can reduce the power broadening of ODMR spectra and improve spectral resolution.At low MW power (π-pulse duration of~2600 ns), we can observe the hyperfine splitting in the ODMR spectra due to the hyperfine interaction between electronic spin and nitrogen nuclear spin.Four sets of pulsed ODMR spectra are measured in a[111]-oriented bulk diamond with the certain static magnetic field as shown in Fig.3.The transition frequencies of left peak (ms=0,mI=?1→ms=?1,mI=?1), middle peak(ms=0,mI=0→ms=?1,mI=0)and right peak(ms=0,mI=+1→ms=?1,mI=+1) in the ground state3A2are same.For convenience, the middle peaks (ν1andν2) are selected and correspond to the transition frequencies ofms=0,mI=0→ms=?1,mI=0 andms=0,mI=0→ms=+1,mI=0,which are shown in Table 1.

    Table 1.The transition frequencies for NV centers in different orientations.The angles α between the static magnetic field and the NV axis are extracted from the ODMR spectra of NV1 center,NV2 center,and NV3 center as shown in Fig.3.The last column is the final orientations of NVi (i=0,1,2,3)shown in Fig.4(b).

    According to the ODMR spectra shown in Fig.3,the angleαbetween the magnetic fieldBand the NV axis is calculated by Eqs.(3) and (4), and three different cones (NV1:light green, NV2: light yellow, NV3: nattier blue)around the magnetic field vector that are the possible orientations of NV1axis, NV2axis and NV3axis as shown in Fig.4(a).By using the Nelder–Mead algorithm for Eqs.(5) and (6), we can calculate the results NV0= (2.03±0.20?,287.48±23.04?)(red), NV1= (110.81±0.48?,331.57±0.44?) (green),NV2=(107.69±0.27?,91.30±0.80?) (yellow) and NV3=(109.97±0.84?,210.54±0.42?) (blue) shown in Fig.4(b)and Table 1.In order to verify the accuracy of the results,the theoretical transition frequencies of the fourth kind of NV center (NV0) are calculated as NV0L(ν1) = 2807.704 MHz and NV0R(ν2) = 2941.211 MHz by Eqs.(3) and (4).This formula±The experimental measured values ofν1andν2for NV0are equal to 2806.54±0.16 MHz and 2942.22±0.16 MHz as shown in Table 1.We find that there are deviations of 1.16 MHz and 1.01 MHz with errors of 1.71% and 1.48%, respectively, between the theoretical and experimental results for left and right resonance peaks of NV0center.The deviation may come from strain of lattice and temperature fluctuation during measurement process.

    Fig.3.ODMR spectra for NV centers in different orientations.In the static magnetic field,different NV centers have anisotropic Zeeman splitting and ODMR spectra.Because of hyperfine interaction with the electron spin and 14N nuclear spin, the transitions between ms =0 and ms =±1 both have three peaks,respectively.These solid broken line and curve(red,green,yellow,and nattier blue)represent the experimental data and the data of fitting using Lorentzian functions for NVi center(i=0,1,2,3).

    In Table 1, the azimuth (φ) error of NV0is relatively large.The polar angleθNV0of NV0axis is close to zero,which almost coincides with the direction of the north pole.Around the north pole,the azimuth angle is completely uncertain.The orientation error of four kinds of NV centers are less than 0.93?.

    Fig.4.(a) Possible orientation of the NV axis.The angles α between the magnetic field B and the NV1?3 axis are 116.64?(light green), 58.15?(light yellow), and 135.44?(nattier blue), respectively,showing that the possible NV axis is a cone around the magnetic field vector.(b) Four orientation of NV axis calculated with the Nelder–Mead algorithm.The calculated NV axis results are NV0 =(2.03±0.20?,287.48±23.04?)(red),NV1=(110.81±0.48?,331.57±0.44?)(green), NV2 =(107.69±0.27?,91.30±0.80?) (yellow) and NV3 =(109.97±0.84?,210.54±0.42?)(blue).

    3.Conclusions

    In summary, we propose and demonstrate an efficient method to simultaneously identify four types of NV axis information with a direction-known magnetic field in a bulk diamond.Our method only needs to measure a set of ODMR spectra and then extract the polar angle of each NV center and magnetic field.Combining with the polar angle information of different NV centers, we finally employ the Nelder–Mead algorithm to calculate the orientation information of NV axis.Our method is fast and effectively to determine the orientation of the NV axis for ensembles and single spins in single crystal samples.This method can be directly extended to the orientation determination of NV centers in a micro-diamond,and easily applied in quantum sensing of vector magnetic and electric fields in the future.

    Acknowledgements

    This work was supported by the National Key R&D Program of China (Grant No.2020YFA0309400), the National Natural Science Foundation of China (Grant No.12174081),and the Fundamental Research Funds for the Central Universities(Grant Nos.JZ2021HGTB0126 and PA2021KCPY0052).

    猜你喜歡
    楊燕陳冰
    The application of a helicon plasma source in reactive sputter deposition of tungsten nitride thin films
    2020理想之城
    新民周刊(2020年40期)2020-11-09 03:36:27
    Success
    未來英才(2017年19期)2017-10-25 05:50:43
    Discussion on the Application of Multi—media In English Teaching
    跟著總理去美洲
    新民周刊(2016年40期)2016-10-28 18:07:22
    奧運表情包
    新民周刊(2016年32期)2016-08-25 19:30:12
    金牌瞬間
    新民周刊(2016年32期)2016-08-25 19:29:22
    下藥“阻”妻散了家
    Remote positioning system based on GPS/GPRS*
    缺愛少年的荒唐報復
    中華家教(2013年9期)2013-04-29 00:44:03
    丰满迷人的少妇在线观看| 999久久久国产精品视频| av不卡在线播放| 国产激情欧美一区二区| 久久国产精品人妻蜜桃| 国产精品一区二区免费欧美| 欧美+亚洲+日韩+国产| av电影中文网址| 精品高清国产在线一区| 自拍欧美九色日韩亚洲蝌蚪91| 大香蕉久久成人网| 国产有黄有色有爽视频| 1024香蕉在线观看| 久久久国产欧美日韩av| 亚洲欧美色中文字幕在线| 麻豆乱淫一区二区| 777久久人妻少妇嫩草av网站| 国产免费男女视频| 欧美乱色亚洲激情| 免费在线观看视频国产中文字幕亚洲| 日日爽夜夜爽网站| 人人澡人人妻人| 中文字幕最新亚洲高清| 最近最新中文字幕大全电影3 | 亚洲九九香蕉| 大香蕉久久网| 女人久久www免费人成看片| 人妻 亚洲 视频| 天天影视国产精品| 在线观看一区二区三区激情| 国产亚洲一区二区精品| 国产精品久久久久成人av| 女性被躁到高潮视频| 久久国产精品影院| 女同久久另类99精品国产91| 动漫黄色视频在线观看| 亚洲熟女毛片儿| 久久婷婷成人综合色麻豆| 欧美日韩亚洲高清精品| 午夜视频精品福利| 国产成人欧美| 一区二区三区激情视频| 少妇 在线观看| 激情视频va一区二区三区| 一进一出抽搐gif免费好疼 | 午夜免费成人在线视频| 久久人人97超碰香蕉20202| 久热爱精品视频在线9| 欧美 日韩 精品 国产| 亚洲伊人色综图| 极品少妇高潮喷水抽搐| 美女午夜性视频免费| 国产精品久久久人人做人人爽| 99re6热这里在线精品视频| av有码第一页| 国产男女超爽视频在线观看| 亚洲性夜色夜夜综合| 久久中文字幕一级| 国产精品自产拍在线观看55亚洲 | 黑人猛操日本美女一级片| a在线观看视频网站| 午夜91福利影院| 色播在线永久视频| 99久久99久久久精品蜜桃| 欧美乱色亚洲激情| 欧美成人午夜精品| 三上悠亚av全集在线观看| 欧美性长视频在线观看| 十八禁人妻一区二区| 91成人精品电影| 国产精品乱码一区二三区的特点 | 免费在线观看亚洲国产| www.熟女人妻精品国产| 大型黄色视频在线免费观看| 麻豆av在线久日| 国产精品国产高清国产av | 成人国语在线视频| 亚洲国产毛片av蜜桃av| 欧美一级毛片孕妇| 搡老岳熟女国产| 亚洲一码二码三码区别大吗| 色综合婷婷激情| 80岁老熟妇乱子伦牲交| 精品国产一区二区久久| 男人舔女人的私密视频| 电影成人av| 国产片内射在线| 日韩制服丝袜自拍偷拍| av福利片在线| 亚洲欧美日韩另类电影网站| 久久久久久久精品吃奶| 高清欧美精品videossex| 午夜免费观看网址| 亚洲avbb在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区在线观看99| 久久人人爽av亚洲精品天堂| av有码第一页| 飞空精品影院首页| 亚洲午夜精品一区,二区,三区| 成人黄色视频免费在线看| 亚洲av电影在线进入| 久久精品亚洲精品国产色婷小说| 18禁黄网站禁片午夜丰满| 亚洲av欧美aⅴ国产| 在线永久观看黄色视频| 国产精品国产高清国产av | 999久久久精品免费观看国产| √禁漫天堂资源中文www| 亚洲人成77777在线视频| 欧美av亚洲av综合av国产av| 午夜日韩欧美国产| 99热网站在线观看| 精品第一国产精品| 亚洲av第一区精品v没综合| 99热只有精品国产| 亚洲色图av天堂| 制服人妻中文乱码| a级毛片在线看网站| www.999成人在线观看| 91字幕亚洲| 国产一区二区三区视频了| 91大片在线观看| 欧美日韩福利视频一区二区| 久久人妻福利社区极品人妻图片| 一区二区日韩欧美中文字幕| 午夜视频精品福利| 美女福利国产在线| 成熟少妇高潮喷水视频| 大陆偷拍与自拍| 久久狼人影院| 久久香蕉精品热| 国精品久久久久久国模美| 女警被强在线播放| 亚洲熟妇熟女久久| 欧美日韩亚洲高清精品| 窝窝影院91人妻| 国产麻豆69| av超薄肉色丝袜交足视频| 亚洲久久久国产精品| 极品少妇高潮喷水抽搐| 变态另类成人亚洲欧美熟女 | 无人区码免费观看不卡| 人人妻人人澡人人爽人人夜夜| 99国产极品粉嫩在线观看| 女人爽到高潮嗷嗷叫在线视频| 人妻久久中文字幕网| 丝袜人妻中文字幕| 中文字幕人妻丝袜制服| 亚洲男人天堂网一区| 新久久久久国产一级毛片| 黄色成人免费大全| 99精品在免费线老司机午夜| 精品久久久久久电影网| 欧美精品人与动牲交sv欧美| 五月开心婷婷网| 亚洲国产毛片av蜜桃av| 黄网站色视频无遮挡免费观看| 国产成人精品久久二区二区免费| 国产成人欧美在线观看 | 成人影院久久| 黄色片一级片一级黄色片| 天天操日日干夜夜撸| 日本精品一区二区三区蜜桃| videos熟女内射| 国产精品免费视频内射| 一本大道久久a久久精品| 丰满人妻熟妇乱又伦精品不卡| 两性夫妻黄色片| 大陆偷拍与自拍| 国产精品九九99| avwww免费| 丝瓜视频免费看黄片| 午夜两性在线视频| 国产欧美日韩一区二区三区在线| 国产精品久久久人人做人人爽| 亚洲av电影在线进入| 在线观看免费日韩欧美大片| 日本一区二区免费在线视频| 国产片内射在线| 欧美国产精品va在线观看不卡| 国产精品亚洲一级av第二区| 亚洲第一av免费看| 亚洲av日韩精品久久久久久密| a级毛片在线看网站| 首页视频小说图片口味搜索| 日日夜夜操网爽| 黑人巨大精品欧美一区二区mp4| 91成人精品电影| 99在线人妻在线中文字幕 | 91在线观看av| 天堂俺去俺来也www色官网| 精品人妻在线不人妻| 欧美日韩亚洲综合一区二区三区_| 99香蕉大伊视频| 久久午夜综合久久蜜桃| 高清欧美精品videossex| 少妇粗大呻吟视频| 亚洲精品久久成人aⅴ小说| 欧美日韩亚洲综合一区二区三区_| 国产麻豆69| 日日爽夜夜爽网站| 身体一侧抽搐| 淫妇啪啪啪对白视频| 香蕉久久夜色| 18禁观看日本| 一本一本久久a久久精品综合妖精| 亚洲av欧美aⅴ国产| 成人国语在线视频| 国产免费男女视频| 中文字幕制服av| 午夜福利乱码中文字幕| а√天堂www在线а√下载 | 建设人人有责人人尽责人人享有的| 国产淫语在线视频| 国内毛片毛片毛片毛片毛片| 男人操女人黄网站| 正在播放国产对白刺激| 91精品国产国语对白视频| 丝袜在线中文字幕| 在线免费观看的www视频| 最近最新免费中文字幕在线| 久久精品国产99精品国产亚洲性色 | 精品久久久久久久毛片微露脸| 中文欧美无线码| √禁漫天堂资源中文www| 亚洲一区二区三区不卡视频| 91字幕亚洲| 久久久久久久午夜电影 | 高清毛片免费观看视频网站 | 狠狠狠狠99中文字幕| 99久久精品国产亚洲精品| 99国产精品99久久久久| 国产99白浆流出| 99re6热这里在线精品视频| 国产精品久久久久久人妻精品电影| 99热国产这里只有精品6| 黄色丝袜av网址大全| 97人妻天天添夜夜摸| 欧美精品高潮呻吟av久久| 国产男女超爽视频在线观看| 99久久精品国产亚洲精品| 中文字幕高清在线视频| 精品国产亚洲在线| 美女高潮喷水抽搐中文字幕| 亚洲五月婷婷丁香| 国产精品永久免费网站| 水蜜桃什么品种好| 国产精品香港三级国产av潘金莲| a级毛片在线看网站| 成人影院久久| 天堂俺去俺来也www色官网| 久久天堂一区二区三区四区| 亚洲一区二区三区欧美精品| 成熟少妇高潮喷水视频| 色婷婷久久久亚洲欧美| 亚洲精品久久成人aⅴ小说| 亚洲av欧美aⅴ国产| 在线播放国产精品三级| 亚洲专区国产一区二区| 国产不卡av网站在线观看| 老鸭窝网址在线观看| 国产精品免费大片| 一级毛片女人18水好多| 婷婷成人精品国产| 久久久久久久午夜电影 | 成人18禁在线播放| 999久久久精品免费观看国产| 日韩三级视频一区二区三区| 午夜精品在线福利| 成人18禁在线播放| 热re99久久精品国产66热6| 国产一区在线观看成人免费| 国产一区二区三区在线臀色熟女 | 亚洲精品乱久久久久久| 成人永久免费在线观看视频| 一区二区日韩欧美中文字幕| 18禁裸乳无遮挡免费网站照片 | 午夜日韩欧美国产| 婷婷精品国产亚洲av在线 | 精品国产国语对白av| 91字幕亚洲| 精品国产乱码久久久久久男人| 亚洲成a人片在线一区二区| 成人永久免费在线观看视频| 精品视频人人做人人爽| 桃红色精品国产亚洲av| 亚洲精品久久午夜乱码| 欧美+亚洲+日韩+国产| 国产精品av久久久久免费| 国产欧美日韩综合在线一区二区| 精品久久久精品久久久| 日韩欧美一区视频在线观看| 男人的好看免费观看在线视频 | 十分钟在线观看高清视频www| 天天躁日日躁夜夜躁夜夜| 亚洲国产看品久久| 超色免费av| 一级毛片女人18水好多| 99久久人妻综合| 日本a在线网址| 国产精品欧美亚洲77777| 麻豆成人av在线观看| 亚洲精品一二三| 欧美精品一区二区免费开放| 少妇猛男粗大的猛烈进出视频| tube8黄色片| 亚洲av熟女| 国产精品一区二区在线不卡| 欧美亚洲日本最大视频资源| 亚洲熟妇熟女久久| 成人国语在线视频| 国产视频一区二区在线看| 99热只有精品国产| 女警被强在线播放| 亚洲欧美一区二区三区久久| 精品久久久久久,| 久久精品91无色码中文字幕| 人妻丰满熟妇av一区二区三区 | 丝袜美腿诱惑在线| 欧美国产精品一级二级三级| 午夜福利,免费看| 久久久精品国产亚洲av高清涩受| 超碰成人久久| 国产精品久久久人人做人人爽| 波多野结衣一区麻豆| 欧美最黄视频在线播放免费 | 又黄又粗又硬又大视频| 国产精品香港三级国产av潘金莲| 久久精品成人免费网站| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕在线视频| 丝袜美腿诱惑在线| av天堂久久9| 亚洲 国产 在线| 狠狠狠狠99中文字幕| 黄片播放在线免费| 日本五十路高清| 中亚洲国语对白在线视频| 久久国产亚洲av麻豆专区| 99久久人妻综合| 男女下面插进去视频免费观看| 正在播放国产对白刺激| 亚洲国产欧美日韩在线播放| 最近最新中文字幕大全免费视频| 91大片在线观看| 乱人伦中国视频| 老司机影院毛片| 国产高清videossex| 老司机靠b影院| 亚洲aⅴ乱码一区二区在线播放 | 日韩一卡2卡3卡4卡2021年| 成年人午夜在线观看视频| 欧美黑人精品巨大| 老司机午夜十八禁免费视频| 国产乱人伦免费视频| 啦啦啦 在线观看视频| 色综合欧美亚洲国产小说| 国产精品1区2区在线观看. | 日本一区二区免费在线视频| 精品福利观看| 岛国毛片在线播放| 婷婷丁香在线五月| 久久香蕉精品热| 中文字幕另类日韩欧美亚洲嫩草| 制服人妻中文乱码| 亚洲国产精品sss在线观看 | 亚洲av日韩在线播放| 久久人人爽av亚洲精品天堂| tube8黄色片| 如日韩欧美国产精品一区二区三区| 在线观看免费高清a一片| 精品亚洲成a人片在线观看| 国产成人影院久久av| 在线观看舔阴道视频| 精品久久久久久,| 午夜精品在线福利| av不卡在线播放| 国产精品国产av在线观看| 男人操女人黄网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲欧美精品永久| 日本黄色视频三级网站网址 | 精品卡一卡二卡四卡免费| 久久久精品免费免费高清| 久久精品亚洲av国产电影网| 久久精品国产综合久久久| 99re在线观看精品视频| 一级作爱视频免费观看| 亚洲自偷自拍图片 自拍| 欧美黄色片欧美黄色片| 可以免费在线观看a视频的电影网站| 麻豆成人av在线观看| 老司机影院毛片| 我的亚洲天堂| 亚洲片人在线观看| 欧美日韩视频精品一区| 香蕉久久夜色| 老汉色av国产亚洲站长工具| 在线av久久热| 国产一区二区三区视频了| 免费女性裸体啪啪无遮挡网站| www.精华液| 国产在线一区二区三区精| 黄片大片在线免费观看| 久久精品国产综合久久久| 亚洲第一青青草原| 久久久国产成人精品二区 | 国产欧美日韩一区二区三区在线| 母亲3免费完整高清在线观看| 成人精品一区二区免费| 80岁老熟妇乱子伦牲交| 日本vs欧美在线观看视频| 亚洲熟女毛片儿| 国产伦人伦偷精品视频| 黑人欧美特级aaaaaa片| 一级a爱片免费观看的视频| 亚洲人成电影免费在线| 黑人巨大精品欧美一区二区mp4| 日韩视频一区二区在线观看| 亚洲情色 制服丝袜| 在线永久观看黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品在线美女| 一级,二级,三级黄色视频| 亚洲成人手机| 亚洲男人天堂网一区| 午夜成年电影在线免费观看| 精品少妇一区二区三区视频日本电影| 国产免费现黄频在线看| 国产人伦9x9x在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 波多野结衣一区麻豆| 一级黄色大片毛片| 日韩欧美免费精品| 窝窝影院91人妻| 亚洲精品一二三| 成人国语在线视频| 12—13女人毛片做爰片一| 中亚洲国语对白在线视频| av不卡在线播放| 日韩熟女老妇一区二区性免费视频| 国产精品一区二区在线不卡| 国产一区在线观看成人免费| 精品熟女少妇八av免费久了| 黑人巨大精品欧美一区二区mp4| 午夜亚洲福利在线播放| 黄色毛片三级朝国网站| 久久精品aⅴ一区二区三区四区| av片东京热男人的天堂| 亚洲精品国产区一区二| 亚洲国产欧美一区二区综合| 欧美日韩国产mv在线观看视频| 91麻豆精品激情在线观看国产 | 亚洲自偷自拍图片 自拍| 国产精品免费视频内射| 精品久久久久久久毛片微露脸| www.熟女人妻精品国产| 日本欧美视频一区| 精品熟女少妇八av免费久了| 亚洲专区国产一区二区| 亚洲七黄色美女视频| 在线国产一区二区在线| 亚洲av美国av| svipshipincom国产片| 91成人精品电影| 99久久国产精品久久久| 丰满饥渴人妻一区二区三| 亚洲av熟女| 成人永久免费在线观看视频| 久久精品人人爽人人爽视色| 看免费av毛片| 亚洲久久久国产精品| 国产高清videossex| 日韩精品免费视频一区二区三区| 首页视频小说图片口味搜索| 亚洲全国av大片| 午夜精品久久久久久毛片777| 一二三四在线观看免费中文在| 天天操日日干夜夜撸| 好看av亚洲va欧美ⅴa在| 欧美日韩中文字幕国产精品一区二区三区 | 国产99久久九九免费精品| 黄片小视频在线播放| 伦理电影免费视频| 精品亚洲成国产av| 午夜老司机福利片| 国产一区二区三区视频了| 嫁个100分男人电影在线观看| 777久久人妻少妇嫩草av网站| 51午夜福利影视在线观看| 黑人操中国人逼视频| 日韩熟女老妇一区二区性免费视频| 最近最新中文字幕大全电影3 | 一进一出好大好爽视频| 777米奇影视久久| 99久久人妻综合| x7x7x7水蜜桃| 国产精品综合久久久久久久免费 | 曰老女人黄片| 精品久久久久久久毛片微露脸| 啦啦啦视频在线资源免费观看| 成年人免费黄色播放视频| 黄色a级毛片大全视频| 欧美激情 高清一区二区三区| 久久午夜综合久久蜜桃| 久热这里只有精品99| 精品欧美一区二区三区在线| 三上悠亚av全集在线观看| 久久性视频一级片| 一区二区三区激情视频| 1024视频免费在线观看| 成年人午夜在线观看视频| 高清黄色对白视频在线免费看| www日本在线高清视频| 久久中文字幕人妻熟女| 精品国产国语对白av| 老司机影院毛片| 天天躁日日躁夜夜躁夜夜| 亚洲九九香蕉| 国产成人免费无遮挡视频| 国产欧美日韩精品亚洲av| 日日夜夜操网爽| 五月开心婷婷网| 在线观看免费高清a一片| 久久久久久久午夜电影 | 中文字幕精品免费在线观看视频| 天天添夜夜摸| 99久久99久久久精品蜜桃| 成在线人永久免费视频| 看片在线看免费视频| 国产欧美亚洲国产| 精品一区二区三区av网在线观看| 黄片小视频在线播放| 亚洲欧美日韩高清在线视频| 一二三四社区在线视频社区8| 高潮久久久久久久久久久不卡| 精品乱码久久久久久99久播| 久久国产精品人妻蜜桃| 一进一出好大好爽视频| 黑人欧美特级aaaaaa片| 99精品欧美一区二区三区四区| 高清在线国产一区| 80岁老熟妇乱子伦牲交| 午夜成年电影在线免费观看| 国产91精品成人一区二区三区| 高清在线国产一区| 亚洲精品一二三| 9色porny在线观看| 久久久水蜜桃国产精品网| 精品高清国产在线一区| 色94色欧美一区二区| 亚洲欧美一区二区三区久久| 免费女性裸体啪啪无遮挡网站| 欧美性长视频在线观看| 黄频高清免费视频| 97人妻天天添夜夜摸| 视频在线观看一区二区三区| av不卡在线播放| 日韩人妻精品一区2区三区| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 亚洲精品成人av观看孕妇| 欧美日韩成人在线一区二区| 九色亚洲精品在线播放| 亚洲精品自拍成人| 欧美亚洲日本最大视频资源| 香蕉国产在线看| 又黄又爽又免费观看的视频| 美女高潮喷水抽搐中文字幕| 欧美亚洲 丝袜 人妻 在线| 精品国内亚洲2022精品成人 | 一进一出抽搐gif免费好疼 | 国产深夜福利视频在线观看| 99精品欧美一区二区三区四区| 91大片在线观看| 日韩精品免费视频一区二区三区| www.熟女人妻精品国产| 99国产极品粉嫩在线观看| 少妇的丰满在线观看| 精品国产一区二区三区四区第35| 多毛熟女@视频| 一区福利在线观看| www.熟女人妻精品国产| 91精品三级在线观看| 王馨瑶露胸无遮挡在线观看| 满18在线观看网站| 国产精品1区2区在线观看. | 高潮久久久久久久久久久不卡| 亚洲av电影在线进入| 无限看片的www在线观看| 在线看a的网站| 中文亚洲av片在线观看爽 | 12—13女人毛片做爰片一| 99久久精品国产亚洲精品| 欧美在线黄色| 黑人猛操日本美女一级片| 国产91精品成人一区二区三区| 国产精品电影一区二区三区 | 亚洲自偷自拍图片 自拍| 亚洲五月天丁香| 12—13女人毛片做爰片一| 99热网站在线观看| 久久精品国产亚洲av香蕉五月 | 亚洲av成人av| 亚洲av片天天在线观看| 亚洲精品中文字幕一二三四区| 欧美精品亚洲一区二区| 一区在线观看完整版| 乱人伦中国视频| 亚洲avbb在线观看| 久久久精品免费免费高清| 久久人妻av系列| 国产成人精品在线电影| 国产亚洲精品久久久久久毛片 |