• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental research based on a C-band compact transit-time oscillator with a novel diode loading an embedded soft magnetic material and shielding structure

    2023-09-05 08:48:08YufangHe何宇放JuntaoHe賀軍濤JunpuLing令鈞溥LeiWang王蕾andLiliSong宋莉莉
    Chinese Physics B 2023年7期
    關(guān)鍵詞:王蕾莉莉

    Yufang He(何宇放), Juntao He(賀軍濤), Junpu Ling(令鈞溥), Lei Wang(王蕾), and Lili Song(宋莉莉)

    College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    Keywords: high-power microwave,soft magnetic material,shielding structure,transit-time oscillator

    1.Introduction

    Driven by application requirements, miniaturization and compactness have become important development directions of high-power microwave(HPM)sources.Reducing the external guiding magnetic field is an effective way to achieve this objective.In recent years, there have been many research reports in this area.[1–16]A transit-time oscillator(TTO)is a type of HPM source that has the potential to be miniaturized and compact due to its simple structure,which can work efficiently with a low external guiding magnetic field.This kind of device has attracted increasing interest from researchers.[6,17–25]In recent years,research on TTOs with a low external guiding magnetic field has achieved many results.

    Previously, our research group proposed a novel C-band TTO in simulation studies.[26]The design purpose of this device was to obtain a lightweight and compact HPM device,so we chose a low external guiding magnetic field.In the previous study, this device showed its advantages in reducing the external magnetic field.If the efficiency of the device can be further improved,the advantage will be more obvious.During a series of studies, it was found that when the device works with a low magnetic field, the quality of the intense relativistic electron beam (IREB) is relatively low, so the conversion efficiency is affected to a certain extent.In order to ensure the miniaturization and compactness of the device,we hope to further improve the conversion efficiency of this C-band TTO without increasing the applied magnetic field.It is very meaningful to explore how to improve the quality of the IREB with a low external guiding magnetic field, thereby improving the conversion efficiency of the HPM source.Therefore, a novel highly efficient diode in our manuscript is designed in this case for better beam quality in the presence of a low external guiding magnetic field.

    This paper mainly introduces a diode with shielding structures and embedded soft magnetic material, and experimental research on HPM generation on the C-band TTO with this novel diode.Section 2 introduces the theoretical analysis of the transmission of an IREB with a low external guiding magnetic field.Section 3 introduces the design and simulation study of the novel diode.Section 4 presents the experimental study of HPM generation on the C-band TTO with the novel diode,and Section 5 concludes this paper.

    2.Analysis of IREB propagation with a low guiding magnetic field

    Usually, in the inner part of HPM devices, when loading an intensive external guiding magnetic field,the constraining force of the magnetic field can be balanced with the space charge force of the IREB itself.However, when the magnitude of the magnetic field is decreased, the fluctuation of the electron beam is significantly enhanced,which affects the conversion efficiency of the HPM device.

    The propagation of an annular IREB in a coaxial waveguide is shown in Fig.1.Its transmission equation can be expressed as[27]

    whererbis the radius of the annular electron beam,γis the relativistic factor,mis the mass of the electron,estands for charge of an electron,pθ=m?cr2c/2 is the canonical angular momentum,rcis the cathode radius,?cis the electron cyclotron frequency in the region of the cathode,and?=eBz/mis the electron cyclotron frequency.

    Equation (1) can be solved to obtain the equilibrium radius of the electron beamrb0.The radius of the annular electron beam can be expressed as

    Here,δris the fluctuation value of the electron beam radius.Substituting Eq.(2) into Eq.(1) and converting thetcoordinate system to thezcoordinate system, it can be obtained that[27]

    wherek1,k2andk3are all constants.The general solution to Eq.(3)is[27]

    It can be found from Eq.(2)that[27]

    From the above analysis,the maximum radius of electron beam fluctuation isrmax=rb0+A,whereAis determined by the initial conditions.This means that the maximum radius of the IREB radial fluctuation in the transmission process is determined by the maximum radius of the IREB in the diode.

    When the electron beam is in the diode,the transmission equation is rewritten as[27]

    In the diode,the electron beam is not only subjected to its own space charge repulsion, the Lorentz force from the external magnetic field,and the self-pinch force generated produced by a self-magnetic field,but also the radial electric field force generated by the two-dimensional space structure.Among them,Er1represents the radial electric field introduced by the twodimensional space structure of the diode.The gravitational component is

    The repulsive component is

    Due to the radial electric field force in the diode region, the equilibrium radius of the electron beam in the diode regionrb1is larger, that is,rb1>rb0.Especially when the external guiding magnetic field is lower, the magnetic field force represented by Eq.(7) is weaker, and the equilibrium radius is further enlarged, resulting in greater fluctuation of the IREB,which affects the efficiency of HPM generation of our designed TTO.

    From the above analysis,in order to obtain an IREB with a smaller radius and improve the emission and transmission quality, it is necessary to strengthen the gravitational component (Eq.(7)) in the diode region and reduce the repulsive force (Eq.(8)).That is to say, we must find a way to reduceEr1while addingBzin the diode region.

    Therefore, we designed a novel type of diode with embedded soft magnetic material and shielding structures.The introduction of soft magnetic material can enhance the local guiding magnetic field in the diode region, and the shielding structure can effectively weaken the radial electric field introduced by the two-dimensional spatial structure.This diode can emit an electron beam with less fluctuation while maintaining a low external magnetic field, which improves the emission and transmission quality of the electron beam.We describe the design in the subsequent sections.

    3.Design of the novel diode and simulation investigation

    In a previous study, we proposed a C-band coaxial TTO capable of operating under low magnetic field conditions.In the simulation study,[26]when the external guiding magnetic field was 0.4 T,with a diode voltage of 548 kV and a current of 11.4 kA, an HPM output of 1.88 GW was generated and the microwave frequency was 4.27 GHz.The beam conversion efficiency was calculated as about 30%.We found that the device has the potential to work with low magnetic field by loading opening foils.However,the problems of low beam emission and transmission quality caused by the low magnetic field were not completely solved.In the condition of a low external guiding magnetic field,the electron beam may bombard the surface of the foils to generate plasmas, which influences the working efficiency of the device.Therefore,the device has to be further optimized.

    After multiple simulation optimizations, combined with theoretical analysis,a high-power diode with a shielding structure and embedded soft magnetic material is proposed,which is loaded into the original TTO structure as shown in Fig.2.

    Fig.2.The C-band coaxial TTO loaded with the novel diode.

    The beam-wave interaction area of the coaxial TTO is composed of a two-cavity buncher, a single-cavity extractor and opening foils.The opening foils are used to enhance the guidance of the electron beam while avoiding the plasma generated by the electron beam bombardment.The coaxial output port is used to output HPMs,and the electron collector adopts an inclined surface structure.In the diode region,as shown in Fig.2,a shielding structure is used to reduce the radial electric field and a soft magnetic material is embedded in the cathode holder, which clings to the cathode end to improve the emission quality of IREB by increasing the local magnetic field.The soft magnetic material is 6 mm long and 3 mm wide.

    A simulation study on the enhancement of the local magnetic field by the soft magnetic material is carried out.Poisson Superfish is applied to simulate the magnetic field in our design.It uses the finite element method which can accurately simulate the parameters of the magnetic field.The configurations of a solenoid generating a 0.3 T magnetic field before and after loading the soft magnetic material are compared.As shown in Fig.3(a), the addition of the soft magnetic material changes the local magnetic field configuration.The soft magnetic material produces a local magnetic field enhancement so that the magnetic field lines gather near the soft magnetic material,so the local magnetic field line density increases.

    Fig.3.Comparison of the configuration of the magnetic field.(a)Magnetic field loading a soft magnetic material.(b)Magnetic field without a soft magnetic material.

    Furthermore, in the simulation optimization, the influence of various parameters of the soft magnetic material on the magnitude of the axial magnetic field at the cathode head is studied,as shown in Fig.4.The distance in Fig.4 represents the distance between the right surface of the soft magnetic material and the left surface of the graphite cathode embedded in the cathode rod.Bzrepresents the axial magnetic field at the cathode head.The width represents the width of the soft magnetic material.In the simulation study,when the width is changed, the central axis of the soft magnetic material is always consistent with that of the graphite cathode.It can be seen from the figure that when the distance increases,the local magnetic field enhancement effect of the soft magnetic material weakens.The magnetic field at the cathode head gradually decreases from the highest 0.39 T to the origin 0.3 T magnetic field generated by the solenoid coil.Therefore,the soft magnetic material should be placed close to the graphite cathode as shown in Fig.2.In order to ensure the consistency of the experiment and simulation,the soft magnetic material should not be too close to the cathode head to ensure that the graphite can be embedded in the cathode holder.Therefore, the graphite cathode is embedded in the cathode holder by 1 mm,the outer exposed part is about 2 mm,and the soft magnetic material is 3 mm away from the cathode head,that is,when the distance is 0 in Fig.4.

    Fig.4.Influence of soft magnetic material parameters on the magnetic field of cathode head.

    At the same time, the width of the soft magnetic material is analyzed.It is found that when the width is 3 mm,the magnetic field at the cathode head has a maximum value of 0.388 T.When the width of the soft magnetic material increases, the magnetic field increases significantly, but the increase is not obvious when the width exceeds 3 mm.The volume of the soft magnetic material should not be too large, so a soft magnetic material with a width of 3 mm and a length of 6 mm is used.

    Taking the cathode head as the origin, the magnitude of the axial magnetic field near the cathode head is extracted as shown in Fig.5.The axial magnetic field is significantly improved near the cathode head,from 0.3 T to about 0.388 T at the highest.According to previous theoretical analysis,the enhancement of the local magnetic field in the diode region can improve the quality of electron beam emission and transmission in the whole device.

    Fig.5.Comparison of the axial magnetic field near the cathode head.

    The introduction of the shielding structure is to reduce the radial electric field in the diode region and to focus the electron beam.For traditional annular cathodes,radial electric field is unavoidable.The effect of radial electric field is more pronounced when the device is operated with a low external guiding magnetic field.Therefore,we adopt the shielding structure as shown in Fig.2 to solve this problem.

    The decrease in the radial electric field in the diode region by the shielding structure is analyzed by simulation,as shown in Fig.6.From Fig.6(b), both sides of the cathode head are wrapped by shielding structures with a thickness of 3 mm.At this time,the radial electric field near the cathode head is suppressed, which helps to improve the electron beam emission and transmission quality.

    Fig.6.The electric field distribution of two types of diode.(a)Conventional diode.(b)Diode with shielding structure.

    Fig.7.Simulation model and comparison of the thickness of the IREB.(a) Simulation model of TTO with novel diode.(b) Simulation model with traditional diode.

    In order to verify the effect of the novel diode, a simulation study of HPM generation is carried out, as shown in Fig.7.Figure 7(a) is a schematic of the simulation model when loading a new type of diode,and figure 7(b)is that when loading a traditional cathode.Through the measurement of the beam thickness,it is found that the maximum thickness of the electron beam with the novel diode in the diode region is only 2.8 mm,while the value for the traditional structure is 7.1 mm.This shows that the novel diode can significantly improve the emission and transmission quality of an IREB with a low magnetic field.

    In our simulation study, with an external guiding magnetic field of 0.3 T,a diode voltage of 542 kV and a diode current of 9.2 kA, the C-band TTO loaded with the novel diode outputs HPMs of 1.83 GW with a frequency of 4.27 GHz,and the conversion efficiency can be calculated as about 36.7%.The output microwave power and frequency are shown in Figs.8 and 9, respectively.Compared with the previous research by our research group,the conversion efficiency is 30%with an external magnetic field of 0.4 T.Therefore,the structure loaded with the novel diode can achieve higher efficiency even with a lower magnetic field.

    To further verify the effect of this diode, we present our experimental studies in the following section.

    4.Experimental research

    Previously, we preliminarily demonstrated the effect of the novel diode through simulation studies.In order to further verify the reliability of the diode,based on the platform of the C-band TTO,we conduct an HPM generation experiment.

    4.1.Experimental system

    Figure 10 shows the internal assembly structure of the beam-wave interaction area of this experiment.The shielding structure in the diode is still made of stainless steel, the cathode material is graphite,and the embedded soft magnetic material is industrial pure iron DT8.The embedded design of the soft magnetic material enables the stainless steel wrapped outside the soft magnetic material to effectively prevent the breakdown of the soft magnetic material and maintain the vacuum degree of the device.The experimental device is shown in Fig.11.In the experiment,a solenoid coil is used for generation of the magnetic field.The vacuum pump is used to maintain the vacuum environment inside the device.We choose a horn antenna for the radiation of HPMs,and the HPM source is the same as the C-band coaxial TTO shown in Fig.2.Fig.10.Internal assembly structure of the experiment.(1) Cathode holder.(2)Soft magnetic material.(3)Graphite cathode.(4)Inner conductor.(5) Dual-cavity buncher.(6) Opening foils.(7) Single-cavity extractor.(8) Electron collector.(9) Output waveguide.(10) Shielding structure.(11)Solenoid coil.

    Fig.11.The experiment device.

    Far-field measurement method is applied to measure the radiated HPM.Figure 12 shows the layout of HPM measurement.Two receiving horn antennas are symmetrically distributed to the radiating antenna.They receive HPM radiation respectively,and the symmetry of the radiation is analyzed by their comparison.

    Fig.12.Layout of HPM measurement.

    During the experimental assembly, the coaxiality of the inner and outer conductors should be ensured.Mismatches in assembly can cause inconsistencies between experiments and simulations.In addition,close observation is required because the shielding structure is very prone to breakdown, resulting in beam loss.

    4.2.Experimental results

    When the solenoid coil generates a 0.3 T external guiding magnetic field,the diode voltage is 540 kV,and the current is 10.5 kA, the diode voltage and current are shown in Fig.13 and the HPM signal is shown in Fig.14.When loading the novel diode,an output HPM power of 1.51 GW is obtained and the corresponding conversion efficiency is 26.6%.In contrast,when loading a conventional diode,the output HPM power is only 1.13 GW with a conversion efficiency of 20.0% under the same input power and external magnetic field.The measured microwave frequency is shown in Fig.15.The output frequency is 4.27 GHz.

    Fig.13.Diode voltage and current of the experiment.

    Fig.14.Output HPM of the experiment.

    Fig.15.The spectrum of the output microwave.

    4.3.Analysis and discussion

    Compared with the simulation results, the frequency of the experimental study is consistent.The experimental results prove the improvement in the device efficiency.The conversion efficiency of the device loaded with the novel diode is improved by about 6.6%.However,the output power and conversion efficiency in the experiment are not consistent with the simulation results.After disassembling the device, no breakdown of the cathode holder is found.However,it is found that some electron beam bombardment traces appear near the cathode head,as shown in Fig.16.These bombardment traces inside the cathode are caused by backflow electrons,resulting in beam loss,which causes the difference between the efficiency of the experiment and the simulation.In addition, errors due to device assembly are also one of the reasons.We will find ways to solve these problems in future work.

    Fig.16.The cathode after experiment.

    5.Conclusion

    In this paper,we study the method of improving the conversion efficiency of a C-band coaxial TTO with a low external guiding magnetic field through theoretical analysis,simulation research,and experimental verification.We proposed a novel diode with embedded soft magnetic material and a shielding structure to improve the efficiency of TTO and verify its ability.The research in this paper shows that the novel diode enables the C-band TTO to work with higher efficiency even with a lower magnetic field, and achieves great results.However,there is still a gap between the simulation efficiency and the experimental efficiency.We will propose further improvement methods for this problem in the future.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant No.61701516).We would like to show our deepest gratitude to the colleagues that offered us help in our research.

    猜你喜歡
    王蕾莉莉
    母愛流長
    歌海(2022年4期)2022-11-27 05:57:32
    Hamiltonian Bi-integrable Couplings for the Counterpart of the AKNS Soliton Hierarchy
    誰在悄悄幫助莉莉呢?
    First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst?
    With you at that moment
    Physicochemical Properties of Poly (Vinyl Alcohol)/Chitosan/Soluble Starch Composite Hydrogel
    不倒自行車
    Look from the Anglo—American jury system of jury system in our country
    例談數(shù)學(xué)解題之構(gòu)造法
    重新認(rèn)識肩關(guān)節(jié)骨折脫位
    亚洲国产精品成人综合色| 搡老妇女老女人老熟妇| 亚洲精品久久国产高清桃花| 亚洲欧美精品综合久久99| 免费在线观看日本一区| 国内精品美女久久久久久| 丁香欧美五月| 免费观看人在逋| 高清毛片免费观看视频网站| 国产综合懂色| 一级黄色大片毛片| 日韩欧美一区二区三区在线观看| 欧美zozozo另类| 色视频www国产| 丁香六月欧美| 悠悠久久av| 1024香蕉在线观看| 日本一二三区视频观看| 99热这里只有是精品50| 免费在线观看影片大全网站| 九九久久精品国产亚洲av麻豆 | 成熟少妇高潮喷水视频| 老熟妇乱子伦视频在线观看| 国产精品久久久久久精品电影| 两个人视频免费观看高清| 两人在一起打扑克的视频| 窝窝影院91人妻| 午夜福利在线观看免费完整高清在 | 国产不卡一卡二| 精品国产乱码久久久久久男人| 香蕉国产在线看| 久久久久精品国产欧美久久久| 岛国在线观看网站| 最新中文字幕久久久久 | 亚洲av中文字字幕乱码综合| 一进一出抽搐gif免费好疼| 亚洲av美国av| 性色avwww在线观看| 伦理电影免费视频| 动漫黄色视频在线观看| 亚洲精品国产精品久久久不卡| 两性夫妻黄色片| 一本精品99久久精品77| 法律面前人人平等表现在哪些方面| 亚洲无线观看免费| 99re在线观看精品视频| 在线观看午夜福利视频| 精品国产乱子伦一区二区三区| 我的老师免费观看完整版| 国产亚洲欧美98| 午夜福利成人在线免费观看| 美女高潮的动态| 老司机午夜福利在线观看视频| 精品日产1卡2卡| 蜜桃久久精品国产亚洲av| 午夜成年电影在线免费观看| 国产激情欧美一区二区| 国产亚洲精品一区二区www| 欧美乱色亚洲激情| 少妇熟女aⅴ在线视频| 国产黄片美女视频| 亚洲成人免费电影在线观看| 国产精品综合久久久久久久免费| 国产又色又爽无遮挡免费看| 亚洲国产欧美人成| 在线观看免费午夜福利视频| 久久精品亚洲精品国产色婷小说| 色综合亚洲欧美另类图片| 精品久久久久久久末码| 欧美大码av| 国产亚洲av高清不卡| 在线永久观看黄色视频| 男人的好看免费观看在线视频| av黄色大香蕉| 黄色 视频免费看| 国产一区二区在线av高清观看| 国产淫片久久久久久久久 | 欧美成人性av电影在线观看| 精品久久久久久成人av| 亚洲一区二区三区色噜噜| 波多野结衣高清作品| 亚洲色图 男人天堂 中文字幕| 国内精品久久久久精免费| 悠悠久久av| 视频区欧美日本亚洲| 免费在线观看成人毛片| 日本熟妇午夜| 欧美午夜高清在线| 日本一二三区视频观看| 可以在线观看毛片的网站| 国产高潮美女av| 麻豆国产97在线/欧美| 久99久视频精品免费| 亚洲av片天天在线观看| 亚洲美女黄片视频| cao死你这个sao货| 制服人妻中文乱码| www.自偷自拍.com| 亚洲国产精品成人综合色| 黄色丝袜av网址大全| 在线观看免费视频日本深夜| 亚洲国产欧美人成| 首页视频小说图片口味搜索| 一二三四在线观看免费中文在| 在线永久观看黄色视频| 三级毛片av免费| 亚洲成av人片在线播放无| 亚洲成人精品中文字幕电影| 国产精品 国内视频| 国产人伦9x9x在线观看| 精品电影一区二区在线| av视频在线观看入口| 欧美国产日韩亚洲一区| 日韩欧美 国产精品| 欧美一区二区国产精品久久精品| 欧美中文日本在线观看视频| 亚洲国产高清在线一区二区三| 国产高清视频在线观看网站| 亚洲成a人片在线一区二区| 国产精品99久久久久久久久| 国产精品一及| 美女 人体艺术 gogo| 国产熟女xx| 99re在线观看精品视频| 精品熟女少妇八av免费久了| 欧美绝顶高潮抽搐喷水| 丰满人妻一区二区三区视频av | 成年女人毛片免费观看观看9| 又黄又爽又免费观看的视频| 亚洲精品色激情综合| 别揉我奶头~嗯~啊~动态视频| 看黄色毛片网站| 久久久国产欧美日韩av| 欧美成狂野欧美在线观看| 国产欧美日韩精品一区二区| 国产精品香港三级国产av潘金莲| 后天国语完整版免费观看| 亚洲av中文字字幕乱码综合| 午夜a级毛片| 国产成人影院久久av| 美女被艹到高潮喷水动态| 久久人人精品亚洲av| 岛国在线免费视频观看| 精品国产乱子伦一区二区三区| 日韩精品青青久久久久久| 男女之事视频高清在线观看| 男女那种视频在线观看| 老熟妇仑乱视频hdxx| 成在线人永久免费视频| 人妻久久中文字幕网| 国产精品久久久久久久电影 | 中文字幕精品亚洲无线码一区| 国产精品亚洲美女久久久| 亚洲国产看品久久| 可以在线观看的亚洲视频| 国产亚洲精品一区二区www| 国内揄拍国产精品人妻在线| 久久久色成人| 国产午夜精品论理片| 婷婷六月久久综合丁香| 国产视频内射| 国产一级毛片七仙女欲春2| 欧美性猛交黑人性爽| 久久久久国产一级毛片高清牌| 一二三四在线观看免费中文在| 变态另类丝袜制服| 亚洲一区高清亚洲精品| 国产视频一区二区在线看| 床上黄色一级片| 老司机午夜福利在线观看视频| 熟女电影av网| 黄色视频,在线免费观看| 日韩欧美在线二视频| 12—13女人毛片做爰片一| av在线天堂中文字幕| www.精华液| 激情在线观看视频在线高清| 日韩欧美一区二区三区在线观看| 夜夜夜夜夜久久久久| 曰老女人黄片| 国产亚洲欧美在线一区二区| 成熟少妇高潮喷水视频| 波多野结衣高清无吗| 最近视频中文字幕2019在线8| 亚洲色图 男人天堂 中文字幕| 观看免费一级毛片| 99国产精品99久久久久| 色老头精品视频在线观看| 亚洲美女黄片视频| 偷拍熟女少妇极品色| 国产美女午夜福利| 国产精品电影一区二区三区| 不卡一级毛片| 老汉色av国产亚洲站长工具| 男女视频在线观看网站免费| av片东京热男人的天堂| 亚洲国产欧美网| 国产男靠女视频免费网站| 亚洲av日韩精品久久久久久密| 在线观看免费午夜福利视频| 一级毛片高清免费大全| 亚洲中文字幕一区二区三区有码在线看 | 美女黄网站色视频| 日本一二三区视频观看| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 91久久精品国产一区二区成人 | 天天一区二区日本电影三级| 国产午夜精品久久久久久| 中出人妻视频一区二区| 大型黄色视频在线免费观看| 俺也久久电影网| 色综合婷婷激情| 日韩欧美一区二区三区在线观看| 狂野欧美激情性xxxx| 亚洲一区二区三区色噜噜| 男女之事视频高清在线观看| 色综合婷婷激情| 国产精品久久久久久精品电影| 国产成人一区二区三区免费视频网站| 亚洲熟女毛片儿| 亚洲性夜色夜夜综合| www.熟女人妻精品国产| 成人三级黄色视频| 狂野欧美白嫩少妇大欣赏| 三级男女做爰猛烈吃奶摸视频| 国产亚洲欧美在线一区二区| 精品久久久久久久久久免费视频| 九九久久精品国产亚洲av麻豆 | 免费在线观看影片大全网站| 又大又爽又粗| 欧美激情久久久久久爽电影| 舔av片在线| 级片在线观看| 午夜a级毛片| 午夜激情福利司机影院| 亚洲中文字幕一区二区三区有码在线看 | 久久久久精品国产欧美久久久| 成人国产一区最新在线观看| 国产精品久久视频播放| 熟妇人妻久久中文字幕3abv| 亚洲国产欧美人成| 最新美女视频免费是黄的| 亚洲国产精品sss在线观看| 久久久色成人| 全区人妻精品视频| 啪啪无遮挡十八禁网站| 91九色精品人成在线观看| 久久久久久久久久黄片| 欧美中文综合在线视频| 日韩免费av在线播放| 国产一区二区激情短视频| 桃色一区二区三区在线观看| 午夜福利高清视频| 免费大片18禁| 国产aⅴ精品一区二区三区波| 美女大奶头视频| 99精品久久久久人妻精品| 国产精品1区2区在线观看.| 中文字幕熟女人妻在线| 免费观看精品视频网站| 亚洲,欧美精品.| 精品日产1卡2卡| 国产精品影院久久| 最近在线观看免费完整版| 婷婷亚洲欧美| 18禁美女被吸乳视频| 窝窝影院91人妻| 久久精品国产清高在天天线| 国产精品久久电影中文字幕| 国产真人三级小视频在线观看| 可以在线观看的亚洲视频| 欧美日韩综合久久久久久 | 韩国av一区二区三区四区| 十八禁网站免费在线| 欧美国产日韩亚洲一区| 美女免费视频网站| 免费在线观看成人毛片| 亚洲av成人不卡在线观看播放网| 最近在线观看免费完整版| 三级男女做爰猛烈吃奶摸视频| 少妇裸体淫交视频免费看高清| 国产精品野战在线观看| 欧美午夜高清在线| 伦理电影免费视频| 久久99热这里只有精品18| 两人在一起打扑克的视频| 久久久久久人人人人人| 男人和女人高潮做爰伦理| 国产乱人伦免费视频| 在线观看美女被高潮喷水网站 | 热99re8久久精品国产| 全区人妻精品视频| 性色avwww在线观看| 国产毛片a区久久久久| 精品久久久久久久毛片微露脸| 日韩大尺度精品在线看网址| 日本精品一区二区三区蜜桃| 久久热在线av| 91麻豆精品激情在线观看国产| 色av中文字幕| 色在线成人网| 欧美中文日本在线观看视频| 亚洲欧美日韩无卡精品| 色视频www国产| 亚洲 国产 在线| 好男人在线观看高清免费视频| 女同久久另类99精品国产91| 老鸭窝网址在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 舔av片在线| 国产精品野战在线观看| 女生性感内裤真人,穿戴方法视频| 欧美大码av| 国产伦精品一区二区三区视频9 | 麻豆一二三区av精品| 亚洲国产欧洲综合997久久,| 国产高清三级在线| 黄片小视频在线播放| svipshipincom国产片| www日本黄色视频网| 桃色一区二区三区在线观看| 色在线成人网| 久久草成人影院| 婷婷精品国产亚洲av在线| 成人性生交大片免费视频hd| 18禁观看日本| 女警被强在线播放| 亚洲专区中文字幕在线| 国产美女午夜福利| 97碰自拍视频| 99久久精品国产亚洲精品| 成人国产一区最新在线观看| 老司机午夜十八禁免费视频| 99国产极品粉嫩在线观看| 国产免费男女视频| 免费观看人在逋| 在线观看舔阴道视频| 久久久国产精品麻豆| 国产1区2区3区精品| 国产精品一区二区三区四区久久| 中文字幕久久专区| 麻豆国产97在线/欧美| 中文字幕久久专区| 久久久久久国产a免费观看| 99热精品在线国产| 成年女人永久免费观看视频| 午夜日韩欧美国产| 国产精品自产拍在线观看55亚洲| 午夜日韩欧美国产| 我要搜黄色片| 又黄又爽又免费观看的视频| 嫩草影院入口| 国产精品1区2区在线观看.| 夜夜爽天天搞| 国产精品98久久久久久宅男小说| 18禁裸乳无遮挡免费网站照片| 黄色日韩在线| 成人无遮挡网站| 黄色成人免费大全| 色精品久久人妻99蜜桃| 日韩中文字幕欧美一区二区| 91久久精品国产一区二区成人 | 12—13女人毛片做爰片一| tocl精华| 午夜视频精品福利| 很黄的视频免费| 人人妻,人人澡人人爽秒播| 久久这里只有精品19| 久久欧美精品欧美久久欧美| 日本黄色片子视频| 精华霜和精华液先用哪个| 欧美中文日本在线观看视频| 少妇丰满av| 国产成人啪精品午夜网站| 男女做爰动态图高潮gif福利片| 老司机福利观看| 少妇丰满av| 法律面前人人平等表现在哪些方面| 亚洲片人在线观看| 国产综合懂色| 九色成人免费人妻av| 欧美最黄视频在线播放免费| 琪琪午夜伦伦电影理论片6080| 麻豆一二三区av精品| 国产精品爽爽va在线观看网站| 一级毛片高清免费大全| 国内毛片毛片毛片毛片毛片| 99国产精品一区二区三区| 亚洲av熟女| 国产精品99久久99久久久不卡| 99久久无色码亚洲精品果冻| 国产精品久久久久久久电影 | 国产精品电影一区二区三区| 亚洲av电影在线进入| 搡老熟女国产l中国老女人| 亚洲九九香蕉| 国内精品一区二区在线观看| 日本 欧美在线| 亚洲色图av天堂| 免费看美女性在线毛片视频| 国产av一区在线观看免费| 制服人妻中文乱码| 国产男靠女视频免费网站| 18禁裸乳无遮挡免费网站照片| 韩国av一区二区三区四区| 在线免费观看的www视频| 亚洲一区高清亚洲精品| 国产午夜福利久久久久久| 国产亚洲av嫩草精品影院| 黄色 视频免费看| bbb黄色大片| 波多野结衣高清无吗| 最新在线观看一区二区三区| 亚洲国产看品久久| 亚洲天堂国产精品一区在线| 床上黄色一级片| 亚洲午夜理论影院| 69av精品久久久久久| 在线a可以看的网站| 毛片女人毛片| 999久久久国产精品视频| 无人区码免费观看不卡| 最好的美女福利视频网| 欧美成人免费av一区二区三区| 男女做爰动态图高潮gif福利片| 国产综合懂色| 久久久久久久午夜电影| 日韩国内少妇激情av| 亚洲国产欧美一区二区综合| 三级国产精品欧美在线观看 | 国产午夜福利久久久久久| 精品熟女少妇八av免费久了| 无遮挡黄片免费观看| 精品午夜福利视频在线观看一区| 午夜免费观看网址| 免费一级毛片在线播放高清视频| 俄罗斯特黄特色一大片| h日本视频在线播放| 久久性视频一级片| 大型黄色视频在线免费观看| 国产v大片淫在线免费观看| avwww免费| 国产高清三级在线| 噜噜噜噜噜久久久久久91| 成人永久免费在线观看视频| 99久久无色码亚洲精品果冻| 亚洲欧美一区二区三区黑人| 国产精品一区二区精品视频观看| 亚洲欧美日韩高清专用| av天堂在线播放| 久久草成人影院| 国产精品久久久久久精品电影| 午夜精品一区二区三区免费看| 久久精品综合一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久国产高清桃花| 日韩人妻高清精品专区| 狂野欧美激情性xxxx| 丰满的人妻完整版| 天堂av国产一区二区熟女人妻| 我要搜黄色片| 九九在线视频观看精品| 午夜激情福利司机影院| 一区福利在线观看| 99热精品在线国产| 男女之事视频高清在线观看| 国产亚洲精品久久久久久毛片| 亚洲人成电影免费在线| 国产成人系列免费观看| 九色国产91popny在线| 色综合站精品国产| 日韩精品中文字幕看吧| 久久性视频一级片| 999久久久国产精品视频| www国产在线视频色| 国产欧美日韩一区二区三| 日韩大尺度精品在线看网址| 亚洲性夜色夜夜综合| 国语自产精品视频在线第100页| 精品欧美国产一区二区三| 日韩欧美国产一区二区入口| 一卡2卡三卡四卡精品乱码亚洲| 99热只有精品国产| 国产1区2区3区精品| 日本a在线网址| 成人特级黄色片久久久久久久| 午夜激情欧美在线| 少妇丰满av| 怎么达到女性高潮| 一夜夜www| 欧美三级亚洲精品| 美女高潮的动态| 欧美午夜高清在线| 9191精品国产免费久久| 天天躁日日操中文字幕| 国产乱人视频| 国产激情久久老熟女| 亚洲18禁久久av| 国产伦一二天堂av在线观看| 免费看十八禁软件| 波多野结衣高清无吗| 国产成人啪精品午夜网站| 久久久水蜜桃国产精品网| 成人永久免费在线观看视频| 男人的好看免费观看在线视频| 国产精品久久久久久亚洲av鲁大| 欧美国产日韩亚洲一区| 亚洲无线在线观看| 亚洲专区国产一区二区| 亚洲成人久久爱视频| 亚洲成人中文字幕在线播放| 久久热在线av| 国产精品女同一区二区软件 | 三级毛片av免费| 最新中文字幕久久久久 | 丰满人妻一区二区三区视频av | 国产视频一区二区在线看| 中文字幕精品亚洲无线码一区| 久久亚洲精品不卡| 脱女人内裤的视频| 成人午夜高清在线视频| 亚洲中文字幕一区二区三区有码在线看 | 老司机深夜福利视频在线观看| 嫩草影院入口| 日韩欧美国产一区二区入口| 高清在线国产一区| 亚洲性夜色夜夜综合| 久久香蕉精品热| av片东京热男人的天堂| 97超视频在线观看视频| 搞女人的毛片| 国产欧美日韩一区二区精品| 中文字幕人成人乱码亚洲影| 日日摸夜夜添夜夜添小说| 日本在线视频免费播放| 午夜福利免费观看在线| 婷婷精品国产亚洲av| 国产成人一区二区三区免费视频网站| 黄色女人牲交| 欧美高清成人免费视频www| 成人无遮挡网站| 亚洲真实伦在线观看| 精品久久久久久久久久久久久| 视频区欧美日本亚洲| 三级男女做爰猛烈吃奶摸视频| x7x7x7水蜜桃| 美女黄网站色视频| 亚洲自偷自拍图片 自拍| 亚洲色图 男人天堂 中文字幕| 精华霜和精华液先用哪个| 亚洲 欧美一区二区三区| 69av精品久久久久久| 亚洲专区中文字幕在线| www.熟女人妻精品国产| 亚洲九九香蕉| 老汉色∧v一级毛片| 欧美极品一区二区三区四区| 日韩三级视频一区二区三区| 国产毛片a区久久久久| 18禁黄网站禁片午夜丰满| 日韩欧美一区二区三区在线观看| 国产熟女xx| 欧美乱妇无乱码| 国产一区二区在线观看日韩 | 久久久久国产精品人妻aⅴ院| 亚洲人成电影免费在线| 久久久成人免费电影| 91九色精品人成在线观看| 久久性视频一级片| 日韩欧美国产一区二区入口| 精品午夜福利视频在线观看一区| 草草在线视频免费看| 国产综合懂色| 九九热线精品视视频播放| 日本熟妇午夜| 高清毛片免费观看视频网站| 精品电影一区二区在线| 99久国产av精品| 国产免费av片在线观看野外av| 国产高清三级在线| 90打野战视频偷拍视频| 成人国产综合亚洲| 亚洲人成伊人成综合网2020| 88av欧美| 香蕉久久夜色| 亚洲色图 男人天堂 中文字幕| avwww免费| 国产亚洲精品av在线| 久久九九热精品免费| 在线观看一区二区三区| 亚洲国产日韩欧美精品在线观看 | 一级毛片女人18水好多| 99久久无色码亚洲精品果冻| 亚洲真实伦在线观看| 怎么达到女性高潮| 久久精品91无色码中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 99久久精品一区二区三区| 中亚洲国语对白在线视频| 无遮挡黄片免费观看| 国产精品野战在线观看| 国产成人影院久久av| 亚洲成人中文字幕在线播放| 波多野结衣巨乳人妻| 国产精华一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕av在线有码专区| 国产亚洲精品久久久com| 最新中文字幕久久久久 | 国产精品日韩av在线免费观看| 亚洲熟女毛片儿| 欧美另类亚洲清纯唯美| 久久中文字幕人妻熟女| 999精品在线视频|