• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Angle robust transmitted plasmonic colors with different surroundings utilizing localized surface plasmon resonance

    2023-09-05 08:47:14XufengGao高旭峰QiWang王琦ShijieZhang張世杰RuijinHong洪瑞金andDaweiZhang張大偉
    Chinese Physics B 2023年7期
    關(guān)鍵詞:王琦瑞金大偉

    Xufeng Gao(高旭峰), Qi Wang(王琦), Shijie Zhang(張世杰), Ruijin Hong(洪瑞金), and Dawei Zhang(張大偉)

    Shanghai Key Laboratory of Modern Optic Systems,Engineering Research Center of Optical Instrument and System,Ministry of Education and Shanghai Key Laboratory of Modern Optical Systems,School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China

    Keywords: plasmonic color filter,color sensing,high angular tolerance

    1.Introduction

    In our world, bright and vivid colors are observed in plants and animals, such as lotus petals, fish scales, and butterfly wings.These tiny structures of petals,scales,and wings can determine how the transmission, reflection, and absorption of incident light occur,and then different structural color can be produced by manipulating the spectrum.[1,2]For thousands of years, these beautiful colors in nature have attracted much attention and the study of artificial colors have never stopped.[3–5]In recent years,artificial nanostructures,made up of a subwavelength structure, have been developed as a new way to produce bright structural colors.[6–8]The resonance effects excited by the interplays between light and nanostructures can be manipulated to separate the incident white light in either transmitted or reflected systems, resulting in bright structural colors.[9–16]Based on this mechanism, various nanostructures with gold(Au),[9]aluminum(Al),[10]silver(Ag),[11,12]silicon (Si),[13,14]silicon nitride (Si3N4),[15]and titanium dioxide(TiO2)[16]have been investigated to produce structural colors.Generally,nanostructures possess several aspects of design freedom, such as geometric parameters,[17,18]structural materials,[19]the properties of incident light,[20]the surrounding environments,[14,16,21,22]etc.; in combination with the above-mentioned mechanism, the optical properties of color filters with fixed geometric parameters can be further altered and thus are widely used in anti-counterfeiting technologies, dynamic displays, and security tags.[23]Among the various external stimuli,the color responses to changes in the surrounding environment are fascinating because colors can be conveniently switched without adjusting the structural geometric parameters, materials, and the properties of incident light.For instance, Sunet al.achieved dynamic structural colors covering the whole visible spectrum with the aid of microfluidic reconfigurable TiO2nanostructures.[16]The narrowband reflectance spectrum and the corresponding color of a TiO2nanostructure array can be accurately manipulated by changing the refractive index of the injection solution.In another work, a color sensor, based on a metal–dielectric–metal configuration with polydimethylsiloxane as the dielectric layer, achieved tunable structural colors by changing the refractive index of the immersed solvent.[21]Although previous reports have been able to provide sufficient color variations,it is difficult for the color variations without high angular toleration to be applied in sensors and dynamic displays.

    Here,we present an angle-insensitive plasmonic filter that can produce different color responses to different surrounding environments.The proposed plasmonic color filters, based on the periodically distributed nanodisk (PDND) array, not only produce bright structural colors by adjusting the nanodisk diameter, but also achieve continuous color palettes by changing the surrounding environment.Simultaneously, due to the weakly coupled localized surface plasmon resonances(LSPRs)excited in the metallic nanodisks,the proposed plasmonic color filters have good incident angle-insensitive properties and excellent polarization angle-insensitive properties.Moreover, based on the analysis of the effect of gap size on the transmittance valley wavelength,an angle-insensitive plasmonic color filter based on the randomly distributed nanodisk(RDND) array is also investigated to produce different color responses to different surrounding environments, which provides another effective and robust way to produce vivid color.

    2.Structure and design

    As shown in Fig.1(a), the proposed plasmonic color filter is composed of a monolayer ultrathin metallic PDND array structure on a silica (SiO2) glass substrate.Notably, the PDND array can manipulate electromagnetic fields with the aid of LSPRs.[11]The diameter, period, and thickness of the nanodisk are denoted byd,p,andt.The gap size(g)between adjacent nanodisks isg=p?dand the duty ratio of this structure is defined asf=d/p.It is noteworthy that the thickness and duty ratio are fixed at 40 nm and 0.5, which can be corroborated by the information in part 1 of supplement 1.In this structure,Ag is chosen as the material of the PDND array and the optical coefficient of Ag is shown in Fig.S3(a).The optical constant of the SiO2substrate is also illustrated in Fig.S3(b).

    Moreover,the transmittance spectra and the electric field distributions of the PDND arrays in different surrounding environments are obtained by using the finite-difference-timedomain solutions commercial software.The Bloch boundary conditions are selected to analyze and calculate the periodic section of the structure on thex-axis andy-axis, and the perfect matched layer(PML)boundary conditions are selected on thez-axis.Considering the symmetry of the nanodisk structure,the polarization angle in this work is 45?,which is shown in Fig.S4.Obviously,the optical properties of the PDND array should be completely independent of the polarization angle, which can be verified by the transmittance spectra of the PDND array at different polarization angles shown in Fig.S4.

    Fig.1.(a)Schematic geometry of one unit of the ultrathin PDND array.(b)Transmittance spectra of the PDND array with dimensions of d=100 nm,p=200 nm,and t=40 nm versus the surrounding refractive index.The white dashed line represents the transmittance peaks versus the surrounding refractive index and the black triangles represent the transmittance peaks in air,water,DMSO,and CS2.(c)Chromaticity coordinates corresponding to the transmittance spectra of panel(b).The white solid lines show magenta to blue color filtering and the arrows indicate the direction.The black stars represent the chromaticity coordinates corresponding to the transmittance spectra in air,water,DMSO,and CS2.

    3.Results and analysis

    The spectra and color responses of the proposed PDND array to changes in the surrounding environment are shown in Figs.1(b) and 1(c).The PDND array has dimensions ofd=100 nm,p=200 nm, andt=40 nm.Figure 1(b) depicts the transmittance spectra of the PDND array in different surrounding environments under normal incidence.As the surrounding refractive index(nsur)increases,the transmittance valley shifts from short wavelength to long wavelength.Moreover,as shown in Fig.1(c),a continuous palette from magenta to blue colors can be produced by changing the surrounding environment with the help of the CIE standard illuminant D65 and the transmittance spectra shown in Fig.1(b).In this work,we chose air, water, dimethyl sulfoxide(DMSO),and carbon disulfide(CS2)as four different surrounding environments to exhaustively study the excellent color responses of the PDND array to changes in the surrounding environment.As the surrounding environment changes from air to water,DMSO,and CS2,the refractive index of the surroundings varies from 1.00 to 1.333, 1.4795, and 1.6276.Correspondingly, the transmittance valley at 515 nm shifts to 572 nm,599 nm,and 623 nm.Meanwhile,the effect of the surroundings on the optical properties and the color characteristics are shown in Fig.2.The effect of the surroundings on optical properties(e.g.,the shift of the resonance wavelength, the transmittance at the resonance wavelength,and the bandwidth of the transmittance valley) of the proposed PDND array is shown in Fig.2(a).As the refractive index of the surrounding environment increases from 1 to 1.6275, the resonance wavelength appears to redshift,the transmittance at the resonance wavelength gradually decreases,and the bandwidth of the transmittance valley gradually becomes wider.

    Notably,according to the formula of tristimulus values,

    whereS(λ) is the spectral energy distribution of D65,T(λ)is the spectrum of the proposed array;(λ),(λ), and(λ)are the CIE 1931 spectral tristimulus values; andkis a normalized coefficient.Apparently, there are direct mapping relations between the transmittance spectrum and the tristimulus values.Therefore,to explain the effect of the surroundings on the color characteristics(e.g.,hue,saturation,and lightness)of colors produced by the proposed PDND array by utilizing the change of the transmittance spectrum in different surroundings,the saturation is considered in the CIE 1931 chromaticity diagram (the solid color on the CIE-space outline has 100%saturation, but the white point in the center has 0% saturation).The lightness and hue are calculated in theLch(lightness,chroma,and hue)module as follows:

    whereL,c, andhare the calculated lightness, chroma, and hue in theLchmodule;uandvare the chromatic coordinates in theLchmodule;X,Y,andZare the tristimulus values of the color generated;Xn,Yn,andZnare the tristimulus values of the source D65.Furthermore, for the hue in theLchmodel, ifuandvare positive values, the hue is in the range of [0,π/2];ifvis a positive value butuis a negative value, the hue is in the range of [π/2,π]; ifuandvare negative values, the hue is in the range of [π,3π/2]; ifuis a positive value butvis a negative value,the hue is in the range of[3π/2,2π].

    As shown in Fig.2(b), the effect of the surroundings on the color characteristics (e.g., hue, saturation, and lightness)of colors produced by the proposed PDND array is also studied.As the surrounding refractive index increases from 1 to 1.6275, the color hue appears significantly changed, which is due to the redshift of the resonance wavelength.The color saturation gradually improves with the refractive index of the surrounding environment increasing from 1 to 1.6275, which is attributed to the decrease of the transmittance at the resonance wavelength and the increase of the bandwidth of the transmittance valley.Furthermore, the color lightness gradually decreases.According to the calculated formula of lightness,the lightness only depends on the stimulus valueYand the stimulus valueYonly depends on the transmittance spectrumT(λ).In brief,the lightness only depends on the transmittance spectrumT(λ),which means that the lightness will be higher when more energies in the visible spectrum are transmitted.With the redshift in the resonance wavelength and the transmittance valley in the different surroundings,the sideband of the transmittance spectrum gradually decreases and the total transmittance in the visible range also gradually decreases, which is the reason why the lightness of color slightly decreases as the surrounding environment changes.

    Fig.2.(a) The effect of surroundings on optical properties (e.g., the shift of the resonance wavelength, the transmittance at the resonance wavelength,and the bandwidth of the transmittance valley)of the proposed PDND array.(b)The effect of the surroundings on the characteristics(e.g.,hue,saturation,and lightness)of colors produced by the proposed PDND array.

    With the diameter of the Ag nanodisk increasing from 60 nm to 160 nm in steps of 20 nm,the transmittance spectra of 6 nanostructures at normal incidence are shown in Fig.3(a).Obviously, the wavelength at the transmittance valley shifts from 467 nm to 639 nm.Meanwhile,the chromaticity coordinates corresponding to the transmittance spectra of the PDND arrays with different nanodisk diameters are plotted with a white line in the CIE 1931 chromaticity diagram and the white arrows indicate the direction in which the diameter of the nanodisk increases from 60 nm to 160 nm.The black stars plotted in Fig.3(b) represent the colors corresponding to the transmittance spectra shown in Fig.3(a).Furthermore, the color responses of 11 nanostructures to different surrounding environments are recorded in Fig.3(c).Apparently,the continuous color palettes achieved by changing the surrounding environment are quite robust.

    Fig.3.(a) Transmittance spectra of 6 nanostructures with different nanodisk diameters at normal incidence.Notably, the nanodisk thickness is t =40 nm and the duty ratio is f =0.5.(b) Chromaticity coordinates corresponding to the transmittance spectra of the PDND arrays with different nanodisk diameters.(c) Color palettes produced by 11 nanostructures in air, water, DMSO, and CS2.The diameter increases from 60 nm to 160 nm in steps of 10 nm.

    As shown in Figs.4(a)–4(c),the transmittance spectra of 3 nanostructures with diameters of 60 nm,100 nm,and 140 nm in air,water, DMSO,and CS2at different incident angles are studied.Apparently, the transmittance valley wavelengths of the PDND arrays with diameters of 60 nm and 100 nm keep almost invariable with the incident angle increasing from 0?to 45?.To explicitly show the slight changes of the transmittance valleys of the PDND arrays with the diameters of 60 nm and 100 nm in different surroundings at different incident angles, with the incident angle varying from 0?to 45?,the effects of the incident angle on the optical properties(e.g.,the shift of the resonance wavelength,the transmittance at the resonance wavelength,and the bandwidth of the transmittance valley)and the color characteristics(hue,saturation,and lightness)of the PDND array with a diameter of 100 nm in different surroundings are selected as examples to study, as shown in Figs.S6–S9.The transmittance valley wavelengths of the PDND array with a diameter of 140 nm shift slightly with the incident angle increasing from 0?to 30?; however, the transmittance valley wavelengths of the PDND array with a diameter of 140 nm demonstrate obvious shifts when the incident angle exceeds 30?.It is worth noting that the relative resonance wavelength shifts can be more intuitively represented in Fig.S5 with the aid of the polar plots of the resonant wavelength as a function of incident angle.Furthermore, a new transmittance valley at relatively short wavelengths is excited when the incident light illuminates the PDND array with a diameter of 140 nm at an incident angle of 30?,which is due to the redshift in the transmittance spectra caused by the increase in the nanodisk diameter.[24]As the surrounding environment changes from air to water, DMSO, and CS2, the new excited valley shifts to a longer wavelength, and the new valley also becomes more apparent.

    The electric field distributions of the PDND array with a diameter of 100 nm at the transmittance valley wavelengths in different surrounding environments are shown in Fig.4(d).On the one hand,the LSPRs can be excited within the PDND array and the coupling between the nanodisks is weak.The weak coupling between the nanodisks indicates that the filtering properties of the proposed structure are determined by the resonance effect of a single nanodisk.Therefore,the resonance frequency of the LSPRs excited within the PDND array is determined by the dimension and surrounding environment of a single nanodisk.[26]On the other hand, compared with the electric field distributions at normal incidence in different surrounding environments,the corresponding electric field distributions at the incident angle of 45?only show slight distortions.These results well confirm the fact that the resonance frequency of the LSPR is independent of the incident wave vector(i.e., the incidence angle).Therefore, the weakly coupled LSPRs excited in the PDND arrays account for the angleinsensitive filtering properties of the PDND arrays.

    Fig.4.(a)–(c)Transmittance spectra of three nanostructures with different nanodisk diameters in air,water,DMSO,and CS2 with the incident angle increasing from 0?to 45?.(d)Electric field distributions of the PDND array with a diameter of 100 nm at an incident angle of 0?and 45?in different surrounding environments.

    Furthermore, according to the illuminant D65 and the transmittance spectra in Figs.4(a)–4(c), the calculated chromaticity coordinates are plotted in the CIE 1931 chromaticity diagrams illustrated in Fig.5.Obviously,the colors produced by the PDND arrays with diameters of 60 nm and 100 nm in different surroundings do not change slightly as the incident angle varies from 0?to 45?.Also,the colors produced by the PDND array with a diameter of 140 nm in different surroundings do not change significantly as the incident angle varies from 0?to 30?.However, the colors at large incident angles show relatively obvious changes for the PDND array with a diameter of 140 nm due to the new transmittance valleys excited at large incident angles.

    Meanwhile, the color difference between two colors can be calculated by the CIE DE2000 formula.[25]For the PDND arrays with different diameters, the calculated values are shown in Fig.6.Apparently, the calculated color difference gradually increases as the incident angle increases.Whether for the PDND arrays with diameters of 60 nm, 100 nm, or 140 nm, the color difference between the color responses to change in the surrounding environment at different incident angles remains at a relatively low level that cannot be easily detected by human eyes when the incident angle is below 30?.

    Fig.5.Chromaticity coordinates corresponding to the transmitted colors produced by 3 nanostructures with diameters of 60 nm,100 nm,and 140 nm in different surroundings at increasing incident angles of 0?,15?,30?,and 45?.(a)In air;(b)in water;(c)in DMSO;(d)in CS2.

    It is not difficult to observe from Fig.7(a)that the PDND arrays with dimensions ofd=100 nm andt=40 nm have close transmittance valley wavelengths(@515 nm,@518 nm,@526 nm)in air at different gap sizes(100 nm, 250 nm, and 400 nm), which means that the gap sizes between the nanodisks have almost no effect on the transmittance valley wavelength but have an effect on the intensity of the transmittance valley.Apparently,the phenomenon that the gap sizes between the nanodisks have almost no effect on the transmittance valley wavelength is attributed to the weakly coupled LSPRs excited in the PDND arrays, which can be observed from Fig.7(b).The effect of the gap size on the transmittance valley wavelength in water, DMSO, or CS2is similar to the case in air,which can be verified in Fig.S10.These results confirm that the transmittance valley wavelength can be determined by the nanodisk diameter in different surrounding environments.

    Fig.6.Color difference of 3 nanostructures with diameters of 60 nm,100 nm,and 140 nm calculated by CIE DE2000 formula in different surroundings at different incidence angles compared with the normal incidence.(a)In air;(b)in water;(c)in DMSO;(d)in CS2.

    Fig.7.(a) Transmittance curves of the PDND arrays with dimensions of d = 100 nm and t = 40 nm at different gaps g= 100 nm, 250 nm,and 400 nm.It should be noted that the surrounding environment is air.(b) Electric field distributions of the PDND arrays with gap sizes g=100 nm and 400 nm at resonance wavelengths.

    Based on the analysis of the effect of gap size on the transmittance valley wavelength, an RDND array structure is designed to realize the color filtering.Here, a minimum gapg=100 nm between nanodisks,a fixed filling ratiofr=π/16,and an area containing 25 nanodisks are adopted to design the RDND array with dimensions ofd=100 nm andt=40 nm,which is shown in Fig.9(a).The reasons for the selection of the above design rule can be seen in Fig.8.The gap size between nanodisks,the filling ratio,and the size of the designed area are three necessary elements for the design of an RDND array structure.Therefore,the design rule of the RDND array with dimensions ofd=100 nm andt=40 nm is divided into three parts for explanatory purposes.First of all, for the ease of mathematical realization of random distribution,the filling ratio of the RDND array is equivalent to that of the PDND array.The filling ratio calculated from Fig.8(a)is

    Such a fixed filling ratio also allows us to compare the differences between the PDND and RDND arrays in optical properties.Secondly, with the aid of the relationship between the extinction results of the double nanodisk structure and the gap size between nanodisks, the minimum gap size for decoupling for this double nanodisk structure can be obtained.[27]As shown in Fig.8(b),the extinction results of the double nanodisk structure with dimensions ofd=100 nm andt=40 nm are calculated with the gap size changing fromg= 20 nm tog=200 nm.The extinction peak wavelength remains almost constant when the gap size is no less than 100 nm,which means that the weakly coupled LSPRs excited in the double nanodisk structure make the transmittance valley wavelength depend on the nanodisk diameter only when the gap size is no less than 100 nm.(Due to the fact that the critical value can be clearly found in the extinction results of the double nanodisk structure with the gap size changing fromg=20 nm tog=200 nm, it is not necessary to calculate the extinction results of the double nanodisk structure with the gap size changing fromg=20 nm tog=400 nm.)Therefore,the selection of the minimum gap size of 100 nm between nanodisks is necessary for the realization of a stable and reproducible color filter based on the RDND array.Thirdly, due to the RDND array without periodicity, the PML chosen on thex-axis andy-axis is necessary.If the size of the designed area is not restricted,the design and calculation will be too complex to continue.As can be observed from Fig.8(d), the color becomes more and more vivid as the array number increases.It is noteworthy that the color produced by the 5×5 array is close to that of the period array.Hence,such a design area containing 25 nanodisks is a suitable choice.According to the above design rules, the RDND array with 25 nanodisks generated by the MATLAB tool is shown in Fig.8(c).

    Fig.8.(a) Top view of the PDND array.(b) Extinction results of the PDND array with dimensions of d =100 nm and t =40 nm as a function of gap size.(c) RDND array with 25 nanodisks generated by the MATLAB tool.(c)Diagram of the RDND array with 25 nanodisks generated by the MATLAB tool.(d)Calculated transmittance spectra of the PDND arrays with different periodicity.The arrays have dimensions of p=200 nm,d=100 nm,and t =40 nm.The corresponding colors are also calculated.

    According to the above design rule, the designed PDND and RDND arrays with 25 nanodisks are shown in Fig.9(a).As can be observed from Fig.9(b), the transmittance spectra of the RDND array with 25 nanodisks at normal incidence in different surrounding environments have a good agreement with those of the PDND array with 25 nanodisks at normal incidence in different surrounding environments, which further confirms that the transmittance valley wavelength can be determined by the nanodisk diameter in different surrounding environments.The chromaticity coordinates corresponding to the transmittance spectra shown in Fig.9(b)are plotted in the CIE 1931 chromaticity diagram illustrated in Fig.9(c).Meanwhile, as shown in Fig.9(d), the transmittance valley wavelengths of the RDND array with 25 nanodisks in different incident angles remain almost invariable as the incident angle increases from 0?to 45?.Similar to the physical reason of the angle-insensitive filtering properties of the PDND arrays,the weakly coupled LSPRs excited within the RDND array are also responsible for the angle-insensitive filtering properties of the RDND array,which is shown in Fig.S12.To sum up,the RDND array can also be an effective and robust way to produce vivid color with the aid of an appropriate design rule.

    Fig.9.(a) Schematic geometries of the PDND and RDND arrays.(b) Transmittance spectra of the PDND and RDND arrays in air, water,DMSO,and CS2.The array contains 25 nanodisks.(c)Chromaticity coordinates corresponding to the transmittance spectra of the RDND array in different surrounding environments.The white solid lines showing magenta to blue color filtering and the arrows indicate the direction.The black stars represent the chromaticity coordinates corresponding to the transmittance spectra of panel(b).(d)Map of the transmittance spectra of the RDND array in different surrounding environments versus the incident angle.

    4.Conclusion

    In this paper,through a thorough study of the response of plasma to different surrounding environments and the insensitive properties of the incident angle in different surrounding environments, an angle-insensitive plasmonic filter that can produce different color responses to different environments is constructed.The plasmonic color filters not only achieve continuous palettes by changing the surrounding environment,but also produce bright structural colors by altering the nanodisk diameter.Simultaneously,the proposed color filters have good incident angle-insensitive properties and excellent polarization angle-insensitive properties.The color responses of the proposed filters to an arbitrary surrounding environment remain almost invariable as the incidence angle increases from 0?to 30?.It is the weakly uncoupled LSPRs excited between the nanodisks that bring out the physical reason of the angle insensitive filtering properties of the plasmonic color filters in different surrounding environments.Moreover, based on the analysis of the effect of gap size on the transmittance valley wavelength, an angle-insensitive plasmonic color filter based on the RDND array is also investigated to produce different color responses to different surrounding environments,which provides another effective and robust way to produce vivid color.Therefore,the proposed plasmonic color filters have robust and promising applicability in anti-counterfeiting, imaging technologies,and so forth.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China (Grant No.2022YFB2804602)and Shanghai Pujiang Program(Grant No.21PJD048).

    猜你喜歡
    王琦瑞金大偉
    Stability and Convergence of Non-standard Finite Difference Method for Space Fractional Partial Differential Equation
    親親瑞金
    心聲歌刊(2022年4期)2022-12-16 07:11:00
    張大偉作品
    Stability of Linear θ-Method for Delay Partial Functional Differential Equations with Neumann Boundary Conditions
    Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide?
    騰飛吧,瑞金
    親親瑞金
    Pf- D mrt4, a potential factor in sexual development in the pearl oyster Pinctada f ucata*
    神奇的邊界線:一不留神就出國(guó)
    智慧少年(2017年8期)2018-01-10 21:39:12
    《皇帝的新裝》后傳
    日韩免费av在线播放| 欧美最黄视频在线播放免费 | 成人三级做爰电影| 亚洲午夜理论影院| 欧美日韩亚洲高清精品| 亚洲精品美女久久久久99蜜臀| 色精品久久人妻99蜜桃| 成人18禁在线播放| 下体分泌物呈黄色| av在线播放免费不卡| 亚洲av电影在线进入| 99riav亚洲国产免费| av网站在线播放免费| 在线国产一区二区在线| 亚洲国产欧美日韩在线播放| 天堂动漫精品| 亚洲一卡2卡3卡4卡5卡精品中文| 9色porny在线观看| av不卡在线播放| 精品人妻1区二区| 欧美激情极品国产一区二区三区| 国产麻豆69| 99精品在免费线老司机午夜| 欧美日韩亚洲高清精品| 国产成人精品在线电影| 很黄的视频免费| 国产1区2区3区精品| 精品一区二区三区视频在线观看免费 | 操美女的视频在线观看| 亚洲国产欧美网| 男人舔女人的私密视频| 国产欧美亚洲国产| 国产熟女午夜一区二区三区| 中文字幕高清在线视频| 亚洲精品在线观看二区| 亚洲九九香蕉| 99久久综合精品五月天人人| 欧美国产精品va在线观看不卡| 新久久久久国产一级毛片| 国产精品.久久久| 久久香蕉激情| 丁香六月欧美| 日本五十路高清| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 国产成+人综合+亚洲专区| 99国产极品粉嫩在线观看| 国产精品九九99| 亚洲人成电影免费在线| 男男h啪啪无遮挡| 午夜精品国产一区二区电影| 国产精品自产拍在线观看55亚洲 | 一级a爱片免费观看的视频| 中文字幕另类日韩欧美亚洲嫩草| 最新在线观看一区二区三区| 曰老女人黄片| 黄片小视频在线播放| 99riav亚洲国产免费| 最新美女视频免费是黄的| 国产亚洲av高清不卡| 亚洲成人国产一区在线观看| 超色免费av| 久久久久久亚洲精品国产蜜桃av| av一本久久久久| 午夜久久久在线观看| 国产成人精品久久二区二区免费| 999久久久国产精品视频| 午夜久久久在线观看| 国产在视频线精品| 免费黄频网站在线观看国产| 性色av乱码一区二区三区2| 久久精品国产99精品国产亚洲性色 | 大陆偷拍与自拍| aaaaa片日本免费| 精品国产国语对白av| 人人妻,人人澡人人爽秒播| 久久精品人人爽人人爽视色| 久久久久视频综合| av免费在线观看网站| 人妻 亚洲 视频| 亚洲国产欧美一区二区综合| 成人18禁在线播放| 欧美日韩黄片免| 中文字幕人妻丝袜一区二区| 国产极品粉嫩免费观看在线| 精品久久久精品久久久| 国产xxxxx性猛交| 母亲3免费完整高清在线观看| 亚洲国产中文字幕在线视频| 国产无遮挡羞羞视频在线观看| 99re6热这里在线精品视频| 制服诱惑二区| 国产精品电影一区二区三区 | 91麻豆av在线| 一二三四在线观看免费中文在| 在线永久观看黄色视频| 成年人黄色毛片网站| 精品国内亚洲2022精品成人 | 中文欧美无线码| 国产在线精品亚洲第一网站| 亚洲国产欧美日韩在线播放| 久久人妻福利社区极品人妻图片| 美女扒开内裤让男人捅视频| 精品国产亚洲在线| 国产免费现黄频在线看| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩另类电影网站| 成人免费观看视频高清| 中出人妻视频一区二区| 亚洲五月色婷婷综合| a级片在线免费高清观看视频| 午夜精品在线福利| 看黄色毛片网站| 精品亚洲成a人片在线观看| 91av网站免费观看| 法律面前人人平等表现在哪些方面| 麻豆成人av在线观看| 18禁国产床啪视频网站| 国产精华一区二区三区| 9191精品国产免费久久| 一a级毛片在线观看| 亚洲国产精品一区二区三区在线| 最新美女视频免费是黄的| 999精品在线视频| 19禁男女啪啪无遮挡网站| 久久久精品国产亚洲av高清涩受| 欧美激情久久久久久爽电影 | 国产淫语在线视频| 午夜福利在线观看吧| 黄片播放在线免费| 亚洲伊人色综图| 午夜亚洲福利在线播放| 伦理电影免费视频| 天天躁夜夜躁狠狠躁躁| 亚洲av第一区精品v没综合| 国产精品久久电影中文字幕 | 国产成人精品久久二区二区91| 午夜成年电影在线免费观看| 国产无遮挡羞羞视频在线观看| 成人亚洲精品一区在线观看| 人妻久久中文字幕网| 久热爱精品视频在线9| 亚洲男人天堂网一区| bbb黄色大片| 国产在视频线精品| 欧美黑人欧美精品刺激| 国产成人一区二区三区免费视频网站| av电影中文网址| 在线观看一区二区三区激情| 国产色视频综合| 久久 成人 亚洲| 国产野战对白在线观看| 亚洲一区二区三区欧美精品| 咕卡用的链子| 国产91精品成人一区二区三区| 麻豆国产av国片精品| 好看av亚洲va欧美ⅴa在| 搡老岳熟女国产| 亚洲精品自拍成人| 精品高清国产在线一区| 黄色丝袜av网址大全| 欧美乱码精品一区二区三区| 国产色视频综合| 成年人黄色毛片网站| 久久久国产成人精品二区 | 又大又爽又粗| 大香蕉久久成人网| 亚洲人成伊人成综合网2020| 婷婷丁香在线五月| 久久青草综合色| 欧美性长视频在线观看| 午夜激情av网站| 成人永久免费在线观看视频| 高清欧美精品videossex| 高清欧美精品videossex| 超碰成人久久| 成人av一区二区三区在线看| 精品亚洲成国产av| 日韩中文字幕欧美一区二区| 成熟少妇高潮喷水视频| 欧美性长视频在线观看| 国产日韩欧美亚洲二区| 亚洲成av片中文字幕在线观看| 精品久久久久久久毛片微露脸| 男女下面插进去视频免费观看| 嫁个100分男人电影在线观看| 中文字幕色久视频| 少妇猛男粗大的猛烈进出视频| 国产亚洲精品久久久久久毛片 | 亚洲五月天丁香| 最新在线观看一区二区三区| 丰满迷人的少妇在线观看| 在线十欧美十亚洲十日本专区| 大型黄色视频在线免费观看| 少妇被粗大的猛进出69影院| 日韩三级视频一区二区三区| 电影成人av| 久久久精品国产亚洲av高清涩受| 伦理电影免费视频| 无限看片的www在线观看| 欧美日韩黄片免| 国产高清激情床上av| 黄色视频不卡| 视频在线观看一区二区三区| 国产成人av教育| 国产高清videossex| 黑人操中国人逼视频| a级毛片黄视频| 不卡一级毛片| 久久久精品免费免费高清| 久久久久久久午夜电影 | 日韩视频一区二区在线观看| 91av网站免费观看| 中文欧美无线码| 女人被狂操c到高潮| 成人三级做爰电影| 亚洲欧洲精品一区二区精品久久久| 久久热在线av| 亚洲国产精品合色在线| 久久久精品区二区三区| 精品电影一区二区在线| 日本欧美视频一区| 国产av一区二区精品久久| 亚洲av成人av| 香蕉丝袜av| 交换朋友夫妻互换小说| 1024视频免费在线观看| 国产欧美日韩一区二区精品| 精品欧美一区二区三区在线| 人妻久久中文字幕网| 国产精品永久免费网站| 久久人人爽av亚洲精品天堂| 淫妇啪啪啪对白视频| 久久久精品区二区三区| 日日爽夜夜爽网站| 窝窝影院91人妻| 在线十欧美十亚洲十日本专区| 欧美亚洲日本最大视频资源| 久久久国产欧美日韩av| 久久亚洲精品不卡| 岛国毛片在线播放| 男女之事视频高清在线观看| 桃红色精品国产亚洲av| 很黄的视频免费| 亚洲avbb在线观看| 正在播放国产对白刺激| 99精品在免费线老司机午夜| 精品卡一卡二卡四卡免费| 黄色成人免费大全| 亚洲欧美色中文字幕在线| 丝袜美腿诱惑在线| 99精品久久久久人妻精品| 国产亚洲欧美98| 日韩欧美在线二视频 | 久久亚洲精品不卡| 五月开心婷婷网| 日本wwww免费看| 脱女人内裤的视频| 亚洲中文日韩欧美视频| 亚洲自偷自拍图片 自拍| 在线观看免费视频日本深夜| 老熟妇仑乱视频hdxx| 美女午夜性视频免费| 亚洲,欧美精品.| 国产精品自产拍在线观看55亚洲 | 可以免费在线观看a视频的电影网站| 国产亚洲欧美98| 久久国产精品人妻蜜桃| 国产人伦9x9x在线观看| 夜夜躁狠狠躁天天躁| 脱女人内裤的视频| 欧美精品啪啪一区二区三区| 一边摸一边做爽爽视频免费| 国产亚洲一区二区精品| 精品亚洲成a人片在线观看| 午夜福利欧美成人| 成人免费观看视频高清| 亚洲国产欧美一区二区综合| 亚洲熟女精品中文字幕| 国产97色在线日韩免费| 久久国产精品人妻蜜桃| 国产在视频线精品| 亚洲熟女毛片儿| 国产野战对白在线观看| 19禁男女啪啪无遮挡网站| 国产精品美女特级片免费视频播放器 | 精品国产一区二区久久| 亚洲第一欧美日韩一区二区三区| 免费在线观看日本一区| 欧美不卡视频在线免费观看 | 免费看十八禁软件| av福利片在线| 精品欧美一区二区三区在线| 看免费av毛片| 亚洲国产欧美网| 亚洲精品一卡2卡三卡4卡5卡| 国产精品综合久久久久久久免费 | 国产一区二区三区综合在线观看| 国产有黄有色有爽视频| 午夜精品久久久久久毛片777| 色婷婷av一区二区三区视频| 亚洲情色 制服丝袜| 又黄又粗又硬又大视频| 久热爱精品视频在线9| 亚洲国产欧美日韩在线播放| 午夜福利一区二区在线看| 91成年电影在线观看| 久久午夜亚洲精品久久| 国产精品久久电影中文字幕 | 又黄又爽又免费观看的视频| 嫩草影视91久久| 在线永久观看黄色视频| 久久久国产精品麻豆| 麻豆av在线久日| 两人在一起打扑克的视频| 中文字幕av电影在线播放| 亚洲五月色婷婷综合| 波多野结衣av一区二区av| 大香蕉久久网| a级毛片在线看网站| 在线观看免费日韩欧美大片| 国产亚洲欧美精品永久| 色播在线永久视频| 一二三四在线观看免费中文在| 亚洲 国产 在线| 免费在线观看完整版高清| а√天堂www在线а√下载 | 老司机亚洲免费影院| 亚洲 国产 在线| 久久久水蜜桃国产精品网| 国产精品成人在线| 亚洲人成电影免费在线| 久久ye,这里只有精品| 精品一品国产午夜福利视频| 五月开心婷婷网| 两性夫妻黄色片| 搡老乐熟女国产| 岛国在线观看网站| 国产日韩欧美亚洲二区| 国产精品.久久久| 一级片免费观看大全| 首页视频小说图片口味搜索| 久久ye,这里只有精品| 水蜜桃什么品种好| 亚洲精品中文字幕在线视频| 无遮挡黄片免费观看| 岛国毛片在线播放| 成年人黄色毛片网站| 两个人看的免费小视频| 美国免费a级毛片| 亚洲精品在线美女| 在线观看一区二区三区激情| 国产欧美亚洲国产| 成人手机av| 人妻久久中文字幕网| 色播在线永久视频| 欧美日韩黄片免| 欧美激情 高清一区二区三区| 免费女性裸体啪啪无遮挡网站| 女人精品久久久久毛片| 亚洲精品一卡2卡三卡4卡5卡| 视频区欧美日本亚洲| 国产成人啪精品午夜网站| 757午夜福利合集在线观看| 嫩草影视91久久| 亚洲精品粉嫩美女一区| 十八禁人妻一区二区| 午夜老司机福利片| 国产精品永久免费网站| 午夜91福利影院| 国产成人欧美| 亚洲av美国av| 免费观看人在逋| 男人操女人黄网站| 婷婷丁香在线五月| 99久久99久久久精品蜜桃| 国产亚洲一区二区精品| 国产精品国产av在线观看| 视频区欧美日本亚洲| 亚洲五月婷婷丁香| 最近最新中文字幕大全电影3 | 宅男免费午夜| 国产亚洲精品久久久久5区| 国产麻豆69| 国产激情欧美一区二区| 亚洲欧美日韩另类电影网站| 伊人久久大香线蕉亚洲五| 少妇被粗大的猛进出69影院| 亚洲av欧美aⅴ国产| 亚洲中文日韩欧美视频| 精品一区二区三卡| 视频在线观看一区二区三区| 热99re8久久精品国产| 久久久久久久久免费视频了| 超碰成人久久| 久久久国产欧美日韩av| 女人久久www免费人成看片| 久久久国产成人免费| 高清在线国产一区| 国产精品国产高清国产av | 免费女性裸体啪啪无遮挡网站| 99香蕉大伊视频| 成熟少妇高潮喷水视频| 香蕉久久夜色| 免费在线观看影片大全网站| 在线永久观看黄色视频| 俄罗斯特黄特色一大片| 男人操女人黄网站| 国产成人啪精品午夜网站| 国产亚洲精品一区二区www | 青草久久国产| 亚洲欧洲精品一区二区精品久久久| 麻豆成人av在线观看| 国产一区二区三区综合在线观看| 亚洲人成电影免费在线| 成年人午夜在线观看视频| 欧美黑人欧美精品刺激| 夜夜夜夜夜久久久久| 黄网站色视频无遮挡免费观看| 视频区欧美日本亚洲| www.精华液| 国产欧美日韩一区二区三区在线| 国产精品av久久久久免费| 精品无人区乱码1区二区| 老司机亚洲免费影院| 黄色视频不卡| 中文字幕色久视频| 丰满饥渴人妻一区二区三| 黑丝袜美女国产一区| 国产精品久久电影中文字幕 | 一二三四社区在线视频社区8| 女人被狂操c到高潮| 一级a爱视频在线免费观看| 亚洲男人天堂网一区| 色婷婷av一区二区三区视频| 欧美不卡视频在线免费观看 | 欧美乱码精品一区二区三区| 两个人免费观看高清视频| 国产精华一区二区三区| 啦啦啦视频在线资源免费观看| 国产主播在线观看一区二区| 国产熟女午夜一区二区三区| 欧美乱码精品一区二区三区| 91麻豆精品激情在线观看国产 | 18禁黄网站禁片午夜丰满| 无限看片的www在线观看| 中文字幕人妻丝袜一区二区| 久久久久国产一级毛片高清牌| 久久香蕉精品热| 深夜精品福利| 久久久久国产一级毛片高清牌| 老司机靠b影院| 亚洲av欧美aⅴ国产| 少妇猛男粗大的猛烈进出视频| 国产淫语在线视频| 色精品久久人妻99蜜桃| 高清视频免费观看一区二区| 又大又爽又粗| 看免费av毛片| 亚洲国产毛片av蜜桃av| 国产欧美日韩一区二区精品| 热99国产精品久久久久久7| 在线免费观看的www视频| 亚洲成a人片在线一区二区| 身体一侧抽搐| 久久久久久久精品吃奶| 国产激情欧美一区二区| 一区福利在线观看| 国产极品粉嫩免费观看在线| 精品福利观看| 90打野战视频偷拍视频| 丰满人妻熟妇乱又伦精品不卡| 人人妻,人人澡人人爽秒播| 人成视频在线观看免费观看| 免费一级毛片在线播放高清视频 | 免费不卡黄色视频| 亚洲专区国产一区二区| 久久久国产精品麻豆| 最近最新中文字幕大全电影3 | 亚洲熟女毛片儿| а√天堂www在线а√下载 | 亚洲成人国产一区在线观看| 亚洲一区高清亚洲精品| 国产无遮挡羞羞视频在线观看| 狠狠狠狠99中文字幕| 丁香六月欧美| 一二三四社区在线视频社区8| 成熟少妇高潮喷水视频| 国产深夜福利视频在线观看| 久久天躁狠狠躁夜夜2o2o| 好看av亚洲va欧美ⅴa在| 91麻豆精品激情在线观看国产 | 欧美另类亚洲清纯唯美| 大型黄色视频在线免费观看| 久久性视频一级片| 岛国在线观看网站| 国产一区二区三区在线臀色熟女 | 国产成人av激情在线播放| 久久国产精品男人的天堂亚洲| 无人区码免费观看不卡| 超碰97精品在线观看| 免费人成视频x8x8入口观看| 一本综合久久免费| 亚洲熟妇熟女久久| 久久久久久久久免费视频了| 国产不卡av网站在线观看| 亚洲欧洲精品一区二区精品久久久| 村上凉子中文字幕在线| 久久九九热精品免费| 亚洲欧美日韩另类电影网站| 在线看a的网站| 91九色精品人成在线观看| 亚洲中文av在线| 淫妇啪啪啪对白视频| 久久精品aⅴ一区二区三区四区| 国产成人免费观看mmmm| 亚洲专区中文字幕在线| 中文欧美无线码| 在线观看免费视频日本深夜| 啪啪无遮挡十八禁网站| 不卡av一区二区三区| 丝袜美腿诱惑在线| 啦啦啦在线免费观看视频4| 一进一出好大好爽视频| 成人三级做爰电影| 村上凉子中文字幕在线| 色婷婷av一区二区三区视频| 亚洲 国产 在线| 久9热在线精品视频| 亚洲精品成人av观看孕妇| 亚洲aⅴ乱码一区二区在线播放 | 亚洲人成77777在线视频| 日日夜夜操网爽| 午夜福利,免费看| 久久国产精品人妻蜜桃| 丁香欧美五月| 亚洲精品乱久久久久久| av中文乱码字幕在线| 欧美日韩一级在线毛片| 麻豆乱淫一区二区| 18禁美女被吸乳视频| 国精品久久久久久国模美| 欧美日本中文国产一区发布| 久久久久精品国产欧美久久久| 久久亚洲精品不卡| 老司机福利观看| 久久国产乱子伦精品免费另类| 免费不卡黄色视频| av线在线观看网站| 精品熟女少妇八av免费久了| 激情视频va一区二区三区| 欧美精品人与动牲交sv欧美| 久久精品亚洲熟妇少妇任你| 叶爱在线成人免费视频播放| 热re99久久国产66热| av有码第一页| 黄色毛片三级朝国网站| 国产精品九九99| 国产成人免费无遮挡视频| 啦啦啦 在线观看视频| 国产日韩一区二区三区精品不卡| 人妻 亚洲 视频| 免费av中文字幕在线| 两个人免费观看高清视频| svipshipincom国产片| 欧美黑人精品巨大| 国产成人啪精品午夜网站| 久久亚洲精品不卡| 亚洲精品国产一区二区精华液| 亚洲国产看品久久| 人妻久久中文字幕网| 精品国产一区二区三区四区第35| 精品午夜福利视频在线观看一区| 搡老岳熟女国产| 久久久国产成人精品二区 | 国产野战对白在线观看| 成人国语在线视频| 国产成人系列免费观看| 久久草成人影院| 国产精品香港三级国产av潘金莲| 成人三级做爰电影| 亚洲片人在线观看| 国产人伦9x9x在线观看| 亚洲男人天堂网一区| 两个人看的免费小视频| 99精品欧美一区二区三区四区| 高潮久久久久久久久久久不卡| 深夜精品福利| 欧美大码av| 99国产精品免费福利视频| 夜夜躁狠狠躁天天躁| 亚洲精品美女久久久久99蜜臀| 人妻丰满熟妇av一区二区三区 | 中文字幕人妻丝袜制服| 大陆偷拍与自拍| 又黄又粗又硬又大视频| 亚洲精品中文字幕一二三四区| 欧美激情久久久久久爽电影 | 水蜜桃什么品种好| 午夜福利在线观看吧| 天堂俺去俺来也www色官网| 青草久久国产| 999久久久精品免费观看国产| 久久香蕉激情| 国产精品影院久久| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 免费久久久久久久精品成人欧美视频| 国产真人三级小视频在线观看| 婷婷丁香在线五月| 丁香欧美五月| 大码成人一级视频| 丁香欧美五月| 久久草成人影院| 91成人精品电影|