• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of the microstructure and magnetic properties of(La,Ce)–Fe–B nanocrystalline ribbons

    2023-09-05 08:48:32LiYuLian連李昱XiaoWeiZhang張曉偉YingLiu劉穎JunLi李軍andRenQuanWang王仁全
    Chinese Physics B 2023年7期
    關鍵詞:劉穎李軍

    Li-Yu Lian(連李昱), Xiao-Wei Zhang(張曉偉), Ying Liu(劉穎),2,Jun Li(李軍),?, and Ren-Quan Wang(王仁全)

    1School of Materials Science and Engineering,Sichuan University,Chengdu 610065,China

    2Key Laboratory of Advanced Special Material&Technology,Ministry of Education,Sichuan University,Chengdu 610065,China

    Keywords: (La,Ce)–Fe–B,La/Ce ratio,rare earth content,secondary phases inhibition

    1.Introduction

    To curb the cost of permanent magnet production, the cost-effective Ce–Fe–B[1–3]and(La,Ce)–Fe–B[4–9]rare earth permanent magnets have attracted wide attention.Herbstet al.[10,11]and Soedaet al.[12]reported the hard magnetic properties of Ce2Fe14B and (La,Ce)2Fe14B compounds, respectively.With the addition of Hf,[13]Ta[14]and Ga[15,16]to Ce–Fe–B type magnets,finer matrix phase grains and good magnetic properties have been obtained.However, the secondary phases (such as CeFe2,β-La phases, etc.) in these magnets result in deterioration of the microstructure and poor magnetic properties.[15,17]Recent investigations have been made on elemental dopants to inhibit secondary phases.Zhanget al.[18]and Rehmanet al.[19]reported that Si and Ge atoms enter into the lattice of the CeFe2phase and suppress the generation of the CeFe2phase.The growth of the matrix phase grains and the formation of the CeFe2phase have been inhibited by the addition of Mo.[20]In comparison,fewer reports have focused on the effect on secondary phase inhibition of light rare earth elements substituted for Ce.

    Our previous study investigated the contribution of La to expanding the formation temperature gap between(La,Ce)2Fe14B and metastable Ce2Fe17phases.[21]Recent work on(La,Ce)2Fe14B alloys[22]verified the relationship between phase consistency and magnetic properties.Unlike elemental dopant methods,La atoms may enter into the Ce2Fe14B phase lattice and improve the magnetic properties.[23]Therefore,our understanding of the effect of La on variation of the microstructure and magnetic properties in (La,Ce)–Fe–B ribbons still needs to be clarified.

    In this work,(La,Ce)–Fe–B ribbons with different La/Ce ratios and rare earth element contents were prepared.The relationship between the microstructure of ribbons and the magnetic performance was investigated.A fine microstructure was obtained in ribbons with good magnetic properties.

    2.Experimental method

    Two kinds of cast ingots were prepared by induction melting: Ce–Fe–B type alloy and (La,Ce)–Fe–B type alloy.The Ce–Fe–B type alloy had the nominal compositions of CezFe94?zB6(z= 12, 13, 14, 15, 16) and the (La,Ce)–Fe–B type alloy had nominal compositions of(LayCe100?y)xFe94?xB6(x=12,14,16 andy=0,15,25,35,50).The constituent metals had a purity better than 99.8 wt.%and the whole process of casting took place under an argon atmosphere.The cast ingot was remelted in a quartz tube for the homogenization of alloy composition, followed by rapid quenching at a molybdenum wheel at a speed of 45 m·s?1.The rapidly quenched ribbons were placed in a tube furnace and heated at 525?C for 15 min under a vacuum to ensure their complete crystallization.Standard bonded magnets were prepared to verify the magnetic properties of the ribbons.The mixture,combining the magnetic powder with epoxy resin in the proportion of 100:2.5, was pressed into a cylinder with a density of about 6.0 g·cm?3.These bonded magnets were solidified at 175?C for 90 min.

    The phase constitution and structure of Ce–Fe–B type and(La,Ce)–Fe–B type alloys were characterized by an x-ray diffraction(XRD)analyzer with CuKαradiation(λ=1.54 ?A)and CoKαradiation (λ= 1.79 ?A), respectively, over a 2θrange of 20?–70?.The refinement results were calculated by the Rietveld method via general structure analysis system(GSAS)software.[24]Magnetic properties were measured with a vibrating sample magnetometer(VSM;Lakeshore 7410)by applying a maximum magnetic field of 2.5 T.The hysteresis curves were corrected with a demagnetization factor(N)equal to 0.21.[25]Bonded magnets were measured by an automatic measuring instrument for magnetization characteristic(AMT-4).The morphology of the ribbons was investigated by a scanning electron microscope(FEI Inspect F50)and a transmission electron microscope(TEM;FEI Talos F200X)equipped with energy dispersive x-ray spectroscopy (EDX; Super X).The equivalent diameter data were collected via Image Pro Plus(IPP)software with counts of at least 300.

    3.Results and discussion

    3.1.Phase constitution and magnetic properties of Ce–Fe–B type alloys

    To understand the phase variation in Ce–Fe–B alloys,melt ribbons with Ce content changed from 12 at.%to 16 at.%.were prepared.Figure 1(a) shows the XRD pattern of each crystallized ribbon.It is noteworthy that the secondary phase(CeFe2)emerges when the Ce content is 14 at.%.Due to the Curie temperature of the CeFe2phase being much lower than room temperature(about 225 K),[26]this secondary phase exhibits paramagnetism under the working condition of permanent magnets.Meanwhile,the relative intensity of the diffraction peaks of the CeFe2phase in the alloy was enhanced with the growing concentration of Ce,which means that the weight fraction of CeFe2in ribbons grew simultaneously.

    Fig.1.XRD patterns of Ce–Fe–B alloys(a)and the magnetic properties of Ce–Fe–B ribbons(b).

    The magnetic properties of Ce–Fe–B type alloys with rare earth element contents from 12 at.% to 16 at.% were tested with a VSM and are shown in Fig.1(b).The variation of coercivity for the ribbons shared the same trend as the Ce content in the alloys, but a slight lump was found in the magnetic remanence plot.The Ce16Fe78B6ribbon exhibited the best comprehensive properties, withHcj=5.4 kOe and (BH)max=5.22 MGOe, respectively.Grigoraset al.[27]and Liet al.[28]investigated such a phenomenon for the evolution of magnetic properties with variation in the rare earth content, which may be attributed to the phase constitution in alloys.Recent investigations[29,30]reported that the paramagnetic CeFe2phase would effectively isolate and decouple the matrix phase grains.In addition, due to the good wettability of the Ce-rich phase, it would flow into the gap between matrix grains and form grain boundaries (GBs).[31]The exchange coupling effect would be weakened if GBs individually isolated matrix phase grains.Moreover,the relatively low solidification point of the intergranular phase may smooth the edge of hard magnetic phase grains.The regularization of matrix grains in ribbons would lead to a decrease in the effective demagnetization factor(Neff)and improve coercivity.As a result of these factors, the coercivity of Ce–Fe–B type alloy is increased as the Ce content increases.Meanwhile, the proportion of the Ce2Fe14B (2:14:1) phase in Ce–Fe–B type alloys should also be addressed, as this would directly affect the magnetic properties of ribbons.Thus,the increasing concentration of Ce would generate more CeFe2phase and dilute the magnetic remanence of the ribbons.

    3.2.Effects of La/Ce ratio on the microstructure and magnetic properties

    A rare earth element content of 16 at.% was selected for its excellent performance in Ce–Fe–B type ribbons.The Rietveld refinement patterns for differentyvalues in(LayCe100?y)16Fe78B6ribbons are exhibited in Fig.2(a).The lattice parameters of the RE2Fe14B phase (RE=rare earth)and the phase composition of each ribbon are listed in Table 1.Withyincreasing from 0% to 25%, the mass fraction of the CeFe2phase drops from 21.027 wt.% to 1.911 wt.%.Whenyreaches 35%, the 1:2 phase is completely suppressed by La.Due to the instability of the (La,Ce)Fe2phase[32]and the expanded gap in the formation temperature between(La,Ce)2Fe14B and metastable Ce2Fe17phases,[21,33]the CeFe2phase is gradually suppressed with the increasing La/Ce ratio.Given the relatively high temperature(796.75?C)of the invariant reaction(L?α-Fe+β-La),[34]theβ-La phase formed when the La ratio varied from 15% to 50% and the mass fraction of theβ-La phase increased drastically from 0.294 wt.% to 4.025 wt.%.Theγ-Ce phase[35]is a product of a eutectic reaction at about 604?C following the formula L?CeFe2+γ-Ce and was found in(LayCe100?y)16Fe78B6ribbons with a high Ce content.Because La atoms may dissolve into theγ-Ce phase, theγ-Ce phase was named the RE-rich phase in this work.With an increasing La/Ce ratio andβ-La phase generation,the fraction of the RE-rich phase decreased from 7.468 wt.% to 0.009 wt.% in (LayCe100?y)16Fe78B6alloys.

    As the substitution of La increased from 0%to 50%,the lattice parameters of(LayCe100?y)16Fe78B6ribbons expanded with a near-linear trend, as shown in Table 1 and Fig.2(b).Because of the larger atomic radius of La compared with Ce,the substitution of La atoms for Ce atoms in the 2:14:1 phase would bring about an expansion of lattice space.Therefore,an increasing La/Ce ratio promotes more La atoms to occupy Ce lattice sites in the Ce2Fe14B tetragonal lattice.

    To clarify the elemental distribution in ribbons,TEM and EDX mapping studies for different La/Ce ratios were performed,as shown in Fig.3.The bright-field TEM images for Ce16Fe78B6,(La15Ce85)16Fe78B6and(La35Ce65)16Fe78B6are demonstrated in Figs.3(a),3(b)and 3(c),respectively.Fe,Ce,B and La were selected for mapping scanning and the detected regions are exhibited in Figs.3(d)–3(l).The concentration of rare earth elements in (LayCe100?y)16Fe78B6alloys is excessive for formation of the matrix phase.Hence,the aggregation of rare earth elements is inevitable, as reflected in Figs.3(e),3(h), 3(i), 3(k) and 3(l).With the La/Ce ratio increased, the aggregating areas of La expanded.The positive formation energy[36]of La2Fe14B may induce more serious segregation of La than Ce.Notably,a large area of La segregation(with a length of about 112.16 nm)is found in Fig.3(l).This critical aggregation may accelerate the consumption of excessive rare earth atoms in the(La35Ce65)16Fe78B6ribbon.

    Fig.2.XRD patterns of(LayCe100?y)16Fe78B6 alloys(a)and the refined lattice parameters for(La?Ce100?y)16Fe78B6 alloys(b).

    Table 1.The refined lattice parameters and phase fractions of(LayCe100?y)16Fe78B6 alloys.

    Fig.3.Bright-field (BF) TEM images for the rapidly quenching ribbons: Ce16Fe78B6 (a), (La15Ce85)16Fe78B6 (b) and (La35Ce65)16Fe78B6(c).The TEM-EDX elemental mappings of each ribbon are shown in(d)–(l).

    The TEM images of ribbons for Ce16Fe78B6,(La15Ce85)16Fe78B6and (La35Ce65)16Fe78B6are exhibited in Figs.4(a1), 4(a2) and 4(a3).Figure 4(b1) shows the highresolution TEM(HRTEM)image of the orange square area in Fig.4(a1).It shows the region far from the secondary phase in the Ce16Fe78B6ribbon.A 2:14:1 phase grain was confirmed via a fast Fourier transformation (FFT) pattern, as shown in Fig.4(c1).By virtue of the high fraction of rare earth-rich phase in the Ce16Fe78B6alloy,rare earth atoms were gathered in this region, and GBs (with a thickness of about 7.62 nm)were formed between 2:14:1 phase grains.The EDX line scanning results for the GBs are exhibited in Fig.4(d1).This further proved that the composition of GBs is enriched with rare earth elements.Figure 4(b2)shows a similar area remote to the secondary phase in the(La15Ce85)16Fe78B6ribbon and is marked with an orange square in Fig.4(a2).The adjacent matrix grains were confirmed via FFT patterns in Figs.4(c2)and 4(e2).Clear GBs (with a thickness of about 3.53 nm)were formed between them and are exhibited in an enlarged image in Fig.4(d2).The orange square in Fig.4(a3) is the area far from the secondary phase in the (La35Ce65)16Fe78B6ribbon.In the HRTEM image(Fig.4(b3))of this area,matrix grains were confirmed by FFT patterns in Figs.4(c3)–4(e3).However, there is no obvious GB around these matrix phase grains.

    The CeFe2phase exists in regions marked with red squares in Figs.4(a1) and 4(a2), these being TEM images for the Ce16Fe78B6ribbon and the (La15Ce85)16Fe78B6ribbon, respectively.HRTEM images of these areas are shown in Figs.4(e1)and 4(f2),respectively.The CeFe2phase grains were verified from the FFT images in Figs.4(f1) and 4(g2).These 1:2 phase grains are distributed in the triple junctions among matrix grains that directly contact each other,as shown in Figs.S1(a1–f1)and(a2–d2).

    Theβ-La phase grains were found in(La15Ce85)16Fe78B6and are marked with a blue square in Fig.4(a2).Figure 4(h2)shows the HRTEM image of this blue square, and theβ-La phase grains were confirmed by the FFT pattern in Fig.4(i2).The large segregation area of La in (La35Ce65)16Fe78B6ribbons is marked with a blue square in Fig.4(a3).The HRTEM and FFT images of the segregation area are shown in Figs.4(f3)and 4(i3).It is noticeable that aβ-La phase grain formed in this segregation region.Figures 4(g3)and 4(h3)are FFT images for neighboring 2:14:1 phase grains.However,there is no apparent intergranular phase between adjacent matrix phase grains that are next to theβ-La phase,as shown in Figs.S1(e2)–(k2).

    Statistical graphs of the equivalent diameter (D) of matrix phase grains for Ce16Fe78B6, (La15Ce85)16Fe78B6and(La35Ce65)16Fe78B6ribbons are exhibited in Figs.5(a)–5(c),respectively.When the La/Ce ratio changed from 0%to 35%,the mean equivalent diameter of the matrix grains increased from 33.7 nm to 37.4 nm.

    Fig.4.Bright-field TEM images for the rapidly quenching ribbons Ce16Fe78B6 (a1),(La15Ce85)16Fe78B6 (a2)and(La35Ce65)16Fe78B6 (a3).Areas remote to secondary phases are marked as orange squares in (a1), (a2) and (a3).The high-resolution TEM (HRTEM) and fast Fourier transformation (FFT) images for the orange squares are shown in (b1) and (c1), (b2) and (e2) and (b3) and (e3), respectively.The EDX line scanning result for the grain boundaries of(b1)is shown in(d1).The CeFe2 phase exists in areas marked as red squares in(a1)and(a2).The HRTEM and FFT images for the red squares are shown in(e1)and(f1)and(f2)and(g2),respectively.The β-La phase exists in areas marked as blue squares in(a2)and(a3).The HRTEM and FFT images for blue squares are shown in(h2)and(i2)and(f3)and(i3),respectively.

    Fig.5.Statistical graphs of the equivalent diameter of matrix phase grains in Ce16Fe78B6(a),(La15Ce85)16Fe78B6(b)and(La35Ce65)16Fe78B6(c)ribbons.

    Figure S2 shows the results of EDX mapping studies of areas containing rare earth-rich andβ-La phases, respectively.For the area where a rare earth-rich phase is present(Fig.S2(a)), the elements are homogeneously distributed, as shown in Figs.S2(b)–(d).Benefiting from the good mobility of the rare earth-rich phase, the length of the segregation area of Ce is as little as 12.6 nm.Therefore, in Ce16Fe78B6and (La15Ce85)16Fe78B6ribbons, the relatively high fraction of the rare earth-rich phase would promote sufficient rare earth atoms to form GBs.For(La35Ce65)16Fe78B6ribbons,in comparison,the rare earth-rich phase fraction(0.703 wt.%)is too low to enclose matrix grains.Moreover, the formation of theβ-La phase consumed excessive rare earth atoms and was aggregated in the junctions among matrix phase grains,as shown in Figs.S2(e)–(h).Both factors are responsible for the deterioration of ribbon microstructure,especially on the GBs.

    Fig.6.The hysteresis loops of(LayCe100?y)16Fe78B6 alloys(a)and the magnetic parameters for(LayCe100?y)16Fe78B6 alloys(b).

    The magnetic properties of ribbons are closely related to their phase composition and microstructure.Figures 6(a)and 6(b)show the hysteresis loops and magnetic properties of(LayCe100?y)16Fe78B6(y=0, 15, 25, 35, 50) ribbons.The maximum magnetic energy product of 6.5 MGOe was obtained in (La15Ce85)16Fe78B6ribbon.During the increase in La ratio,theBrof the ribbons grew from 5.2 kG to 6.0 kG,but theHcjvalue dropped from 5.5 kOe to 3.3 kOe.

    Due to the suppression of CeFe2by La in (La,Ce)–Fe–B ribbons, the relative content of the matrix phase and the magnetic remanence are improved.Furthermore, referring to the density functional theory results calculated by Alamet al.[37]the valence of the Ce element is sensitive to the environment of atoms in the crystal lattice.The expansion of the Ce2Fe14B lattice space would promote the valence to a +3 state, which means the magnetic moment of a single crystal would be enhanced.[38]As a result, the ribbon’s magnetic remanence was improved after La substituted for Ce in the alloy.

    The size of matrix phase grains increased with increase in the La/Ce ratio, leading to the deterioration of coercivity.Meanwhile, based on the results of theoretical calculations, the anisotropy field (HA) of the La2Fe14B compound(20 kOe)[10]is lower than that of the Ce2Fe14B compound(26 kOe).When La atoms entered the Ce2Fe14B lattice structure,the(La,Ce)2Fe14B matrix phase would be formed with a relatively lowerHAthan Ce2Fe14B.[21]In addition, as the La content increased,fractions of the rare earth-rich phase and the CeFe2phase decreased, strengthening the exchange coupling effect between matrix phase grains.[17]The large segregation area of theβ-La phase would generate poor GBs between matrix grains,[4]and they may act as nucleation sites for the reverse magnetization domains and worsen theHcjof ribbons.In summary, all these factors would induce the deterioration of coercivity in(La,Ce)16Fe78B6.

    3.3.Effects of rare earth content on microstructure and magnetic properties

    Due to the inhibitory effect on the CeFe2phase and the relatively low fraction of theβ-La phase,a proportion of 15%of La in(La,Ce)–Fe–B alloy was selected as the optimal La/Ce ratio.The Rietveld refinement results for(La15Ce85)12Fe82B6and (La15Ce85)14Fe80B6ribbons are given in Fig.7 and Table 2.The paramagnetic CeFe2and theβ-La phases are faded in (La15Ce85)14Fe80B6and (La15Ce85)12Fe82B6alloys.The CeFe2phase was wholly suppressed in (La15Ce85)14Fe80B6alloy shown by the low relative intensity of CeFe2in the XRD pattern of Ce14Fe80B6.With the reducing content of La, the formation of theβ-La phase was suppressed in the(La15Ce85)14Fe80B6ribbon with a low fraction of 0.123 wt.%.With the smaller rare earth content in the(La15Ce85)14Fe80B6ribbon than in the (La15Ce85)16Fe78B6ribbon, the fraction of the rare earth-rich phase declined from 7.079 wt.% to 0.962 wt.%.However, because of the repulsion between La and Fe[39,40]in forming a compound,theα-Fe phase forms in(La15Ce85)12Fe82B6ribbon with a phase fraction of 1.87 wt.%.

    Fig.7.XRD pattern of(La15Ce85)12Fe82B6 and(La15Ce85)14Fe80B6 alloys.

    For (La15Ce85)14Fe80B6alloy, the La content is higher than in (La15Ce85)12Fe82B6alloy.This may promote more La atoms to enter into the matrix phase lattice and generate a greater lattice space.In comparison,the lattice parameters are much closer forx=14 at.%and 16 at.%alloys,in agreement with a previous report.[23]

    The TEM results for (La15Ce85)12Fe82B6and(La15Ce85)14Fe80B6ribbon are shown in Fig.8.Figure 8(b4)is the enlarged bright-field TEM image for the area marked with a green square in Fig.8(a4).An EDX mapping study for Fe,Ce and La in this area was done and the results are shown in Figs.8(c4)–8(e4).In (La15Ce85)12Fe82B6ribbon, a large Fe segregation region (with a length of about 65.13 nm) was found,and theα-Fe phase was confirmed via the FFT pattern(Fig.8(f4))in this region.The 2:14:1 phase next to this region was verified by the FFT image in Fig.8(g4).

    Table 2.The refined lattice parameters and phase fractions of(La15Ce85)16Fe78B6,(La15Ce85)14Fe80B6 and(La15Ce85)12Fe82B6 alloys.

    Fig.8.Bright-field TEM images for the rapidly quenching ribbons (La15Ce85)12Fe82B6 (a4) and (La15Ce85)14Fe80B6 (a5).The α-Fe phase exists in the area marked as the green square in(a4).The bright-field TEM images and the TEM-EDX elemental mappings of the green square are shown in(b4)and(e4).Parts(f4)and(g4)show FFT images for areas marked with white squares in(b4).The β-La phase exists in the area marked with a blue square in(a5).The HRTEM and FFT images for the blue square are shown in(b5)and(c5).The area remote to the β-La phase is marked as an orange squares in(a5).The HRTEM and FFT images for the orange square are shown in(d5)and(g5).

    Figure 8(b5) is the HRTEM image of the region marked with a blue square in Fig.8(a5).Theβ-La phase in this region was confirmed by the FFT pattern(Fig.8(c5)).In this region,the GBs between neighboring matrix grains are obscure.The area far from theβ-La grains is marked with an orange square in Fig.8(a5).Clear GBs have been formed with a thickness of 2.75 nm,as displayed in Fig.8(d5)and enlarged in Fig.8(f5).Both grains were confirmed as the matrix phase via FFT images in Figs.8(e5) and 8(g5).The reduction of the rare earth content inhibits the formation of secondary phases(the CeFe2andβ-La phases)and curbs the consumption of excessive rare earth elements.Thus, the rare earth-rich phase remained in(La15Ce85)14Fe82B6ribbon with a fraction of 0.962 wt.%,and clear GBs can be generated between the matrix phase grains.

    The variation of magnetic properties and the hysteresis loops of (La15Ce85)xFe94?xB6(x= 12, 14, 16) ribbons are shown in Fig.9(a).As the rare earth element content decreases, the coercivity of the melt-spun ribbons dropped from 4.9 kOe to 2.5 kOe.On the contrary, theBrof stripes attained a peak of 6.29 kG whenx= 14 at.%.The magnetic remanence of the (La15Ce85)12Fe82B6ribbon is lower than that of the (La15Ce85)14Fe80B6ribbon by 0.2 kG.Compared with the (La15Ce85)16Fe78B6ribbon, theHcjvalue of the(La15Ce85)14Fe80B6ribbon decreased slightly by 0.4 kOe.This may be due to the contribution of the inhibition of secondary phases and the formation of GBs in the (La15Ce85)14Fe80B6ribbon.The optimal (BH)max(6.81 MGOe) was achieved in (La15Ce85)14Fe80B6ribbons withHcj= 4.51 kOe.A best (BH)maxof 4.5 MGOe for(La15Ce85)14Fe80B6bonded magnet was obtained, as shown in Fig.9(b).

    Fig.9.The hysteresis loops of(La15Ce85)xFe94?xB6 ribbons(a)and the demagnetization curves of bonded(La15Ce85)xFe94?xB6 magnets(b).

    In the(La15Ce85)12Fe82B6ribbon,the exchange coupling effect exists between hard–soft magnetic grains and hard magnetic grains.[41]The large size of theα-Fe phase grain prevented complete exchange hardening of the soft magnetic phase.[42]Furthermore,the large soft magnetic area in the ribbon weakened the exchange coupling effect between matrix grains.[43]Thus,the(La15Ce85)12Fe82B6ribbon had lower coercivity and magnetic remanence than the(La15Ce85)14Fe80B6ribbon.Thinner GBs and a lower fraction of secondary phases were obtained in they=14 ribbon, which could explain the slightly lower coercivity and stronger remanence than for they=16 one,which had a more robust exchange interaction.To sum up, a declining rare earth content decreases the weight of secondary phases and heightens the intergranular exchange coupling between the matrix phase grains.

    4.Conclusion

    In this work,the phase composition and microstructure of(La,Ce)–Fe–B rapidly quenching ribbons have been modified via a reasonable composition design.The solute behavior of La atoms entering into the matrix phase lattice has been discussed.An increasing ratio of La in (La,Ce)–Fe–B induces a near-liner expansion of lattice parameters and variation of the intrinsic properties in the matrix phase.Due to the decline ofHAand the enhancement of magnetic moment that occurred in the 2:14:1 phase lattice,the magnetic properties of ribbons would be affected.In the alloy with a relatively high rare earth content(16 at.%),the formation of secondary phases(the CeFe2andβ-La phases)is hard to avoid and would result in microstructural deterioration.Reducing the rare earth content suppressed the formation of these secondary phases and strengthened the exchange coupling effect between grains.A fine microstructure with a shallow secondary phase fraction was obtained in the (La15Ce85)14Fe80B6ribbon.Good magnetic properties with(BH)max=6.81 MGOe,Hcj=4.51 kOe andBr=6.29 kG were found for the(La15Ce85)14Fe80B6ribbon.A bonded magnet with (BH)max=4.5 MGOe was prepared.

    Acknowledgement

    Project supported by the fifth batch of major scientific and technological research projects in the Panxi Experimental Zone of Sichuan Province, the new functional materials and applications of rare earth vanadium titanium (Grant No.2020SCUNG201).

    猜你喜歡
    劉穎李軍
    木棉花開
    人民之聲(2022年3期)2022-04-12 12:00:14
    Superconductivity in octagraphene
    記憶早點
    北京紀事(2021年10期)2021-10-31 02:58:26
    A physics-constrained deep residual network for solving the sine-Gordon equation
    陳璐琦、劉穎作品
    A Brief Analysis of Stereotyping in the Movie Crash
    智富時代(2018年12期)2018-01-12 11:51:50
    劉鑫、葉滿波、劉穎空間設計作品
    藝術評論(2016年5期)2016-05-14 07:05:01
    Mechanical Behavior of Plastic PiPe Reinforced by Cross-Winding Steel Wire Subject to Foundation Settlement
    滬港通一周成交概況
    李軍書法藝術簡介
    散文百家(2014年11期)2014-08-21 07:16:04
    国产午夜福利久久久久久| 久久这里有精品视频免费| 麻豆av噜噜一区二区三区| 亚洲精品国产av成人精品| 亚洲av一区综合| 国产黄a三级三级三级人| 九九久久精品国产亚洲av麻豆| 汤姆久久久久久久影院中文字幕 | 色5月婷婷丁香| 波多野结衣巨乳人妻| 国产精品人妻久久久久久| 99热这里只有是精品50| 中文字幕制服av| 久久人人爽人人片av| 午夜爱爱视频在线播放| 老司机影院成人| 日韩欧美精品免费久久| 欧美日韩视频高清一区二区三区二| 久久久国产一区二区| 国产成人精品婷婷| 欧美日韩精品成人综合77777| 蜜臀久久99精品久久宅男| 国产精品一区二区在线观看99 | 成人毛片60女人毛片免费| 最近中文字幕2019免费版| 十八禁网站网址无遮挡 | 精品久久久噜噜| 国产亚洲av片在线观看秒播厂 | 欧美不卡视频在线免费观看| 特级一级黄色大片| 人妻一区二区av| 看黄色毛片网站| 欧美一级a爱片免费观看看| 天堂影院成人在线观看| 中文字幕免费在线视频6| 久久99热6这里只有精品| 干丝袜人妻中文字幕| 麻豆乱淫一区二区| 成人性生交大片免费视频hd| 午夜老司机福利剧场| 丰满少妇做爰视频| 六月丁香七月| 女人十人毛片免费观看3o分钟| 亚洲精品中文字幕在线视频 | 亚洲精品乱码久久久久久按摩| .国产精品久久| 熟妇人妻久久中文字幕3abv| 亚洲欧美成人精品一区二区| 亚洲精华国产精华液的使用体验| 在线播放无遮挡| 国产午夜精品一二区理论片| 亚洲丝袜综合中文字幕| 成人一区二区视频在线观看| 尤物成人国产欧美一区二区三区| 狠狠精品人妻久久久久久综合| 精品99又大又爽又粗少妇毛片| 婷婷色av中文字幕| 国产视频内射| 国产精品国产三级国产专区5o| 人妻系列 视频| 欧美xxxx性猛交bbbb| 好男人在线观看高清免费视频| 国模一区二区三区四区视频| 亚洲婷婷狠狠爱综合网| 亚洲高清免费不卡视频| 国精品久久久久久国模美| 亚洲精品影视一区二区三区av| 两个人视频免费观看高清| 69人妻影院| 毛片一级片免费看久久久久| 综合色丁香网| 久久久久久久午夜电影| 久久久国产一区二区| 中文精品一卡2卡3卡4更新| 热99在线观看视频| 黄片wwwwww| 成人国产麻豆网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人a区在线观看| 精品99又大又爽又粗少妇毛片| 99久久人妻综合| 欧美高清性xxxxhd video| 成年av动漫网址| 99热这里只有精品一区| 国产久久久一区二区三区| 国产在视频线在精品| 国产乱人偷精品视频| 亚洲欧美一区二区三区国产| 黄色配什么色好看| 在线观看av片永久免费下载| 大话2 男鬼变身卡| 五月玫瑰六月丁香| 国产一区二区三区av在线| 婷婷色综合大香蕉| 日韩大片免费观看网站| 爱豆传媒免费全集在线观看| 少妇的逼好多水| 免费看美女性在线毛片视频| 嫩草影院新地址| 日韩欧美精品免费久久| 五月天丁香电影| 国产精品美女特级片免费视频播放器| 欧美3d第一页| 欧美成人精品欧美一级黄| 色尼玛亚洲综合影院| 男女那种视频在线观看| 中文在线观看免费www的网站| 精品一区二区三卡| 91精品一卡2卡3卡4卡| 少妇熟女aⅴ在线视频| 不卡视频在线观看欧美| 人人妻人人澡人人爽人人夜夜 | 欧美日韩在线观看h| 日韩一本色道免费dvd| 欧美xxⅹ黑人| 午夜日本视频在线| 美女大奶头视频| 少妇被粗大猛烈的视频| 男人舔女人下体高潮全视频| 免费av毛片视频| 国产av不卡久久| 午夜激情久久久久久久| 国产一区亚洲一区在线观看| 久久久精品94久久精品| 深爱激情五月婷婷| 乱人视频在线观看| 一二三四中文在线观看免费高清| 嫩草影院入口| 麻豆成人午夜福利视频| 国产亚洲一区二区精品| 国产91av在线免费观看| 夜夜爽夜夜爽视频| 中国美白少妇内射xxxbb| 精品少妇黑人巨大在线播放| 黄色日韩在线| 国产高潮美女av| 五月伊人婷婷丁香| 亚洲欧美清纯卡通| 亚洲最大成人手机在线| 亚洲欧美一区二区三区国产| 狠狠精品人妻久久久久久综合| 99热这里只有是精品50| 久久久欧美国产精品| 熟女电影av网| 亚洲精品,欧美精品| 免费av毛片视频| 成人漫画全彩无遮挡| 亚洲欧美清纯卡通| 日韩一区二区三区影片| videos熟女内射| 午夜视频国产福利| 黄色一级大片看看| 国产黄片美女视频| 寂寞人妻少妇视频99o| 日韩欧美精品v在线| 少妇被粗大猛烈的视频| 床上黄色一级片| 美女xxoo啪啪120秒动态图| 午夜老司机福利剧场| 国产精品久久久久久久久免| 男女那种视频在线观看| 麻豆成人av视频| 熟女电影av网| 亚洲av国产av综合av卡| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲91精品色在线| 欧美性猛交╳xxx乱大交人| 亚洲婷婷狠狠爱综合网| 国产成人aa在线观看| 晚上一个人看的免费电影| 精品一区二区三卡| 国产成人午夜福利电影在线观看| 亚洲av二区三区四区| 男女边摸边吃奶| 3wmmmm亚洲av在线观看| 高清日韩中文字幕在线| 91久久精品国产一区二区三区| 男女视频在线观看网站免费| 成人性生交大片免费视频hd| 亚洲av不卡在线观看| 在线播放无遮挡| 全区人妻精品视频| 2022亚洲国产成人精品| 精品一区二区免费观看| 男女国产视频网站| 亚洲欧美清纯卡通| 日本黄色片子视频| 欧美97在线视频| 精品酒店卫生间| 午夜福利网站1000一区二区三区| 久久久午夜欧美精品| 久久99热这里只有精品18| 少妇裸体淫交视频免费看高清| 亚洲欧美中文字幕日韩二区| 欧美高清性xxxxhd video| 亚洲精品一二三| 免费观看av网站的网址| 亚洲乱码一区二区免费版| 一级a做视频免费观看| 一二三四中文在线观看免费高清| 亚洲欧美一区二区三区国产| 久久久久久久久久久丰满| 久久久久免费精品人妻一区二区| 天堂中文最新版在线下载 | 在线播放无遮挡| 精品酒店卫生间| 午夜福利高清视频| 国产真实伦视频高清在线观看| 床上黄色一级片| 能在线免费看毛片的网站| 嘟嘟电影网在线观看| 成人午夜精彩视频在线观看| 精品不卡国产一区二区三区| 深夜a级毛片| 激情 狠狠 欧美| 在现免费观看毛片| 久久久久久久国产电影| 少妇的逼水好多| 国内少妇人妻偷人精品xxx网站| 97超视频在线观看视频| 国产成人a∨麻豆精品| 免费看av在线观看网站| 免费黄频网站在线观看国产| 国产探花极品一区二区| 亚洲精品亚洲一区二区| www.色视频.com| 视频中文字幕在线观看| 国产黄色视频一区二区在线观看| 天堂影院成人在线观看| 国内精品一区二区在线观看| 在线观看av片永久免费下载| 国产 亚洲一区二区三区 | 91久久精品国产一区二区三区| 高清欧美精品videossex| videos熟女内射| 欧美不卡视频在线免费观看| 深夜a级毛片| 亚洲国产欧美人成| 丝袜美腿在线中文| 女的被弄到高潮叫床怎么办| 亚洲无线观看免费| 国产永久视频网站| 一级毛片 在线播放| 少妇猛男粗大的猛烈进出视频 | 国产亚洲精品久久久com| 欧美97在线视频| 久久久久久久久久人人人人人人| 99久久精品热视频| 亚洲高清免费不卡视频| 内地一区二区视频在线| 人妻一区二区av| 久久久亚洲精品成人影院| 久久这里只有精品中国| 日韩强制内射视频| 亚洲精品第二区| 国产伦在线观看视频一区| 黄片无遮挡物在线观看| 超碰av人人做人人爽久久| 国产乱来视频区| 精品久久久久久久人妻蜜臀av| 国产极品天堂在线| 亚洲最大成人av| 麻豆精品久久久久久蜜桃| 日韩在线高清观看一区二区三区| 国产精品综合久久久久久久免费| 亚洲18禁久久av| 国产亚洲精品久久久com| 国产 一区 欧美 日韩| .国产精品久久| 色综合亚洲欧美另类图片| 卡戴珊不雅视频在线播放| 久久人人爽人人片av| 少妇的逼水好多| 久久久午夜欧美精品| 噜噜噜噜噜久久久久久91| 非洲黑人性xxxx精品又粗又长| 少妇的逼水好多| 街头女战士在线观看网站| 国产精品女同一区二区软件| 国产v大片淫在线免费观看| 日韩国内少妇激情av| 久久久久精品久久久久真实原创| 卡戴珊不雅视频在线播放| 亚洲精品一区蜜桃| 欧美日韩综合久久久久久| 久久这里只有精品中国| 禁无遮挡网站| 久久久a久久爽久久v久久| 插逼视频在线观看| 精品午夜福利在线看| 男人爽女人下面视频在线观看| 成人欧美大片| 蜜臀久久99精品久久宅男| 少妇猛男粗大的猛烈进出视频 | 尤物成人国产欧美一区二区三区| 亚洲色图av天堂| 九九久久精品国产亚洲av麻豆| 午夜老司机福利剧场| 国产在视频线在精品| 亚洲国产高清在线一区二区三| 国产成人福利小说| 乱系列少妇在线播放| 日韩成人伦理影院| 久久精品国产自在天天线| 在线观看免费高清a一片| 久久精品国产鲁丝片午夜精品| 亚洲国产高清在线一区二区三| 久久久国产一区二区| 国产麻豆成人av免费视频| 午夜免费观看性视频| 神马国产精品三级电影在线观看| 国产精品精品国产色婷婷| 嘟嘟电影网在线观看| 欧美不卡视频在线免费观看| 久久久久精品久久久久真实原创| 91久久精品国产一区二区成人| 亚洲精品国产av蜜桃| 精品国产一区二区三区久久久樱花 | 22中文网久久字幕| 精品久久国产蜜桃| 麻豆精品久久久久久蜜桃| 99re6热这里在线精品视频| 亚洲欧美日韩无卡精品| 中国国产av一级| 国产精品伦人一区二区| 99久久九九国产精品国产免费| 亚洲av男天堂| 亚洲欧美清纯卡通| 免费人成在线观看视频色| 婷婷色麻豆天堂久久| 天美传媒精品一区二区| 婷婷色av中文字幕| 大香蕉久久网| 国产欧美另类精品又又久久亚洲欧美| 国内精品宾馆在线| 国产探花在线观看一区二区| 亚洲激情五月婷婷啪啪| 在线观看美女被高潮喷水网站| 一级av片app| 白带黄色成豆腐渣| 最近最新中文字幕免费大全7| 在线免费十八禁| 80岁老熟妇乱子伦牲交| 日本午夜av视频| 最近手机中文字幕大全| 日韩欧美一区视频在线观看 | 99久久中文字幕三级久久日本| 成年人午夜在线观看视频 | 亚洲精品亚洲一区二区| 两个人视频免费观看高清| 最近最新中文字幕大全电影3| 欧美xxⅹ黑人| 综合色av麻豆| 国产一级毛片在线| 免费av不卡在线播放| 2018国产大陆天天弄谢| 亚洲一区高清亚洲精品| 三级男女做爰猛烈吃奶摸视频| 高清av免费在线| 国产精品伦人一区二区| 国产老妇女一区| 国产亚洲午夜精品一区二区久久 | 人妻系列 视频| 大陆偷拍与自拍| 久久久久久国产a免费观看| 嘟嘟电影网在线观看| 插逼视频在线观看| 国产一区二区亚洲精品在线观看| 人妻少妇偷人精品九色| 成人高潮视频无遮挡免费网站| 99久久中文字幕三级久久日本| 国产精品一区www在线观看| 国产伦在线观看视频一区| 婷婷六月久久综合丁香| 老司机影院成人| 国产午夜精品论理片| 亚洲欧洲国产日韩| 在现免费观看毛片| av在线亚洲专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲综合色惰| 少妇人妻精品综合一区二区| 色5月婷婷丁香| 精品一区二区免费观看| 亚洲欧美中文字幕日韩二区| 国产精品99久久久久久久久| 日韩欧美三级三区| 三级国产精品片| 国内精品美女久久久久久| 超碰av人人做人人爽久久| 久久久久久久久久久丰满| 亚洲精品日韩在线中文字幕| 色播亚洲综合网| 国产成人a区在线观看| 自拍偷自拍亚洲精品老妇| 最近手机中文字幕大全| 日韩成人伦理影院| 精品一区二区免费观看| 非洲黑人性xxxx精品又粗又长| 黄色日韩在线| 日韩强制内射视频| av黄色大香蕉| 2022亚洲国产成人精品| 亚洲国产最新在线播放| 日韩一区二区视频免费看| 欧美日韩精品成人综合77777| 99久久精品国产国产毛片| av在线亚洲专区| 爱豆传媒免费全集在线观看| 青春草国产在线视频| 在线a可以看的网站| 久久久精品94久久精品| 色尼玛亚洲综合影院| 蜜臀久久99精品久久宅男| 成人无遮挡网站| 日韩一区二区视频免费看| 亚洲怡红院男人天堂| 麻豆乱淫一区二区| av天堂中文字幕网| 久久久久久国产a免费观看| 如何舔出高潮| 日本黄大片高清| 女人十人毛片免费观看3o分钟| 可以在线观看毛片的网站| 日韩制服骚丝袜av| 51国产日韩欧美| 黄色日韩在线| 一级毛片久久久久久久久女| 成年免费大片在线观看| 日本免费在线观看一区| 青青草视频在线视频观看| 又黄又爽又刺激的免费视频.| 只有这里有精品99| 日本欧美国产在线视频| 国产精品99久久久久久久久| 欧美精品国产亚洲| 欧美日韩亚洲高清精品| 国产永久视频网站| 午夜福利在线观看吧| 亚洲欧美成人精品一区二区| 黑人高潮一二区| 丝瓜视频免费看黄片| 久久国产乱子免费精品| 成年人午夜在线观看视频 | 1000部很黄的大片| 欧美成人a在线观看| 天堂av国产一区二区熟女人妻| 国产精品av视频在线免费观看| 亚洲精品成人av观看孕妇| 夜夜看夜夜爽夜夜摸| 日日干狠狠操夜夜爽| 成人一区二区视频在线观看| 99久久精品热视频| 超碰97精品在线观看| 一区二区三区高清视频在线| 性色avwww在线观看| 熟妇人妻久久中文字幕3abv| 麻豆国产97在线/欧美| 91精品一卡2卡3卡4卡| 亚洲av中文av极速乱| 亚洲精品影视一区二区三区av| 日韩在线高清观看一区二区三区| 日韩不卡一区二区三区视频在线| 色视频www国产| 插逼视频在线观看| 色播亚洲综合网| 中国美白少妇内射xxxbb| xxx大片免费视频| 日日啪夜夜爽| 五月伊人婷婷丁香| 久久人人爽人人片av| 1000部很黄的大片| 18禁在线无遮挡免费观看视频| 欧美激情国产日韩精品一区| 亚洲国产欧美在线一区| 亚洲av不卡在线观看| 国产午夜精品久久久久久一区二区三区| 久99久视频精品免费| 99视频精品全部免费 在线| 91在线精品国自产拍蜜月| 人人妻人人看人人澡| 少妇的逼好多水| 在线观看人妻少妇| 日韩不卡一区二区三区视频在线| 99热这里只有是精品在线观看| 最近中文字幕2019免费版| 69av精品久久久久久| 久久亚洲国产成人精品v| 国产亚洲午夜精品一区二区久久 | 免费黄频网站在线观看国产| 成人国产麻豆网| 亚洲一区高清亚洲精品| 成人毛片60女人毛片免费| 久久午夜福利片| 少妇熟女aⅴ在线视频| av一本久久久久| 国产日韩欧美在线精品| 免费av毛片视频| 精品99又大又爽又粗少妇毛片| 精品人妻视频免费看| 99热6这里只有精品| 人妻夜夜爽99麻豆av| 国产在视频线精品| 国产精品1区2区在线观看.| 日日摸夜夜添夜夜爱| 熟妇人妻久久中文字幕3abv| 欧美另类一区| 日韩电影二区| 亚洲18禁久久av| 乱码一卡2卡4卡精品| 搡女人真爽免费视频火全软件| 晚上一个人看的免费电影| 亚洲av国产av综合av卡| 国产片特级美女逼逼视频| 夜夜看夜夜爽夜夜摸| 欧美日韩国产mv在线观看视频 | 欧美zozozo另类| 中国美白少妇内射xxxbb| 国国产精品蜜臀av免费| 国产探花在线观看一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av一区综合| 天堂av国产一区二区熟女人妻| 少妇的逼好多水| 欧美97在线视频| 黑人高潮一二区| 国产在视频线在精品| 亚洲伊人久久精品综合| 99热这里只有精品一区| 热99在线观看视频| 国产乱来视频区| 2021天堂中文幕一二区在线观| 少妇人妻精品综合一区二区| 91午夜精品亚洲一区二区三区| 麻豆成人午夜福利视频| 亚洲av日韩在线播放| 国产亚洲精品久久久com| 亚洲电影在线观看av| 国产在视频线精品| 欧美日韩一区二区视频在线观看视频在线 | 久久鲁丝午夜福利片| 日韩成人av中文字幕在线观看| 色5月婷婷丁香| 淫秽高清视频在线观看| 亚洲精华国产精华液的使用体验| 夫妻午夜视频| 亚洲丝袜综合中文字幕| 一边亲一边摸免费视频| 日韩视频在线欧美| 黑人高潮一二区| 精品国内亚洲2022精品成人| 一级片'在线观看视频| 黄色欧美视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美成人综合另类久久久| 亚洲美女搞黄在线观看| 亚洲怡红院男人天堂| 中文字幕亚洲精品专区| 26uuu在线亚洲综合色| 内地一区二区视频在线| 热99在线观看视频| 亚洲国产精品国产精品| 国产成人免费观看mmmm| 亚洲av成人精品一区久久| 亚洲av成人av| av专区在线播放| 久久久精品欧美日韩精品| 色5月婷婷丁香| 亚洲精品久久午夜乱码| 成人高潮视频无遮挡免费网站| 色播亚洲综合网| 欧美最新免费一区二区三区| av国产久精品久网站免费入址| 高清午夜精品一区二区三区| 男人和女人高潮做爰伦理| 人妻夜夜爽99麻豆av| 亚洲欧美一区二区三区国产| 神马国产精品三级电影在线观看| 久久精品久久久久久久性| 久久精品国产自在天天线| 99久久人妻综合| 色吧在线观看| 亚洲人成网站高清观看| 日韩av免费高清视频| 午夜视频国产福利| 国产高清国产精品国产三级 | 欧美日韩视频高清一区二区三区二| 欧美激情国产日韩精品一区| 两个人视频免费观看高清| .国产精品久久| 禁无遮挡网站| 精品人妻偷拍中文字幕| 成人鲁丝片一二三区免费| 免费观看a级毛片全部| 成年av动漫网址| av免费在线看不卡| 日本一本二区三区精品| 天堂√8在线中文| 国产免费又黄又爽又色| 色综合站精品国产| 午夜免费男女啪啪视频观看| 国产精品女同一区二区软件| 高清视频免费观看一区二区 | 中文字幕久久专区| 亚洲精品色激情综合| 超碰97精品在线观看| 精品人妻偷拍中文字幕| 久久久色成人| 老司机影院毛片| 99热网站在线观看| 欧美成人一区二区免费高清观看| 国产一级毛片在线| 国内少妇人妻偷人精品xxx网站| 少妇猛男粗大的猛烈进出视频 |