• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Premature thermal decomposition behavior of 3,4-dinitrofurazanfuroxan with certain types of nitrogen-rich compounds

    2023-09-02 08:50:24JiaoHuangRufangPengBoJin
    Defence Technology 2023年8期

    Jiao Huang,Ru-fang Peng ,Bo Jin

    State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology,Mianyang,621010,Sichuan,PR China

    Keywords:DNTF N-H rich Nitrogen compounds Advanced thermal decomposition peak

    ABSTRACT 3,4-Dinitrofurazanfuroxan(DNTF),as a high-energy-density material,features good thermal stability and wide applications.This study aimed to elucidate the thermal decomposition mechanism of DNTF combined with nitrogen-rich compounds containing N-H.The thermal stabilities of DNTF and its hybrid systems were investigated using differential thermal analysis/thermogravimetry (TG),vacuum stability test,and accelerating rate calorimetry under isothermal,non-isothermal,and adiabatic conditions,respectively.Results showed that the thermal stability and thermal safety of DNTF significantly decreased after combining with nitrogen-rich compounds containing N-H.Calculation results showed that the activation energy of the DNTF hybrid systems was significantly lower than that of DNTF.The TGIR was used to monitor the generation of fugitive gases during the thermal decomposition of the DNTF/5-aminotetrazole (5-ATZ) hybrid.Moreover,the nitrogen-rich molecules containing N-H interacted extensively with DNTF,and this interaction accelerated the thermal degradation of DNTF.

    1.Introduction

    High-energy-density materials[1-3]are widely used in defense science and technology for energy storage,weapons security,and high power.In 1987,the high-energy-density material CL-20 [4,5]was introduced to current all-nitrogen/nitrogen-rich compounds.The current research on high-energy-density materials is focused on nitrogen-rich compounds [6-9],which are widely studied because of their high nitrogen content,density,positive heat generation,burst performance,and thermal stability.

    Introducing N-O coordination bonds in nitrogen-rich compounds can increase their density,oxygen balance,burst performance,sensitivity,and stability [10].3,4-Dinitrofurazanfuroxan(DNTF) is a typical coordination oxygen compound whose molecular structure contains furazan ring and oxidized furazan rings,which can form reactive oxygen atoms and thus increase its density[11-13].The low melting point and high density and energy of DNTF make it a key raw material for the study of high-performance explosives[14-17].Over the years,many scholars have studied the synthesis [18],physical properties [10,19-21],solubility [11,22],and applications[23,24]of DNTF.In 2010,Ren et al.[19]studied the fast thermal cracking of DNTF via T-Jump/Fourier-transform infrared spectroscopy and found that the fast-cracking products of DNTF are CO,CO2,NO,and NO2.Sinditskii et al.[25]studied the thermal decomposition of molten DNTF under isothermal conditions and found that it is close to that of HMX.The thermal decomposition of DNTF at different pressures and its interaction with a catalyst were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TG).Zhang [26]et al.studied the thermal stability of DNTF using accelerating rate calorimetry (ARC) and found that the initial exothermic decomposition temperature of DNTF under adiabatic conditions is 180.7°C,which indicates good thermal stability.Despite numerous studies on DNTF and some reports on the thermal decomposition and thermal stability of DNTF,there are few reports on the effects of nitrogen-rich compounds on the thermal decomposition behavior of DNTF.As a promising high-energy-density material,the compatibility of DNTF with other components in mixed explosives is crucial.Li et al.[27]investigated the compatibility of DNTF with TNT,TATB,NTO,LLM-105,ANPYO,DNT,and waxes through DSC and showed that DNTF is incompatible with LLM-105,ANPYO,DNT and waxes.In 2013,Li et al.[28]found that DNTF and DAAzF showed poor compatibility through DSC research.Poor compatibility will affect the safety and service life of mixed explosives,resulting in dangerous accidents.Therefore,it is of great significance to study the compatibility between DNTF and nitrogen rich compounds with specific structures.

    In this work,we explored the thermal decomposition of the hybrid systems of DNTF and nitrogen-rich compounds containing active-H.The thermal decomposition behavior of the DNTF hybrid systems was evaluated using isothermal (vacuum stability test,VST),non-isothermal (differential thermal analysis (DTA)/TG),and adiabatic (ARC) analyses.Results showed that the decomposition peaks of DNTF advanced after combining with nitrogen-rich compounds containing active-H.The thermogravimetric-infrared (TGIR)technique was used to verify the presence of N-O compounds in the DNTF/5-aminotetrazole (5-ATZ) hybrid system at approximately 190°C.

    2.Experimental section

    2.1.Materials

    DNTF with a purity of 99.4% was obtained from the Chinese Academy of Engineering Physics.5-ATZ and tetrazole (TZ) were purchased from Macklin.1,2’-diamino-5,5’-bistetrazole (DABTZ)[29],5,5’-bistetrazole (BTZ) [30],and diamino-furazan (DAF) [31]were synthesized independently as previously described.The molecular structures of the related compounds are shown in Fig.1.

    Fig.1.Molecular structure of DNTF and six nitrogen-rich compounds.

    2.2.Experimental equipment and conditions

    All DTA curves were obtained on a WCR 1/2D instrument (Beiguang Hongyuan Instrument Co.,Ltd.,Beijing) under an air atmosphere using a ceramic crucible presentation sample with a 1:1 mass ratio of DNTF and nitrogen-rich compounds.TG was executed on an SDT Q160 (TA Instrument Co.,USA) with a heating rate of 10°C/min.An ARC 245 instrument (NETZSCN,Germany) was utilized to examine the self-exothermic phenomena of the samples under adiabatic conditions after a heating-wait-search mode [32].The operating temperature was 60-350°C,and the test sample volume was approximately 30 mg.The test sample ball was composed of titanium with a mass of 3.0543 g,a heating rate of 5°C/min,and an exothermic threshold of 0.02°C/min.The differential scanning calorimetry (DSC) was operated on a Q200 (TA Instrument Co.,USA) under a nitrogen (N2) atmosphere.TG-IR was recorded on an STA449F5-INVENIO R (NETZSCN,Germany) instrument with a heating rate of 10°C/min and under a N2atmosphere.A laboratory-made vacuum stability device was employed to examine the variation in pressure of the samples with time under isothermal conditions at a test temperature of 100°C and a test volume of 20 mg.

    3.Results and discussion

    DTA and TG results showed that the decomposition peaks of DNTF combined with nitrogen-rich compounds containing N-H were 40°C-120°C earlier than those of DNTF.VST results indicated that the thermal stability of the DNTF hybrid systems was significantly inferior to that of DNTF,and ARC results demonstrated that the exothermic peak of the DNTF hybrid systems was significantly lower than that of DNTF under adiabatic conditions.TG-IR data revealed a distinctive interaction between DNTF and nitrogen-rich compounds containing N-H.

    3.1.DTA measurements

    Fig.2 shows the DTA plots of six nitrogen-rich compounds containing N-H bonds in an air atmosphere at 20°C.The thermal decomposition temperatures of the DNTF hybrid systems were significantly advanced compared with those of the single systems.Fig.3 displays the temperature difference between the DNTF hybrid systems and the DNTF single system under identical condition.The decomposition temperatures of the DNTF hybrid systems were all immensely advanced,ranging from 40 to 110°C.

    Fig.2.(a)-(f) DTA curves of six nitrogen-rich compounds at 20 °C/min heating rate.

    Fig.3.Decomposition temperature and temperature difference of DNTF and its hybrid systems under the same conditions.

    Fig.4 shows the DTA test curves for DNTF and its hybrid systems at different heating rates under air atmosphere.As shown in Fig.4(a),the melting point of DNTF at atmospheric pressure ranged from 107.9°C to 113.5°C,and its thermal decomposition peak maximum was 260.9-282.4°C,which is consistent with the results reported in the literature[33,34].Fig.4(b)-Fig.4(g)show the DTA curves of DNTF combined with six nitrogen-rich compounds containing N-H at different heating rates.The melting point peak of DNTF appeared in the DTA curve of the DNTF hybrid system.An obvious decomposition peak that is smaller than the decomposition peak of the single nitrogen-rich compound was also found,but the decomposition peak of the single nitrogen-rich compound was not observed.Among these samples,DNTF/AMTZ and DNTF/DAF have two distinct decomposition peaks compared with other samples.

    Fig.4.Non-isothermal DTA curves of DNTF and its hybrid systems at different heating rates (air atmosphere).

    Subsequently,several important kinetic parameters of DNTF and its hybrid systems were calculated using the Kissinger and Ozawa iterative methods on the basis of the relationship between the exothermic peak temperature and the heating rate to analyze the difference in energy required for the molecules to reach activation.This type of method considers the slow variation ofH(μ) andQ(μ)with μ,without the limitation of μ range [35].By iterating several times to a reasonableEvalue satisfyingEi-Ei-1<100 J/mol,the relevant equations are expressed as follows:

    (Kiterative method)

    (Oiterative method).where β denotes the heating rate in°C/min,Ais the pre-exponential factor,Eis the activation energy,Tis the peak temperature,andRis the ideal gas constant.The DTA data at different heating rates are substituted into Eq.(1) and Eq.(2),respectively,and the fitting curves obtained are shown in Fig.S1.The correlation coefficients (R2) between the fitted curves and the experimental points were greater than 0.98,and the linear relationships were good.The apparent activation energies of DNTF and its hybrid systems were calculated after 2-4 iterations of the above method,and the results are exhibited in Table 1,which directly shows that the advanced (E) of DNTF (149.6 kJ/mol) is significantly larger than that of its hybrid systems under the same test conditions.In addition,the smaller activation energy of the DNTF hybrid systems compared with DNTF indicated that the energy required to reach thermal decomposition was lower in the hybrid systems than in the single system.

    Table 1Kinetic parameters of DNTF and its hybrid systems calculated using the iterative method of equal conversion rates.

    The DSC curves of DNTF and its hybrid systems at different heating rates (5°C/min,10°C/min,15°C/min,20°C/min) are represented in Fig.5.The obtained kinetic parameters by the equal conversion Kissinger-Akahira-Sunose (KAS) method [36-39]to understand the changes in their decomposition process.The relevant equations are as follows:

    Fig.5.Non-isothermal DSC curves of (a) DNTF;(b) DNTF/DAF and (c) DNTF/AMTZ systems at different heating rates (N2 atmosphere).

    (KAS method)

    where βiis heating rate,Eα is activation energy,Tα is the temperature at arbitrary conversion values,Ris ideal gas constant.The activation energy is shown in Table 2 when the temperature of different conversion is substituted into the equation and the linear fittings (Fig.S2) are performed.The activation energy of DNTF did not change obviously at the conversion rate of 0.1-0.5,but increased obviously at the quasi-conversion rate of 0.6-0.8,and then decreased.In contrast to DNTF,the activation energy of DNTF/DAF and DNTF/AMTZ system decreased at first and then increased,and the thermal degradation rate decreased at first and then increased,which indicated that the reaction process changed greatly with temperature and the decomposition process is complex.

    Table 2Kinetic parameters of DNTF and its hybrid systems calculated using the KAS method.

    3.2.Vacuum stability tests under isothermal conditions

    The amount of gas produced under the same conditions is usually a criterion for stability evaluation[40].The vacuum stability(VST) [41]of DNTF and its hybrid systems under isothermal conditions was investigated using the method based on gas production.As shown in Fig.6(a),the decomposition pressure and gas production rate of the DNTF hybrid systems under the isothermal condition of 100°C were significantly higher and faster,respectively,than those of DNTF with the extension of time.In specific,the gas production per unit mass of DNTF,DNTF/5-ATZ,and DNTF/TZ were 3.21 mL,17.98 mL,and 152.05 mL after 1440 min,respectively.The smaller the gas yield,the better the stability [42].In the present study,the nitrogen-rich compounds containing N-H significantly increased the gas production rate and gas yield of DNTF through thermal decomposition.Thus,the stability of the DNTF hybrid systems was considerably lower than that of DNTF.

    Fig.6.(a)Isothermal VST of DNTF and its hybrid systems at a constant temperature of 100 °C(mass: 30 mg);(b) Deflation volume per unit mass of the sample at a constant temperature of 100 °C for 24 h.

    3.3.TG measurements

    A non-isothermal TG test under nitrogen atmosphere was performed on the DNTF hybrid systems,and the results are shown in Fig.7(a)-Fig.7(f).As shown in Fig.7(a),the temperature test range of 65-500°C(test range)had only one step of weight loss,and the maximum weight loss temperature was 190.89°C,indicating that the DNTF/5-ATZ hybrid system underwent one-step thermal decomposition.This finding agrees with the DTA test results.The other DNTF blends also started to lose weight after 100°C,and the maximum weight loss also occurred before 200°C.For the TG-DTG plot of the DNTF/BTZ samples (Fig.7(e)),a significant secondary weight loss occurred at 264.4°C,which belongs to the thermal decomposition peak of BTZ.This phenomenon may be attributed to the small amount of sample and the lumpy form of BTZ samples in the test.

    Fig.7.(a)-(f) Non-isothermal TG-DTG curves of DNTF hybrid systems in a N2 atmosphere (HR: 10 °C/min).

    3.4.Thermal analysis results of adiabatic conditions by ARC

    The thermal decomposition of DNTF and its hybrid systems under adiabatic conditions was investigated to assess the safety of the samples during storage[43-45](Fig.8).As shown in Fig.8(a),the initial setting temperature of DNTF was 60°C,and DNTF decomposition did not occur at this temperature.After several heating-waiting-searching operation cycles,the exothermic effect of DNTF was detected at 206.1°C,and the temperature rise rate was 0.024°C/min at this time.The DNTF hybrid systems showed an identical trend to DNTF,but the initial self-exothermic temperature of the DNTF hybrid systems was significantly lower than that of DNTF,and the duration of the exothermic reaction was greatly shortened,as shown in Table 3.These results indicated that the initial decomposition temperature of DNTF at the maximum temperature rise rate is 212.8°C,which indicated high thermal stability.By contrast,the decomposition temperatures of the DNTF hybrid systems at the maximum temperature rise rate were between 110°C and 170°C,which suggested their poor thermal stability under adiabatic conditions.

    Table 3Decomposition characteristics parameters of DNTF and its hybrid systems in the self-acceleration phase(adiabatic).

    Fig.8.ARC temperature and pressure versus time of (a) DNTF;(c) DNTF/5-ATZ;(e) DNTF/DAF;(g) DNTF/AMTZ;(i) DNTF/BTZ and (k) DNTF/TZ;ARC temperature and self-heating rate versus time of (b)DNTF;(d) DNTF/5-ATZ;(f) DNTF/DAF;(h) DNTF/AMTZ;(j) DNTF/BTZ and (l) DNTF/TZ.

    3.5.TG-IR characterizations

    TG-IR can be used to rapidly and intuitively analyze the structure and decomposition mechanism of the thermal decomposition product,thereby allowing to elucidate the mechanism of action of effective escape gas [46,47].In the present study,the TG-IR technique was employed to investigate the thermal decomposition behavior of DNTF/5-ATZ in a N2atmosphere at a heating rate of 10°C/min,and the experimental results are represented in Fig.9.Fig.9(a) depicts the TG curves of the samples in the weight loss phase at temperatures ranging from 60 to 500°C.The sample remained in a thermally stable state after melting,and no weight loss was observed.The weight loss started at 176.1°C and reached a maximum temperature of 185.1°C,which differed from our pretest TG experiments.This difference can be attributed to the different test sample amounts and instruments used.The 3D TG/IR spectra of DNTF/5-ATZ during thermal degradation are shown in Fig.9(b),and the results indicate that the sample decomposition began before 200°C.The IR spectra at 150.1°C,188.6°C,195.4°C,280.3°C,and 353.9°C were obtained and are presented in Fig.9(c).The main gas products of DNTF/5-ATZ at 195.35°C are affiliated with N2O (2248 cm-1),and NO (1801,1945 cm-1),HCN (712,333 cm-1),and NH3(966 cm-1)[48-51]gases were also produced at the same time,which is consistent with the previous thermal analysis and test results,further proving that the thermal decomposition temperature of DNTF/5-ATZ mixed system is ahead,which directly indicates that DNTF interacts with 5-ATZ,possibly because H protons produced during the decomposition of small-molecule compounds accelerate the decomposition of DNTF,and H free radicals also promote the decomposition of small molecular compounds themselves,resulting in mutual promotion after mixing,showing inferior thermal stability.

    Fig.9.(a)TG-DTG curves of DNTF/5-ATZ in a N2 atmosphere(HR:10 °C/min);(b)3D TG/IR spectra of DNTF during thermal decomposition;(c)FT-IR spectra of DNTF/5-ATZ during thermal decomposition at different temperatures;(d) IR absorbance profiles of off-gases.

    4.Conclusions

    The main decomposition temperature of DNTF ranges from 260 to 280°C.The thermal decomposition temperature of DNTF combined with nitrogen-rich compounds containing N-H bonds is significantly lower than that of DNTF alone.Calculation results show that the activation energy of the DNTF hybrid system is lower than that of DNTF,and the non-isothermal TG-DTG curves divulge that the weight loss of the DNTF hybrid system is a one-step process.The results of the adiabatic self-acceleration study indicate the poor safety of DNTF and its hybrid systems.The thermal decomposition of DNTF/5-ATZ is further corroborated by TG-IR,indicating that an interaction occurs between DNTF and nitrogen-rich compounds containing N-H,and this interaction accelerates the thermal decomposition of DNTF.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    The authors appreciate the financially sponsor of the Natural Science Foundation of China(Grant No.51972278),the Outstanding Youth Science and Technology Talents Program of Sichuan (Grant No.19JCQN0085),and the Open Project of State Key Laboratory of Environment-friendly Energy Materials (Southwest University of Science and Technology,Grant No.21fksy19).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.dt.2022.07.002.

    九九在线视频观看精品| 亚洲精品国产色婷婷电影| 一区二区三区精品91| 亚洲av中文字字幕乱码综合| 色吧在线观看| 小蜜桃在线观看免费完整版高清| 青春草国产在线视频| 日韩成人av中文字幕在线观看| 黑人高潮一二区| 亚洲av中文av极速乱| 人体艺术视频欧美日本| 亚洲人与动物交配视频| 91aial.com中文字幕在线观看| 国产精品国产av在线观看| 欧美高清性xxxxhd video| 2021少妇久久久久久久久久久| 久久99热这里只频精品6学生| 精品午夜福利在线看| 国产精品av视频在线免费观看| 亚洲经典国产精华液单| 伦理电影大哥的女人| 亚洲最大成人中文| 不卡视频在线观看欧美| 久热久热在线精品观看| 国产精品久久久久久精品电影小说 | 视频区图区小说| 午夜福利在线观看免费完整高清在| 精品一区二区三卡| 女的被弄到高潮叫床怎么办| 69人妻影院| 爱豆传媒免费全集在线观看| 日韩中字成人| 久久精品人妻少妇| 成年女人看的毛片在线观看| 在线精品无人区一区二区三 | 久久国产乱子免费精品| 成年女人看的毛片在线观看| 九草在线视频观看| 国产欧美日韩精品一区二区| 国产久久久一区二区三区| 天堂俺去俺来也www色官网| 一级a做视频免费观看| 亚洲欧美精品专区久久| 国产女主播在线喷水免费视频网站| 国产精品.久久久| 80岁老熟妇乱子伦牲交| 又爽又黄a免费视频| 老司机影院成人| 有码 亚洲区| 亚洲怡红院男人天堂| 亚洲精品自拍成人| 高清视频免费观看一区二区| av在线老鸭窝| 午夜精品国产一区二区电影 | 一区二区av电影网| 久久99精品国语久久久| 日本免费在线观看一区| 国产探花极品一区二区| 午夜免费男女啪啪视频观看| 亚洲精品456在线播放app| 男人和女人高潮做爰伦理| 舔av片在线| 国产高潮美女av| 亚洲成人av在线免费| 免费看光身美女| 人妻 亚洲 视频| 丝袜喷水一区| 亚洲成人一二三区av| 亚洲精品第二区| 亚洲国产精品成人久久小说| 国产免费视频播放在线视频| 亚洲精品色激情综合| 韩国av在线不卡| 午夜激情久久久久久久| 大码成人一级视频| 97在线视频观看| 天美传媒精品一区二区| 一二三四中文在线观看免费高清| 欧美成人一区二区免费高清观看| 日韩免费高清中文字幕av| 2021少妇久久久久久久久久久| 在线 av 中文字幕| 少妇 在线观看| 欧美成人精品欧美一级黄| av线在线观看网站| 一级爰片在线观看| 久久这里有精品视频免费| 国产精品不卡视频一区二区| 免费大片黄手机在线观看| 亚洲av二区三区四区| 99精国产麻豆久久婷婷| 精品熟女少妇av免费看| 婷婷色麻豆天堂久久| 只有这里有精品99| 精品国产三级普通话版| 日日啪夜夜撸| 在线天堂最新版资源| av网站免费在线观看视频| 亚洲真实伦在线观看| 亚洲欧美成人综合另类久久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧洲日产国产| 国产精品蜜桃在线观看| 亚洲av电影在线观看一区二区三区 | 最近最新中文字幕免费大全7| 18禁裸乳无遮挡动漫免费视频 | 成年女人在线观看亚洲视频 | 午夜免费鲁丝| 91精品伊人久久大香线蕉| 午夜老司机福利剧场| 一级毛片我不卡| 亚洲欧美一区二区三区国产| 一级av片app| 国产精品麻豆人妻色哟哟久久| 久久久欧美国产精品| 黄色一级大片看看| 纵有疾风起免费观看全集完整版| 一本一本综合久久| 亚洲国产精品成人久久小说| 五月玫瑰六月丁香| 亚洲国产欧美在线一区| 欧美一区二区亚洲| 国精品久久久久久国模美| 能在线免费看毛片的网站| 少妇 在线观看| 国产在线一区二区三区精| 久久这里有精品视频免费| 亚洲欧美日韩东京热| 国产成人精品久久久久久| 国产精品偷伦视频观看了| 草草在线视频免费看| 亚洲内射少妇av| 校园人妻丝袜中文字幕| 春色校园在线视频观看| 麻豆乱淫一区二区| 99久久人妻综合| 日韩一区二区视频免费看| 人妻制服诱惑在线中文字幕| 80岁老熟妇乱子伦牲交| 亚洲丝袜综合中文字幕| 国产成人一区二区在线| 最近中文字幕2019免费版| 中文字幕av成人在线电影| 亚洲美女视频黄频| 成人特级av手机在线观看| 久久韩国三级中文字幕| 日韩 亚洲 欧美在线| 成年av动漫网址| 国产在线男女| 亚洲人成网站高清观看| 一级毛片aaaaaa免费看小| 国产毛片在线视频| 午夜福利在线观看免费完整高清在| 亚洲自拍偷在线| 亚洲美女视频黄频| 丰满乱子伦码专区| 日韩三级伦理在线观看| 亚洲欧美成人综合另类久久久| 亚洲一区二区三区欧美精品 | 成人特级av手机在线观看| 免费播放大片免费观看视频在线观看| 国产永久视频网站| 老司机影院毛片| 中国美白少妇内射xxxbb| 免费少妇av软件| 国产精品久久久久久精品古装| 免费观看的影片在线观看| 国产精品精品国产色婷婷| eeuss影院久久| 97超视频在线观看视频| 深爱激情五月婷婷| 国产在视频线精品| 成人鲁丝片一二三区免费| 国产色爽女视频免费观看| 亚洲,欧美,日韩| 欧美xxⅹ黑人| 精品国产乱码久久久久久小说| 啦啦啦在线观看免费高清www| 在线观看美女被高潮喷水网站| 最近手机中文字幕大全| 蜜桃亚洲精品一区二区三区| a级一级毛片免费在线观看| 三级男女做爰猛烈吃奶摸视频| 黄片无遮挡物在线观看| 九色成人免费人妻av| videossex国产| 国产精品伦人一区二区| av专区在线播放| 老司机影院毛片| 深夜a级毛片| 亚洲内射少妇av| 久久久久九九精品影院| 香蕉精品网在线| av专区在线播放| 全区人妻精品视频| 久久精品国产自在天天线| 激情五月婷婷亚洲| 18禁裸乳无遮挡免费网站照片| 久久精品久久久久久久性| 欧美潮喷喷水| 精品国产露脸久久av麻豆| 欧美日韩精品成人综合77777| 色哟哟·www| 18禁在线无遮挡免费观看视频| 韩国高清视频一区二区三区| 丝袜喷水一区| 成人免费观看视频高清| 国产亚洲5aaaaa淫片| 有码 亚洲区| 国语对白做爰xxxⅹ性视频网站| 晚上一个人看的免费电影| 久久亚洲国产成人精品v| 日本黄大片高清| 免费播放大片免费观看视频在线观看| 深爱激情五月婷婷| 亚洲欧美一区二区三区国产| 国产成人a区在线观看| 三级经典国产精品| 日本色播在线视频| 亚洲精品国产成人久久av| 久久久久网色| 国产大屁股一区二区在线视频| 色综合色国产| 亚洲熟女精品中文字幕| 嫩草影院精品99| 熟女人妻精品中文字幕| 免费黄频网站在线观看国产| 亚洲色图av天堂| 日本午夜av视频| 久久影院123| 亚洲精品成人av观看孕妇| 秋霞伦理黄片| 1000部很黄的大片| 亚洲av免费在线观看| 欧美日韩国产mv在线观看视频 | 直男gayav资源| 九草在线视频观看| 国产 一区精品| 舔av片在线| 国产黄色视频一区二区在线观看| 免费少妇av软件| 国内精品美女久久久久久| 中国三级夫妇交换| 丰满少妇做爰视频| 亚洲人成网站在线播| 国产精品99久久久久久久久| 午夜福利在线在线| 我要看日韩黄色一级片| 午夜激情福利司机影院| 另类亚洲欧美激情| 久久久久久九九精品二区国产| 一本色道久久久久久精品综合| 好男人视频免费观看在线| 国产精品蜜桃在线观看| 日韩国内少妇激情av| 中文欧美无线码| 国产高清国产精品国产三级 | 国产91av在线免费观看| 搞女人的毛片| 国产黄频视频在线观看| 嫩草影院精品99| 99热全是精品| 免费看不卡的av| 日日啪夜夜撸| 舔av片在线| 色视频www国产| 欧美日本视频| 日日啪夜夜撸| 久久久精品欧美日韩精品| 99热全是精品| 欧美老熟妇乱子伦牲交| av在线观看视频网站免费| av在线天堂中文字幕| 色视频www国产| 国产精品99久久久久久久久| 黄片无遮挡物在线观看| 久久久久九九精品影院| 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩东京热| 久久国产乱子免费精品| 91在线精品国自产拍蜜月| 晚上一个人看的免费电影| 人妻制服诱惑在线中文字幕| 99热国产这里只有精品6| 女人十人毛片免费观看3o分钟| 18禁动态无遮挡网站| 国产中年淑女户外野战色| 天堂网av新在线| 制服丝袜香蕉在线| 国产亚洲91精品色在线| 精品一区二区三区视频在线| 国产欧美日韩精品一区二区| 久久精品人妻少妇| 久久久精品欧美日韩精品| 亚洲精品第二区| 中文资源天堂在线| 亚洲欧美日韩无卡精品| 啦啦啦中文免费视频观看日本| 啦啦啦啦在线视频资源| 欧美人与善性xxx| 看非洲黑人一级黄片| 亚洲国产精品成人综合色| av黄色大香蕉| 制服丝袜香蕉在线| 日本猛色少妇xxxxx猛交久久| 国产精品99久久99久久久不卡 | 免费看不卡的av| 街头女战士在线观看网站| 观看美女的网站| 久久精品久久久久久久性| 久久鲁丝午夜福利片| 久久久久精品久久久久真实原创| 18禁在线无遮挡免费观看视频| 久久久a久久爽久久v久久| 国产高潮美女av| 狂野欧美激情性xxxx在线观看| 秋霞在线观看毛片| 久热这里只有精品99| 国产精品国产三级专区第一集| 久久ye,这里只有精品| 美女视频免费永久观看网站| www.av在线官网国产| 国产成人免费观看mmmm| 亚洲va在线va天堂va国产| 中文字幕久久专区| 亚洲精品视频女| 青青草视频在线视频观看| 精品一区二区三区视频在线| 国产午夜精品一二区理论片| 蜜臀久久99精品久久宅男| av国产精品久久久久影院| 97在线人人人人妻| 亚洲欧美精品自产自拍| 亚洲内射少妇av| 天堂俺去俺来也www色官网| 色综合色国产| 亚洲精品乱久久久久久| 国产美女午夜福利| 久久久久久久久久成人| 日本wwww免费看| 国产亚洲精品久久久com| 精品久久久久久久人妻蜜臀av| 深夜a级毛片| 丰满少妇做爰视频| 成人一区二区视频在线观看| 神马国产精品三级电影在线观看| 国产综合精华液| 高清在线视频一区二区三区| 亚洲欧美一区二区三区黑人 | 免费黄频网站在线观看国产| 成人毛片a级毛片在线播放| 18禁在线播放成人免费| 高清毛片免费看| 国产女主播在线喷水免费视频网站| 在线观看国产h片| 香蕉精品网在线| 精品国产一区二区三区久久久樱花 | 欧美激情国产日韩精品一区| 少妇人妻 视频| 老司机影院成人| 免费av观看视频| 久久精品国产自在天天线| 高清欧美精品videossex| 亚洲人成网站在线观看播放| 黄片无遮挡物在线观看| 好男人视频免费观看在线| 成人综合一区亚洲| 国产午夜精品久久久久久一区二区三区| 卡戴珊不雅视频在线播放| 男人添女人高潮全过程视频| 亚洲自拍偷在线| 中国国产av一级| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区| 亚洲国产欧美人成| 女的被弄到高潮叫床怎么办| 天堂中文最新版在线下载 | 18禁动态无遮挡网站| 国产成人精品久久久久久| 亚洲最大成人av| 丝瓜视频免费看黄片| 欧美精品人与动牲交sv欧美| 综合色丁香网| 又黄又爽又刺激的免费视频.| 日韩av在线免费看完整版不卡| 久久97久久精品| 国产探花在线观看一区二区| 免费观看a级毛片全部| 男人和女人高潮做爰伦理| 人人妻人人爽人人添夜夜欢视频 | 精品亚洲乱码少妇综合久久| 日韩人妻高清精品专区| 久久精品久久精品一区二区三区| 国产成人a区在线观看| 国产精品偷伦视频观看了| 能在线免费看毛片的网站| 亚洲精品一二三| 美女国产视频在线观看| 黄色视频在线播放观看不卡| www.av在线官网国产| 2018国产大陆天天弄谢| 中文字幕亚洲精品专区| 纵有疾风起免费观看全集完整版| 久久精品久久精品一区二区三区| 免费少妇av软件| 五月伊人婷婷丁香| 日韩,欧美,国产一区二区三区| 人妻一区二区av| 免费电影在线观看免费观看| 久久精品国产自在天天线| 亚洲精品日本国产第一区| 国产精品国产av在线观看| 最新中文字幕久久久久| 亚洲国产色片| 亚洲欧美日韩东京热| 一本色道久久久久久精品综合| 2021少妇久久久久久久久久久| 麻豆成人av视频| 国产成年人精品一区二区| 亚洲精品第二区| 精品国产露脸久久av麻豆| 深爱激情五月婷婷| 午夜精品一区二区三区免费看| 五月伊人婷婷丁香| 国产精品99久久99久久久不卡 | 中文字幕亚洲精品专区| av天堂中文字幕网| 国国产精品蜜臀av免费| 久久精品国产a三级三级三级| 汤姆久久久久久久影院中文字幕| 久久久久九九精品影院| 久久精品国产亚洲av涩爱| 少妇的逼好多水| 别揉我奶头 嗯啊视频| 日韩av在线免费看完整版不卡| 日本爱情动作片www.在线观看| 亚洲丝袜综合中文字幕| 亚洲av成人精品一二三区| 免费在线观看成人毛片| 久久久久久久久久人人人人人人| 日韩强制内射视频| av黄色大香蕉| 久久国产乱子免费精品| 久久久色成人| 日本熟妇午夜| 成人特级av手机在线观看| 国产色爽女视频免费观看| 婷婷色综合大香蕉| 午夜爱爱视频在线播放| 亚洲欧美日韩东京热| 欧美另类一区| 国产成人a区在线观看| 国内揄拍国产精品人妻在线| 99热全是精品| 两个人的视频大全免费| 久久午夜福利片| 国产探花极品一区二区| 欧美另类一区| 国产日韩欧美在线精品| 少妇丰满av| 在线免费观看不下载黄p国产| 五月开心婷婷网| 日本猛色少妇xxxxx猛交久久| 国产爽快片一区二区三区| 91午夜精品亚洲一区二区三区| 一区二区三区乱码不卡18| 国产欧美亚洲国产| 亚洲精品乱久久久久久| 亚洲欧美清纯卡通| 国产伦理片在线播放av一区| 国产一区二区亚洲精品在线观看| 精品久久久噜噜| 国产精品久久久久久精品电影| 成人亚洲精品av一区二区| 少妇人妻一区二区三区视频| 国产美女午夜福利| 纵有疾风起免费观看全集完整版| 免费观看的影片在线观看| 欧美日韩综合久久久久久| 毛片一级片免费看久久久久| 亚洲最大成人中文| 免费大片18禁| 亚洲国产精品999| 搡老乐熟女国产| 亚洲av中文字字幕乱码综合| 久久久国产一区二区| 99热这里只有是精品50| 一区二区av电影网| 亚洲欧美日韩另类电影网站 | 国产成人一区二区在线| 91久久精品国产一区二区三区| 亚洲丝袜综合中文字幕| 国产亚洲91精品色在线| 国产成人a区在线观看| 免费电影在线观看免费观看| 伊人久久国产一区二区| 日韩精品有码人妻一区| 久久久久久久国产电影| 精品久久久久久久久亚洲| 国产一级毛片在线| 亚洲欧美日韩无卡精品| 干丝袜人妻中文字幕| 蜜臀久久99精品久久宅男| 97精品久久久久久久久久精品| 中文天堂在线官网| av女优亚洲男人天堂| 在线天堂最新版资源| 亚洲高清免费不卡视频| 久久久久久久久久久免费av| 色播亚洲综合网| 看十八女毛片水多多多| 免费观看无遮挡的男女| 黄色一级大片看看| 国产av国产精品国产| www.av在线官网国产| 欧美激情在线99| 少妇高潮的动态图| 国产av国产精品国产| 国产精品一区二区三区四区免费观看| 久久精品久久精品一区二区三区| 亚洲国产日韩一区二区| av在线播放精品| 久久久久国产网址| 日日摸夜夜添夜夜爱| 99久久九九国产精品国产免费| 在线观看免费高清a一片| 久久女婷五月综合色啪小说 | 在线观看一区二区三区激情| 大码成人一级视频| 国产淫语在线视频| 色哟哟·www| 国产又色又爽无遮挡免| 99九九线精品视频在线观看视频| 18+在线观看网站| 嫩草影院精品99| 欧美人与善性xxx| 国产av国产精品国产| 国产黄片美女视频| 一级毛片我不卡| 亚洲欧美一区二区三区黑人 | 香蕉精品网在线| 免费看不卡的av| 草草在线视频免费看| 国产在线一区二区三区精| 亚洲国产精品专区欧美| 国产在线一区二区三区精| 日日啪夜夜撸| 中文乱码字字幕精品一区二区三区| .国产精品久久| 春色校园在线视频观看| 亚洲国产高清在线一区二区三| 久久综合国产亚洲精品| 熟女av电影| 国产精品精品国产色婷婷| 欧美一级a爱片免费观看看| 久久人人爽人人爽人人片va| 欧美 日韩 精品 国产| 婷婷色麻豆天堂久久| 日本欧美国产在线视频| 永久网站在线| 久久韩国三级中文字幕| 五月开心婷婷网| 好男人视频免费观看在线| 国产精品99久久久久久久久| xxx大片免费视频| 99热这里只有是精品50| 国产精品久久久久久精品电影| 国产 一区 欧美 日韩| 少妇人妻一区二区三区视频| 99热6这里只有精品| 免费看a级黄色片| 亚洲国产精品成人久久小说| 久久热精品热| 最后的刺客免费高清国语| 国产亚洲一区二区精品| 国产精品无大码| 美女内射精品一级片tv| 天天一区二区日本电影三级| 亚洲国产精品成人综合色| 不卡视频在线观看欧美| 综合色丁香网| 亚洲无线观看免费| 亚洲,一卡二卡三卡| 在线播放无遮挡| 国产精品国产三级国产av玫瑰| 亚洲人成网站高清观看| 亚洲av成人精品一二三区| 亚洲欧美一区二区三区国产| 免费观看av网站的网址| videossex国产| 永久网站在线| 精品久久久精品久久久| 肉色欧美久久久久久久蜜桃 | 蜜桃亚洲精品一区二区三区| 欧美日韩在线观看h| 简卡轻食公司| 日韩欧美 国产精品| 禁无遮挡网站| 99精国产麻豆久久婷婷| 国产淫片久久久久久久久| av福利片在线观看| 国产精品精品国产色婷婷| 特级一级黄色大片| 一级毛片电影观看| 欧美+日韩+精品| 亚洲国产欧美人成| 免费看日本二区| 少妇人妻 视频| 蜜桃久久精品国产亚洲av| 免费av毛片视频| 久久精品国产亚洲av天美| 最近最新中文字幕免费大全7| 欧美成人午夜免费资源| 在线观看三级黄色| 一级爰片在线观看|