呂思璐,劉 天,王 旭,左開霞,謝燕華,2*
硫化亞鐵改性生物炭對水中Cr(Ⅵ)的去除機理研究
呂思璐1,劉 天1,王 旭1,左開霞1,謝燕華1,2*
(1.成都理工大學(xué)生態(tài)環(huán)境學(xué)院,四川 成都 610059;2.成都理工大學(xué)地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國家重點實驗室,四川 成都 610059)
本研究采用Fe3+和S2-共浸漬剩余污泥后,熱解制備硫化亞鐵/生物炭復(fù)合材料(MBC),考察了MBC的制備條件及其對Cr(Ⅵ)的去除效果,并采用SEM、TEM、XRD和XPS等對材料進(jìn)行表征,探討去除機理.結(jié)果表明:選擇污泥作為熱解碳源和載體,摻入Fe3+和S2-后,可在較低的熱解溫度(500 ℃)下制備出性能優(yōu)良的除Cr(Ⅵ)材料;酸性條件有利于MBC對Cr(Ⅵ)的去除,當(dāng)pH值為2~4時,2.5g/L的MBC對濃度為50mg/L以下的Cr(Ⅵ)去除率高達(dá)99%以上;MBC+NaOH(pH=7.8)組合工藝可徹底將溶液中的總Fe和總Cr去除,反應(yīng)后生成的沉淀較緊實,出水無色透明.表征結(jié)果表明,納米硫化亞鐵及氧化鐵顆粒成功負(fù)載于污泥生物炭上,并以半透明膜的形式包覆在材料表面;復(fù)合材料中的Fe2+、Sn2-和C=O均可作為電子供體將大部分Cr(Ⅵ)還原,并形成C-O-Cr、C=O-Cr等絡(luò)合物,剩余少量Cr(Ⅵ)可通過吸附作用被去除,即MBC對Cr(Ⅵ)的去除機制主要為化學(xué)還原、靜電吸附和絡(luò)合作用,且還原過程起著關(guān)鍵作用.
六價鉻Cr(Ⅵ);污泥生物炭;硫化亞鐵;化學(xué)還原
鉻在環(huán)境中主要以Cr(Ⅲ)和Cr(Ⅵ)形式存在,Cr(Ⅵ)具有致突變和致癌性,且溶解度和流動性較強[1].常用的除Cr(Ⅵ)方法有共沉淀、化學(xué)還原、電絮凝、膜過濾和吸附等方法[2].單一的技術(shù)通常具有處理成本高、去除效果差、修復(fù)周期長等問題,亟需開發(fā)更經(jīng)濟高效的處理技術(shù).
硫化亞鐵是一種高效、經(jīng)濟、環(huán)保的還原劑,其Fe2+和S2-為典型的還原活性離子,可作為電子供體加快Cr(Ⅵ)的還原進(jìn)程[3].Zhuang等[4]利用硫化納米零價鐵活化秸稈生物炭,在800℃條件下熱解2h制得復(fù)合材料,其對30mg/L Cr(Ⅵ)的去除率達(dá)92.5%.而Liu等[5]利用硫酸亞鐵銨作為鐵、硫的前體,在較高溫度條件下利用摻氮生物炭熱解30min,形成較穩(wěn)定的FeS納米顆粒,對80mg/L Cr(Ⅵ)具有良好去除效果.Feng 等[6]采用多孔生物炭,使Fe、S被分散到生物炭多孔結(jié)構(gòu)中,在900℃的高溫下下熱解生成的FeS和Fe0,對Cr(Ⅵ)的去除效果提升了80%.這些研究表明FeS顆粒易團聚和易氧化是限制其反應(yīng)活性的主要因素,目前可通過改變生物炭種類、提高熱解溫度以及摻氮等手段提高反應(yīng)活性,但成本較高,實際應(yīng)用性較低,因此如何低成本提高FeS顆粒在生物炭上的分散性和抗氧化性,從而保持Cr(Ⅵ)高效去除的是本研究的關(guān)鍵.
為有效提高FeS顆粒分散性和穩(wěn)定性,本研究采用可提供還原性氣氛的含鐵剩余污泥為原料,摻雜Fe3+、S2-元素,熱解過程中將高價態(tài)鐵還原為低價態(tài),制備硫化亞鐵-生物炭復(fù)合材料(MBC).研究不同生物炭種類、熱解溫度以得到MBC最佳合成條件,同時探究初始濃度、pH值對MBC對Cr(Ⅵ)去除性能的影響,結(jié)合動力學(xué)試驗、掃描電鏡(SEM)、透射電鏡(TEM)、X射線衍射(XRD)和比表面積測試(BET)等分析闡述MBC對Cr(Ⅵ)的去除機制.此外,針對除Cr(Ⅵ)體系中去除剩余鐵和Cr(Ⅲ)的研究空白,本研究也將就此進(jìn)行對比研究.
九水合硫化鈉、六水合三氯化鐵、七水合硫酸亞鐵、無水乙醇、氫氧化鈉、鹽酸均為分析純;重鉻酸鉀為優(yōu)級純.
將自然風(fēng)干的剩余污泥置于105℃干燥箱中烘干至恒重破碎.取2.5g剩余污泥與50mL不同濃度的FeCl3·6H2O和Na2S·9H2O混合液(鐵硫摩爾比為20:1)浸漬攪拌3h.將攪拌后的混合物固液分離干燥后,在厭氧環(huán)境下熱解3h,充分?jǐn)嚢韬蟮幕旌衔锏谷腚x心管中進(jìn)行固液分離,將分離后的污泥在60℃下干燥12h.將干燥后的前驅(qū)體放入管式爐中,在厭氧環(huán)境下進(jìn)行熱解炭化,升溫至500℃并保持2h,待冷卻至室溫后取出,用粉碎機打碎成粉末,過80目篩收集,制備所得的硫化亞鐵-生物炭復(fù)合材料記為(MBC).秸稈生物炭、果皮生物炭、污泥生物炭(BC)、不外加硫(BCFe)和不外加鐵(BCS)的材料的制備步驟同前.
1.3.1 合成與去除實驗,批次實驗中,取50mL初始濃度為50mg/LCr(VI)溶液于血清瓶中,投加一定質(zhì)量的MBC材料,在室溫(25±2)℃下,以200r/min的速率振蕩12h,取得水樣經(jīng)0.45μm濾膜過濾后測定濃度.在探究制備過程中熱解溫度對MBC去除效果影響實驗中,選擇200~600℃作為溫度區(qū)間,針對50mg/L的 Cr(VI)投加2.5g/L材料進(jìn)行去除實驗,產(chǎn)率為改性污泥煅燒后質(zhì)量與原始質(zhì)量之比.初始濃度影響實驗中MBC投加量2.5g/L,在厭氧環(huán)境下分別設(shè)置5,15,25,50和75mg/L5個初始濃度梯度進(jìn)行探究.pH值影響實驗中使用NaOH和HCl調(diào)節(jié)污染液初始pH值分別為2,4,7,9,11,精度控制在±0.1,其余操作按上述條件進(jìn)行.水樣中的Cr(VI)和Fe2+采用《二苯碳酰二肼分光光度法》[GB 7466-87]和《鄰菲啰啉分光光度法》測定.游離的總鐵和總鉻使用火焰原子吸收分光光度計(GGX-9)測定.
1.3.2 動力學(xué)實驗,本研究使用N2吹脫除去污染液中的溶解氧,控制污染液處于厭氧環(huán)境,將0.125g的MBC復(fù)合材料投入濃度分別為5,15 ,25 ,50和75mg/L的Cr(Ⅵ)污染液中,在25℃下以200r/min的轉(zhuǎn)速振蕩,分別在不同的時間間隔(0,5,15,30,60,120, 180,240,360,480和720min)用10mL的針頭注射器移取上清液,使用0.45μm濾膜過濾后按照上述方法測定Cr(Ⅵ)的濃度.采用準(zhǔn)一級動力學(xué)方程(1)、準(zhǔn)二級動力學(xué)方程(2)和Elovich方程(3)對實驗數(shù)據(jù)進(jìn)行擬合分析.表達(dá)式如下:
式中:Q和e(mg/g)為反應(yīng)時間和平衡后Cr(Ⅵ)去除量,mg/g;1為準(zhǔn)一級動力學(xué)模型的去除速率常數(shù), min-1;2為準(zhǔn)二級動力學(xué)模型的去除速率常數(shù), mg/(g·min);E為初始吸附速率, mg/(g·min);E為與化學(xué)吸附的表面覆蓋程度和活化能有關(guān)的脫附常數(shù), g/mg.
采用多種表征方法探討了MBC去除Cr(Ⅵ)的機理.采用日本JEOL公司的JSM-7800型掃描電子顯微鏡觀察樣品表面的形貌,JEM-2100F型透射電子顯微鏡觀察樣品的晶格條紋結(jié)構(gòu).采用美國Thermo公司的NORANTM System 7能譜儀對樣品表面元素的分布進(jìn)行分析,ESCALAB 250XI電子能譜儀分析樣品的化學(xué)狀態(tài)和Quantachrome公司的Autosorb iQStation 1型全自動比表面積孔徑分布分析儀進(jìn)行表征分析.采用德國BRUKER(布魯克)公司的D8ADVANCE型X射線衍射儀進(jìn)行晶體物相分析、Malvern公司生產(chǎn)的Zetasizer Nano ZS系列Zeta電位儀進(jìn)行膠體分散系穩(wěn)定性分析.
2.1.1 不同種類生物炭改性材料除Cr(VI) 效果對比,圖1為不同種類生物炭及其改性材料對Cr(Ⅵ)的去除效果.對比發(fā)現(xiàn),原始污泥生物炭對Cr(Ⅵ)的去除效果優(yōu)于秸稈和果皮生物炭,可能原因為污泥中含有少量的鐵,熱解后產(chǎn)生的鐵氧化物對Cr(Ⅵ)有一定吸附還原作用[7].當(dāng)使用鐵和硫同時對各生物炭進(jìn)行改性時,由于硫鐵化物還原性物質(zhì)的生成,改性的MBC材料對Cr(Ⅵ)的去除效果顯著提升.在3種生物質(zhì)中,鐵硫改性污泥生物炭復(fù)合材料表現(xiàn)尤為突出,Cr(Ⅵ)的去除率高達(dá)97.12%.因此,后續(xù)實驗選擇污泥作為熱解炭源和載體.
圖1 不同生物炭及其改性材料對Cr(VI)的去除效果
2.1.2 熱解溫度對MBC除Cr(Ⅵ)的影響,由圖2可知,不同熱解溫度下合成的MBC對Cr(Ⅵ)的去除率均可達(dá)到99%以上,但熱解溫度會影響MBC的產(chǎn)率、反應(yīng)后溶液中總Fe、總Cr含量和出水的色度.隨著熱解溫度的增加,生物炭的產(chǎn)率有所降低,但反應(yīng)后溶液中總Fe、總Cr濃度和色度逐漸降低.當(dāng)熱解溫度僅200℃時,反應(yīng)后溶液中的總Fe濃度高達(dá)73.54mg/L.這是因為熱解溫度過低,生物質(zhì)中的有機質(zhì)不能被充分熱解,提供的還原性氣氛不足,導(dǎo)致大部分的鐵仍以游離態(tài)的Fe3+形式存在于材料中,造成反應(yīng)后溶液中總Fe濃度較高[8].
當(dāng)熱解溫度高于500℃時,反應(yīng)后溶液總Fe和總Cr相對較低.同時,由圖3可觀察到,熱解溫度高于500℃制備的MBC去除Cr(Ⅵ)后,出水基本無色.這是因為隨著熱解溫度的升高,污泥中的有機質(zhì)可被充分熱解,揮發(fā)性物質(zhì)溢出,產(chǎn)生的CO、CO2等還原性氣體可促進(jìn)Fe3+的還原,促使硫鐵化物和鐵氧化物的生成和在生物炭表面的聚集,減少Fe3+的游離[6],有利于復(fù)合材料對Cr(Ⅵ)的去除[9].從反應(yīng)后溶液中剩余總Fe、總Cr、色度和經(jīng)濟性綜合考慮,選擇500℃作為MBC熱解制備的較優(yōu)溫度.本研究相較于其他硫鐵改性生物炭所需的熱解溫度得到了大幅降低[4,6].
圖3 不同熱解溫度下制備的MBC除Cr(VI)后溶液顏色
2.1.3 材料的表征 (1)SEM,圖4為生物炭在不同改性條件下的SEM圖.由圖4可知,在500℃熱解得到的污泥生物炭表面較粗糙,呈現(xiàn)多孔結(jié)構(gòu).硫改性污泥生物炭(如圖4)孔隙結(jié)構(gòu)依舊顯著,表面更加粗糙,伴有小顆粒物質(zhì)生成并聚集,這是因為污泥生物炭自身含有的鐵與外加硫源反應(yīng),生成了少量硫化亞鐵顆粒并附著于材料表面.污泥生物炭經(jīng)鐵單獨改性熱解后(如圖4),表面更具凹凸性,伴有大量小顆粒物質(zhì)生成,這是因為熱解條件下產(chǎn)生了鐵氧化物并附著在污泥生物炭表面[10-11].而污泥經(jīng)硫鐵同時改性后(如圖4),材料表面交叉堆疊了大量多邊花片狀晶型物質(zhì),材料比表面積顯著提升,這可能是因為大量FeS的生成并附著在污泥生物炭表面[4].
圖4 BC、BCS、BCFe和MBC的SEM圖
(2)TEM,由圖5可看出,原始污泥生物炭表面粗糙,具有一定孔隙結(jié)構(gòu).硫改性污泥生物炭后(如圖5),表面有少量硫鐵化物的生成,孔隙結(jié)構(gòu)依舊較明顯.經(jīng)過鐵改性后(如圖5),材料表面由粗糙變得較光滑,孔隙結(jié)構(gòu)不再明顯,原始污泥生物炭被半透明鐵氧化物膜包覆[12].經(jīng)硫鐵同時改性后(圖5),材料表面兼具BCS和BCFe表面特征,可能是由于硫鐵化物和鐵氧化物的同時生成[13].同時,圖5中觀察到了FeS的(102)晶面,晶格條紋間距為0.206nm,表明FeS已成功負(fù)載于污泥生物炭上[14].
圖5 BC、BCS、BCFe及不同放大倍數(shù)MBC的TEM圖
(3)XRD,由圖6可知,BC、BCS、BCFe和MBC在2θ=26.3°有明顯的C和SiO2特征衍射峰,歸因于污泥中炭和存在的砂粒[10].當(dāng)只用硫改性污泥時,BCS在2為29.95°和43.64°出現(xiàn)了較弱的Fe7S8特征衍射峰.當(dāng)只用鐵改性污泥時,BCFe在2為30.1°和35.5°處出現(xiàn)了Fe3O4特征衍射峰[15].當(dāng)采用硫和鐵共同改性污泥生物炭時,MBC在2為44°、29.82°、33.69°和52.95°處出現(xiàn)了FeS的衍射峰,在43.64°和35.5°處出現(xiàn)了Fe7S8和Fe3O4的衍射峰[16],表明FeS成功負(fù)載于污泥生物炭上.
(4)BET,不同材料的BET表征結(jié)果如表1所示.由表1可知,BC的比表面積為71.660m2/g,孔隙容量為0.116cm3/g;BC經(jīng)過硫改性后,BCS比表面積、平均孔徑和孔隙容量均增加,可能因為S2-在溶液中發(fā)生水解,產(chǎn)生OH-使溶液pH升高,即經(jīng)過硫浸漬熱解后可以增加生物炭的比表面積和成孔效應(yīng)[17].而經(jīng)過外加鐵、硫同時改性后,材料的比表面積和孔隙容量相對BC明顯減小,BCFe和MBC的比表面積分別為15.478和14.889m2/g,孔隙容量分別為0.019和0.022cm3/g.可能原因為鐵氧化物和硫鐵化物(FeS、Fe7S8)生成附著/穿插在污泥生物炭上,導(dǎo)致孔道被填充堵塞,造成比表面積和孔隙容量下降,這與SEM的結(jié)果一致.此外,隨著硫濃度的增加,更多的硫化鐵生成和堆積,使MBC比表面積相對增加,但孔徑和孔容沒有明顯變化.該表征結(jié)果表明MBC表面上成功負(fù)載FeS,且占據(jù)了大部分結(jié)合位點.
圖6 BC、BCS、BCFe和MBC的XRD圖
表1 不同材料和不同硫濃度下制備的MBC比表面積和孔徑分布特征
2.2.1 Cr(Ⅵ)初始濃度對MBC除Cr(Ⅵ)的影響,由圖7可知, MBC對Cr(VI)的去除效果隨著污染液初始濃度的增加而降低,當(dāng)MBC投加量為2.5g/L時,初始濃度小于25mg/L時,溶液中的Cr(Ⅵ)均可被較好地去除,反應(yīng)可在120min內(nèi)達(dá)到平衡,去除率達(dá)99%以上.隨著Cr(Ⅵ)濃度的進(jìn)一步增加,去除速率逐漸降低,當(dāng)初始濃度為50mg/L時,去除率達(dá)到99%所需的反應(yīng)時間為720min.當(dāng)初始濃度進(jìn)一步增大為75mg/L時,去除能力顯著下降,反應(yīng)720min去除率僅為73.89%.這是因為在一定MBC投加量情況下,材料反應(yīng)活性點位有限,污染物濃度過高時,Cr(Ⅵ)不能被完全還原和吸附,故在高濃度條件下需進(jìn)一步提高材料投加量,以增強去除效果[18].
圖7 不同Cr(VI)初始濃度下MBC的除Cr(VI)效果
2.2.2 pH值對MBC去除Cr(Ⅵ)的影響 由圖8可知,在酸性條件下,,投加量為2.5g/L時MBC對Cr(VI)的去除效果較好,在pH=2和pH=4時,MBC對Cr(VI)去除效果達(dá)到99.7%.Cr(VI)的去除是一個涉及吸附和還原的多步驟過程,這兩個過程均受溶液pH值的影響.當(dāng)pH值較低時,Cr(VI)的還原是一種酸驅(qū)動的表面介導(dǎo)過程[19-20].當(dāng)pH為2~6時,Cr(VI)主要以HCrO4-的形態(tài)存在,因HCrO4-的自由能較低,有利于材料的吸附[20].當(dāng)pH值為中性偏堿時(方程(4)和(5))[21-23],復(fù)合材料表面由于共沉淀會形成Cr(Ⅲ)-Fe(Ⅲ)固體層,減少了Cr(VI)與MBC上活性位點的接觸,從而阻礙MBC對Cr(VI)的進(jìn)一步去除(方程(6))[22];此時,Cr(VI)存在形態(tài)轉(zhuǎn)變?yōu)橐訡rO42-和Cr2O72-為主,較HCrO4-更難被吸附,從而導(dǎo)致堿性條件下MBC對Cr(VI)的去除效果下降.由圖8(b)可知,pH 值越低,MBC所帶的正電性越強,越有利于對HCrO4-的靜電吸附[19].
同時,FeS的存在形態(tài)也會隨pH值的變化而變化.當(dāng)pH<3時,溶液中主要以Fe2+和HS-存在(方程(7)),Fe2+和HS-不僅可以直接將Cr(VI)還原為Cr(Ⅲ),HS-還可以將Fe(Ⅲ)還原為Fe(Ⅱ),促進(jìn)Fe的氧化還原循環(huán),故pH=2時MBC對Cr(VI)的去除效果最佳.當(dāng)3
圖8 溶液pH值對MBC除Cr(Ⅵ)性能的影響
2.2.3 體系總鐵、總鉻的去除 (1)調(diào)節(jié)反應(yīng)后溶液pH值對總Cr、總Fe和Fe2+去除
由2.1.2節(jié)可知,MBC去除Cr(Ⅵ)后溶液中存在游離的總Cr和總Fe,且反應(yīng)后pH值呈酸性(3.8).因此本小節(jié)通過調(diào)節(jié)反應(yīng)后溶液pH值(pH值分別為4.8、5.8、6.8、7.8、8.8、9.8和10.8),以去除溶液中游離的總Cr和總Fe,結(jié)果見圖9.由圖9可知,隨著pH值的升高,總Fe、總Cr和Fe2+含量逐漸降低,這是因為Fe2+、Fe3+和Cr3+均可與OH-結(jié)合形成沉淀而被去除,如方程(9~11).當(dāng)pH值高于7.8時,溶液中未檢測出總Fe、總Cr和Fe2+,表明當(dāng)pH為7.8值左右時可使溶液中剩余的總Cr和總Fe完全去除.
圖9 調(diào)節(jié)反應(yīng)后不同pH值對溶液中總Fe、總Cr和Fe2+的去除
(2)不同體系對Cr(Ⅵ)、總Cr和總Fe的去除對比
為了比較相同情況下,直接投加FeCl3/FeSO4聯(lián)合調(diào)節(jié)pH值的方法與本實驗方法對總Cr和總Fe的去除效果,開展了不同化學(xué)藥劑對Cr(Ⅵ)、總Cr和總Fe去除的對照實驗,分別對投加NaOH、FeCl3、FeSO4、MBC、FeCl3+NaOH、FeSO4+NaOH和MBC+NaOH實驗組進(jìn)行對比,結(jié)果見表2.由表2可知,采用NaOH將污染液pH值直接調(diào)節(jié)至7.8并不能去除Cr(Ⅵ)和總Cr.直接投加5.08g/L的FeCl3于50mL污染液中,FeCl3在污染液中發(fā)生水解釋放H+產(chǎn)生絮狀Fe(OH)3沉淀對Cr(Ⅵ)有吸附作用,但反應(yīng)后溶液中游離總Fe較多,溶液pH=2.4[26].由于Fe3+對Cr(Ⅵ)無還原作用,反應(yīng)后溶液中Cr(Ⅵ)和總Cr濃度分別為36.76mg/L和37.09mg/L,且總Fe濃度為139.0mg/L.直接投加5.23g/LFeSO4時,溶出的Fe2+可以將Cr(Ⅵ)完全還原去除,且反應(yīng)過程中水解生成的Fe(OH)2和Fe(OH)3沉淀可降低溶液中部分總Cr濃度,反應(yīng)后溶液中總Fe和總Cr濃度分別為179.0mg/L和34.75mg/L,溶液pH=3.1[27].而本研究以相同鐵摩爾質(zhì)量溶液浸制的MBC可將Cr(Ⅵ)完全去除,因少量硫的添加(硫鐵摩爾比為1:20),增強了體系的還原作用和鐵的循環(huán),使得剩余總Cr和總Fe相對其它實驗組較少,溶液pH=3.8.
通過不同化學(xué)試劑加NaOH實驗組對Cr(Ⅵ)去除發(fā)現(xiàn),FeCl3+NaOH實驗組反應(yīng)后會生成大量Fe(OH)3沉淀,溶液中Cr(Ⅵ)和總Cr被進(jìn)一步吸附去除,濃度分別降低至11.15和11.37mg/L,總Fe濃度為30.01mg/L.FeSO4+NaOH實驗組反應(yīng)后也會生成大量沉淀,總Cr通過混凝沉淀被去除,溶液中剩余總Fe濃度依舊很高為50.71mg/L[28].而MBC+NaOH組可將反應(yīng)后總Cr和總Fe全部去除,相對其它實驗組方法去除效果更好.上述結(jié)果表明,MBC+NaOH的方案對溶液中Cr(Ⅵ)、總Cr和總Fe具有較優(yōu)異的去除性能.
表2 不同反應(yīng)體系反應(yīng)后溶液中Cr(VI)、總Cr、總Fe濃度和pH值
圖10 不同初始濃度下MBC去除Cr(Ⅵ)的反應(yīng)動力學(xué)曲線
2.2.4 MBC對Cr(Ⅵ)的去除動力學(xué)實驗,根據(jù)公式(1~3),對MBC去除Cr(Ⅵ)的實驗數(shù)據(jù)進(jìn)行三種動力學(xué)曲線擬合,研究去除過程的速率控制步驟,結(jié)果如圖10所示.由圖擬合計算所得吸附速率常數(shù)和平衡吸附量見表3.通過對比表3中的模型參數(shù)發(fā)現(xiàn),擬合的相關(guān)系數(shù)2更符合準(zhǔn)二級動力學(xué)模型,表明Cr(Ⅵ)與材料之間的化學(xué)吸附是限制去除速率主要步驟[11,29],且隨著Cr(Ⅵ)濃度的增加,反應(yīng)速率常數(shù)降低,說明在低濃度下反應(yīng)速率更快.此外,Elovich模型假設(shè)吸附劑的表面是一個非均質(zhì)表面,即表面的某些部分比其他部分對污染物具有更強的親和力[30],當(dāng)Cr(Ⅵ)的濃度從5mg/L增加到75mg/L時,由于復(fù)合材料表面活性位點被占據(jù)和化學(xué)吸附活化能的降低[31],初始吸附速率從2.74E24降低到4.78mg/(g·min),解吸常數(shù)從0.034增加到2.52g/ mg,使得MBC在低濃度Cr(Ⅵ)溶液中的吸附速率比在高濃度下更快,從而在高濃度溶液中Cr(Ⅵ)的解吸速率大于在低濃度下的解吸速率.
表3 動力學(xué)模型參數(shù)
圖11為MBC對Cr(Ⅵ)去除前后的XRD圖.反應(yīng)前MBC上觀察到了Fe2(SO4)3、FeS、Fe3O4和Fe7O8的特征衍射峰以及污泥的C和SiO2的衍射峰[32].反應(yīng)后,在2為29.82°、33.69°和44°的FeS衍射峰強度減弱,表明材料上的S與Fe參與了Cr(VI)的還原去除.同時,硫鐵化物在還原Cr(VI)過程被氧化,在2為21.43°的Fe2(SO4)3特征峰增強.Cr(Ⅲ)主要通過絡(luò)合吸附被固定,調(diào)節(jié)溶液pH=7.8后,可能會有 Cr(OH)3、Cr2O3和(CrxFe1-x)(OH3)的生成,并以非晶態(tài)附著于材料上[32-33].
圖11 MBC對Cr(VI) 去除前后的XRD圖
圖12為MBC與Cr(Ⅵ)反應(yīng)前后FTIR圖譜.由圖12可知,反應(yīng)前后沒有新的紅外峰出現(xiàn),但反應(yīng)后的圖譜在2923cm-1處的C-H伸縮振動峰偏移到3125cm-1[34].反應(yīng)前1620和1112cm-1處的特征峰分別與C=O基團拉伸振動和C-O基團彎曲振動有關(guān);當(dāng)MBC與Cr(Ⅵ)反應(yīng)后,C=O基團和C-O基團特征峰均發(fā)生位置偏移,這表明C=O與C--—O官能團可能與Cr發(fā)生了還原、吸附和絡(luò)合作用[34-35].
圖12 MBC與Cr(Ⅵ)反應(yīng)前后FTIR圖譜分析
圖13為反應(yīng)前后MBC中主要元素的XPS譜圖.圖13(a)和(b)為O1s的譜圖,反應(yīng)前在532.80, 531.72,530.04eV分別觀察到C=O、C-O、O/Fe-O的衍射峰,而在材料去除Cr(Ⅵ)后各官能團衍射峰位置均發(fā)生輕微偏移,且C=O占比由30.12%降為10.54%,C-O占比由63.85%增加到80.45%,這說明C=O可作為電子供體將Cr(Ⅵ)還原為Cr(Ⅲ),導(dǎo)致C=O向C-O的轉(zhuǎn)化,并形成了C-O-Cr和C=O-Cr等絡(luò)合物[33,36].反應(yīng)前后Fe 2p光譜如圖13(c)和(d)所示,反應(yīng)前MBC中709.84eV為FeS的特征衍射峰[37],表明納米硫化亞鐵成功負(fù)載于污泥生物炭上.材料中Fe2+和Fe3+的占比分別為39.11%和60.89%,可能是由于在測試過程中部分鐵被氧化所致[19].反應(yīng)后,材料中鐵的衍射峰位置發(fā)生輕微偏移,且Fe2+的占比減少至16.86%,而Fe3+的占比增加至83.14%,進(jìn)一步表明材料中的Fe2+參與了Cr(VI)的還原去除,從而使其衍射峰面積和位置發(fā)生了相應(yīng)的變化[37].反應(yīng)前后S 2p光譜如圖13(e)和(f)所示,反應(yīng)前后材料中的S主要以Sn2-和SO42-的形式存在,反應(yīng)后材料中SO42-占比較反應(yīng)前增加27.78%,而Sn2-減少了相同的量,表明Sn2-與Cr(VI)發(fā)生氧化還原反應(yīng),部分Sn2-被Cr(VI)氧化為SO42-,而Cr(Ⅵ)被還原為Cr(Ⅲ).圖13(g)為MBC反應(yīng)后的Cr 2p譜圖,反應(yīng)后材料表面觀察到較強的Cr(Ⅵ)和Cr(Ⅲ)特征衍射峰,且Cr(Ⅲ)衍射峰強度明顯大于Cr(Ⅵ),進(jìn)一步證明了去除過程中大部分Cr(Ⅵ)被還原為毒性較小的Cr(Ⅲ)并被吸附于材料表面.綜上所述,MBC對Cr(Ⅵ)的去除機制包括化學(xué)還原、靜電吸附和絡(luò)合作用,而化學(xué)還原過程對Cr(Ⅵ)的去除起著關(guān)鍵作 用.
圖13 MBC反應(yīng)前后的XPS圖譜
3.1 選擇活性污泥作為熱解碳源,摻雜Fe3+、S2-元素,在500℃的熱解溫度下,制備所得的MBC對Cr(Ⅵ)具有良好的還原和吸附性能;材料的SEM、TEM和XRD表征結(jié)果表明,金屬納米顆粒FeS/ Fe7S8/Fe3O4成功負(fù)載于MBC上.
3.2 去除實驗結(jié)果表明,2.5g/L的MBC對50mg/L以下的Cr(Ⅵ)均有較高的去除效率;酸性條件有利于MBC對Cr(Ⅵ)的去除,pH值為2~4時,Cr(Ⅵ)的去除速率高達(dá)99%;使用MBC+NaOH(pH =7.8)組合工藝,可徹底去除溶液中剩余的總Fe和總Cr,生成的沉淀較緊實,溶液的出水無色透明.
3.3 對反應(yīng)前后材料的XRD和XPS分析結(jié)果表明,MBC對Cr(Ⅵ)的去除機制主要為化學(xué)還原、靜電吸附和絡(luò)合作用,且鐵和硫?qū)r(Ⅵ)的還原起關(guān)鍵作用.
[1] Chen M, Chen X, Xu X Y, et al. Biochar colloids facilitate transport and transformation of Cr(VI) in soil: Active site competition coupling with reduction reaction [J]. Journal of Hazardous Materials, 2022,440: 129691.
[2] Cong Y, Shen L, Wang B, et al. Efficient removal of Cr (VI) at alkaline pHs by sulfite/iodide/UV: Mechanism and modeling [J]. Water Research, 2022,222:118919.
[3] Chen Y N, Liang W Y, Li Y P, et al. Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: A review [J]. Chemical Engineering Journal, 2019,362:144-159.
[4] Zhuang M, Wang H, Qi L, et al. Production of activated biochar via a self-blowing strategy-supported sulfidated nanoscale zerovalent iron with enhanced reactivity and stability for Cr (VI) reduction [J]. Journal of Cleaner Production, 2021,315:128108.
[5] Liu G, Hu D, Song C, et al. Pyrolysis of different biomass feedstocks impregnated with Mohr’s salt to prepare ferrous sulfide-loaded nitrogen-doped biochar composites for sequestration of aqueous Cr (VI) ions [J]. Journal of Analytical and Applied Pyrolysis, 2022,164: 105545.
[6] Feng Y, Liu P, Wang Y X, et al. Distribution and speciation of iron in Fe-modified biochars and its application in removal of As(V), As(III), Cr(VI), and Hg(II): An X-ray absorption study [J]. Journal of Hazardous Materials, 2020,384:121342.
[7] 陳 林,平 巍,閆 彬,等.不同制備溫度下污泥生物炭對Cr(Ⅵ)的吸附特性[J]. 環(huán)境工程, 2020,38(8):119-124. Chen L, Ping W, Yan B, et al. Adsorption characteristics of Cr(Ⅵ) by sludge biochar at different preparation temperatures [J]. Environmental Engineering, 2020,38(8):119-124.
[8] 杜江坤.新型硫、錳改性鐵基材料的制備及其去除水體污染物的研究[D]. 武漢:中國地質(zhì)大學(xué), 2016. Du J K. Fabrication of Novel Iron-based MaterialsModified with S、Mn for Removal of Aqueous Contaminants [D]. Wuhan: China University of Geosciences, 2016.
[9] Liu G, Hu D, Song C, et al. Pyrolysis of different biomass feedstocks impregnated with Mohr’s salt to prepare ferrous sulfide-loaded nitrogen-doped biochar composites for sequestration of aqueous Cr (VI) ions [J]. Journal of Analytical and Applied Pyrolysis, 2022,164: 105545.
[10] Wang H Z, Guo W Q, Liu B H, et al. Sludge-derived biochar as efficient persulfate activators: Sulfurization-induced electronic structure modulation and disparate nonradical mechanisms [J]. Applied Catalysis B: Environmental, 2020,279:119361.
[11] Mo G H, Hu Q, Wang G H, et al. Fe3O4?modifed sewage sludge biochar for U(VI) removal from aqueous solution: performance and mechanism [J]. Journal of Radioanalytical and Nuclear Chemistry, 2021,329:225-237.
[12] Calderon B, Fui L A. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation [J]. Water Research, 2015,83:1-9.
[13] He Y, Li J, Zhao Y, et al. Sewage-sludge derived activated carbon impregnated with polysulfide-sulfidated nZVI: A promising material for Cr (Ⅵ) reductive stabilization [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022,642:128614.
[14] Ma Q N, Zhuang Q Y, Liang J, et al. Novel mesoporous flowerlike iron sulfide hierarchitectures: Facile synthesis and fast lithium storage capability [J]. Nanomaterials, 2017,7(12):431.
[15] Yi Y, Wang X Y, Ma J, et al. Fe(III) modified Egeria najas driven-biochar for highly improved reduction and adsorption performance of Cr(VI) [J]. Powder Technology, 2021,388:485-495.
[16] Yuan Y, Wang L P, Gao L Z, et al. Nano-Sized Iron Sulfifide: Structure, Synthesis, Properties, and Biomedical Applications [J]. Frontiers in Chemistry, 2020,8:818.
[17] Rizwan M, Lin Q M, Chen X J, et al. Synthesis characterization and application of magnetic and acid modified biochars following alkaline pretreatment of rice and cotton straws [J]. Science of the Total Environment, 2020,714:136532.
[18] Shih Y J, Chen C W, Hsia K F, et al. Granulation for extended-release of nanoscale zero-valent iron exemplified by hexavalent chromium reduction in aqueous solution [J]. Separation and Purification Technology, 2015,156:1073-1081.
[19] Chen Y N, Liang W Y, Li Y P, et al. Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: A review [J]. Chemical Engineering Journal, 2019,362:144-159.
[20] Yang G C C, Lee H L. Chemical reduction of nitrate by nanosized iron: kinetics and pathways [J]. Water research, 2005,39(5):884-894.
[21] Lv D, Zhou J, Cao Z, et al. Mechanism and influence factors of chromium (VI) removal by sulfide-modified nanoscale zerovalent iron [J]. Chemosphere, 2019,224:306-315.
[22] Lyu H, Tang J, Huang Y, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite [J]. Chemical Engineering Journal, 2017,322:516-524.
[23] Zhuang L, Li Q, Chen J, et al. Carbothermal preparation of porous carbon-encapsulated iron composite for the removal of trace hexavalent chromium [J]. Chemical Engineering Journal, 2014,253: 24-33.
[24] Chen D, Du X, Chen K, et al. Efficient removal of aqueous Cr (VI) with ferrous sulfide/N-doped biochar composites: Facile, in-situ preparation and Cr (VI) uptake performance and mechanism [J]. Science of The Total Environment, 2022,837:155791.
[25] Gong Y, Tang J, Zhao D. Application of iron sulfide particles for groundwater and soil remediation: A review [J]. Water Research, 2016,89:309-320.
[26] Chen Y F, Li Z X. Interaction of norfloxacin and hexavalent chromium with ferrihydrite nanoparticles: Synergistic adsorption and antagonistic aggregation behavior [J]. Chemosphere, 2022,299:134386.
[27] 郭沛涌,陳克誠,劉 英.化學(xué)混凝法處理制革廢水中鉻的研究[J]. 工業(yè)水處理, 2008,(9):37-39. Guo P Y, Chen K C, Liu Y. Study on the treatment of chromium in tannery wastewater by chemical coagulation [J]. Industrial Water Treatment, 2008,(9):37-39.
[28] 韓曉剛,黃廷林,陳秀珍.硫酸亞鐵還原法在突發(fā)性鉻(Ⅵ)污染應(yīng)急處理中的應(yīng)用研究[J]. 工業(yè)水處理, 2013,33(6):40-42,46. Han X G, Huang T L, Chen X Z. Study on ferrous sulfate reduction method in emergency treatment of sudden chromium (Ⅵ) pollution [J]. Industrial Water Treatment, 2013, 33(6): 40-42,46.
[29] Simranjeet S, Amitg A, Sutripto K, et al. Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics [J]. Environmental Research, 2021,203: 111891-11189.
[30] Hoslett J, Ghazal H, Katsou E, et al. The removal of tetracycline from water using biochar produced from agricultural discarded material [J]. Science of the Total Environment, 2021,751:141755-141755.
[31] Li X, Xie Y, Jiang F, et al. Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: Behaviors and mechanisms [J]. Science of the Total Environment, 2020,709:1-11.
[32] Wu L, Li Z, Cheng P, et al. Efficient activation of peracetic acid by mixed sludge derived biochar: Critical role of persistent free radicals [J]. Water Research, 2022,223:119013.
[33] Zhang X, Fu W J, Yin Y X, et al. Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: batch experiment, kinetic and mechanism studies [J]. Bioresource Technology, 2018,268:149- 157.
[34] Wen J, Xue Z, Yin X, et al. Insights into aqueous reduction of Cr(VI) by biochar and its iron-modified counterpart in the presence of organic acids [J]. Chemosphere, 2022,286:131918-.
[35] Liu Z, Zhang F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass [J]. Journal of Hazardous Materials, 2009,167(1-3):933-939.
[36] 劉沁文,丁愛中,梁 信,等.桉樹生物炭負(fù)載綠色合成納米零價鐵去除水中Cr(Ⅵ) [J]. 環(huán)境科學(xué), 2023,43(12):5657-5666. Liu Q W, Ding A Z, Liang X, et al. Removal of Cr (Ⅵ) from water by green synthetic nano zero-valent iron loaded with Eucalyptus biochar [J]. Environmental Science, 2023,43(12):5657-5666.
[37] Liu Y Y, Xiao W Y, Wang J J, et al. Optimized synthesis of FeS nanoparticles with a high Cr(VI) removal capability [J]. Journal of Nanomaterials, 2016,2016:48.
Removal and mechanism study of Cr(VI) in water by sludge biochar-supported nano-ferrous sulfide.
LYU Si-lu1, LIU Tian1, WANG Xu1, ZUO Kai-xia1, XIE Yan-hua1,2*
(1.College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China;2.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)., 2023,43(8):3935~3945
In this study, sludge biochar loaded with nano-sized ferrous sulfide (MBC) was prepared by pyrolyzing the sludge impregnated with Fe3+and S2-ions. The preparation conditions of MBC and its removal performance on Cr(Ⅵ) were investigated, and the composites before and after reaction were characterized by SEM, TEM, XRD and XPS to explore the removal mechanism. The results show that the pyrolysis temperature (500℃) was relatively low because the presence of Fe3+and S2-ions. Acidic conditions were beneficial to the Cr(Ⅵ) removal. When the pH was 2~4 and the dosage of MBC was 2.5g/L, the removal rate of 50mg/L Cr(Ⅵ) can reach 99%. Furthermore, the combined process of MBC+NaOH (pH=7.8) can completely remove the total Fe and total Cr in the effluents. The precipitates generated from the combined process were very compact, and the effluents were colorless and transparent. The characterization results showed that nano-sized ferrous sulfide and iron oxide particles were successfully loaded on the sludge biochar and coated on the surface of the material in the form of semi-transparent film. Fe2+, Sn2-and C=O on the MBC could be acted as electron donors to reduce most of Cr(Ⅵ) to form the chelated compounds such as C-O-Cr, C=O-Cr etc. The residual Cr(Ⅵ) in solution can be also adsorbed by the composites. Therefore, the removal mechanism of Cr(Ⅵ) by MBC manly included chemical reduction, complexation, and adsorption, especially reduction played the key role.
hexavalent chromium Cr(VI);sludge biochar;ferrous sulfide;chemical reduction
X703.1
A
1000-6923(2023)08-3935-11
呂思璐(1999-),男,四川達(dá)州人,成都理工大學(xué)碩士研究生,主要研究方向為水污染控制工程.發(fā)表論文3篇.862467902@qq.com.
呂思璐,劉 天,王 旭,等.硫化亞鐵改性生物炭對水中Cr(Ⅵ)的去除機理研究 [J]. 中國環(huán)境科學(xué), 2023,43(8):3935-3945.
Lyu S L, Liu T, Wang X, et al. Removal and mechanism study of Cr(VI) in water by sludge biochar-supported nano-ferrous sulfide [J]. China Environmental Science, 2023,43(8):3935-3945.
2023-01-11
國家自然科學(xué)基金資助項目(41977170)
*責(zé)任作者, 教授,xieyanhua10@cdut.cn