莊曌 曹宏 刁玉晶 王壽世
[摘要]兒童接觸丙泊酚可能對(duì)神經(jīng)元造成毒性損傷,并且與其成年后長(zhǎng)期認(rèn)知功能下降有關(guān)。其原因可能是由于多種機(jī)制誘導(dǎo)的神經(jīng)細(xì)胞凋亡和抑制神經(jīng)所致,其中microRNAs在這一過(guò)程中起著關(guān)鍵作用。本文對(duì)microRNAs在丙泊酚誘導(dǎo)的神經(jīng)毒性作用中的作用和影響進(jìn)行綜述,為精準(zhǔn)的腦神經(jīng)保護(hù)提供參考依據(jù)。
[關(guān)鍵詞]二異丙酚;中樞神經(jīng)系統(tǒng)藥物;神經(jīng)中毒綜合征;微RNAs;綜述
[中圖分類號(hào)]R595.471;R977.9[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2023)03-0466-05
doi:10.11712/jms.2096-5532.2023.59.103[開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20230807.1616.007;2023-08-0809:10:48
RESEARCH PROGRESS ON ROLE OF MICRORNAS IN PROPOFOL-INDUCED NEUROTOXICITY? ZHUANG Zhao, CAO Hong, DIAO Yujing, WANG Shoushi(Department of Anesthesiology, Qingdao Central Hospital Affiliated to Qingdao University, Qingdao 266042, China)
[ABSTRACT]Exposure to propofol in children may cause damage to neurons and even a long-term cognitive decline in adulthood. This may involve multiple mechanisms that induce neuronal apoptosis and neural inhibition, in which microRNAs play a key role. This paper reviews the role of microRNAs in propofol-induced neurotoxicity, aiming to provide a basis for precise cerebral neuroprotection.
[KEY WORDS]propofol; central nervous system agents; neurotoxicity syndromes; microRNAs; review
妊娠期女性因?yàn)榕c分娩無(wú)關(guān)的手術(shù)而接觸麻醉藥的情況每年都有很多,每年也有數(shù)以百萬(wàn)計(jì)嬰幼兒和學(xué)齡前兒童因?yàn)槭中g(shù)而接觸麻醉藥[1]。全身麻醉已被證明與中樞神經(jīng)系統(tǒng)異常發(fā)育相關(guān),可能誘發(fā)嚴(yán)重的神經(jīng)毒性影響發(fā)育中的大腦,并最終導(dǎo)致長(zhǎng)期的神經(jīng)行為和神經(jīng)認(rèn)知障礙[2-3]。麻醉藥物誘發(fā)兒童神經(jīng)毒性的可能性引起了對(duì)小兒麻醉安全性的擔(dān)憂。最近,美國(guó)食品和藥物管理局警告孕婦和兒童非必要不使用麻醉劑,因?yàn)樾枰M(jìn)一步的研究來(lái)闡明這些麻醉劑對(duì)發(fā)育中的大腦的影響[4]。本文對(duì)microRNAs(miRs)在丙泊酚誘導(dǎo)的神經(jīng)毒性作用中的作用和影響進(jìn)行綜述。
1丙泊酚造成神經(jīng)毒性的證據(jù)
丙泊酚是當(dāng)前臨床麻醉中最常用的靜脈藥物。近年來(lái),已有研究報(bào)道了丙泊酚對(duì)幼年動(dòng)物的神經(jīng)毒性作用[5-8]。對(duì)嚙齒動(dòng)物和非人靈長(zhǎng)類動(dòng)物的臨床和臨床前研究表明,應(yīng)用丙泊酚麻醉,特別是在孕晚期或幼兒期,可能誘發(fā)嚴(yán)重的神經(jīng)毒性影響發(fā)育中的大腦,并最終導(dǎo)致長(zhǎng)期的神經(jīng)行為和神經(jīng)認(rèn)知缺陷[9-10]。
雖然滿足手術(shù)條件所需的丙泊酚可能是無(wú)害的,但長(zhǎng)期和反復(fù)接觸丙泊酚可能會(huì)導(dǎo)致認(rèn)知能力下降[10]。一些被認(rèn)為與丙泊酚引起的神經(jīng)毒性有關(guān)的機(jī)制涉及神經(jīng)元的凋亡,可能是通過(guò)線粒體過(guò)度的分裂導(dǎo)致神經(jīng)元細(xì)胞的凋亡從而影響大腦發(fā)育[11]。丙泊酚影響大腦發(fā)育可能還涉及其他幾個(gè)過(guò)程,包括神經(jīng)生成、神經(jīng)元遷移和分化、動(dòng)作電位的產(chǎn)生和傳播、突觸生成等[12-14]。因此,神經(jīng)細(xì)胞凋亡可能不是丙泊酚所致的唯一后果。丙泊酚對(duì)神經(jīng)細(xì)胞的有害效應(yīng)的潛在機(jī)制很多都已被報(bào)道,如鈣超載、線粒體分裂和神經(jīng)營(yíng)養(yǎng)素表達(dá)失調(diào)等。
2miRs及其生理意義
miRs是一種小型單鏈非編碼RNA,它會(huì)對(duì)基因表達(dá)產(chǎn)生影響[15-16]。基于miRs對(duì)RNA表達(dá)和翻譯的抑制作用,它們?cè)诩?xì)胞增殖、細(xì)胞遷移、細(xì)胞死亡、細(xì)胞分化、信號(hào)轉(zhuǎn)導(dǎo)、基因表達(dá)、免疫應(yīng)答和新陳代謝等重要生物學(xué)過(guò)程中均發(fā)揮重要的作用[15]。為了調(diào)節(jié)基因的表達(dá),miRs與信使RNA(mRNA)中的一個(gè)互補(bǔ)序列相結(jié)合,稱為3′非翻譯區(qū)(3′UTR)[17]。似乎miRs調(diào)控著高達(dá)65%的人類基因的表達(dá)水平。一個(gè)miR可以調(diào)控不同的基因,一個(gè)基因可以被幾個(gè)miR調(diào)控,從而導(dǎo)致了一個(gè)復(fù)雜的網(wǎng)絡(luò),所以需要更多的研究來(lái)體現(xiàn)其調(diào)控的各個(gè)方面。許多研究描述了各種人類疾病的miRs失調(diào),如癌癥[18]和神經(jīng)退行性疾病[19]。在大腦中,miRs通過(guò)調(diào)節(jié)mRNA的表達(dá)水平,控制著細(xì)胞內(nèi)的各種生理功能,從而調(diào)節(jié)許多神經(jīng)生成過(guò)程[20]。近年來(lái),基因組學(xué)和微陣列分析領(lǐng)域有了快速進(jìn)展,這使得對(duì)miRs的作用和調(diào)控的徹底剖析成為可能。miRs已經(jīng)被證明可以直接調(diào)節(jié)軸突與樹(shù)突的生長(zhǎng)、突觸的生成和神經(jīng)的生成和凋亡。miRs的表達(dá)對(duì)發(fā)育中和成熟的神經(jīng)元都至關(guān)重要。當(dāng)受到環(huán)境刺激時(shí),miRs的表達(dá)出現(xiàn)差異[21]。
一些研究表明,miRs可能通過(guò)凋亡信號(hào)通路在丙泊酚誘導(dǎo)的神經(jīng)毒性中發(fā)揮關(guān)鍵作用[22]。很多研究證明丙泊酚可以調(diào)節(jié)和改變miRs的表達(dá)。因此,確定這些差異表達(dá)的miRs的作用靶點(diǎn),可能有助于闡明丙泊酚對(duì)神經(jīng)造成影響的特定通路。
3miRs在丙泊酚誘導(dǎo)的神經(jīng)毒性中的作用
自從miRs被發(fā)現(xiàn)后,其在各種重要的生物學(xué)途徑中的作用引起了人們的廣泛關(guān)注。目前,世界各地有多個(gè)研究中心對(duì)miRs在麻醉藥引起的神經(jīng)毒性方面的作用進(jìn)行了研究。有研究表明,在孕晚期或幼兒期使用丙泊酚可能誘發(fā)嚴(yán)重的神經(jīng)毒性并影響發(fā)育中的大腦[9-10]。丙泊酚的神經(jīng)毒性可能部分是通過(guò)影響miRs介導(dǎo)的。
3.1miR-148b-3p
研究發(fā)現(xiàn),核因子κB(NF-κB)是一種多效性因子,它的過(guò)量產(chǎn)生與某些人類中樞神經(jīng)系統(tǒng)疾病有關(guān),如細(xì)菌性腦膜炎、多發(fā)性硬化癥和腦型瘧疾等,NF-κB功能的喪失或不足部分破壞了中樞神經(jīng)系統(tǒng)的完整性[23]。人磷脂酰肌醇三羥基激酶(PI3K)激活的蛋白激酶B(Akt)通過(guò)B淋巴細(xì)胞瘤-2基因相關(guān)啟動(dòng)子(Bad)、Caspase-9、Forkhead和NF-κB的磷酸化抑制細(xì)胞凋亡,Akt是一種重要的抗凋亡調(diào)節(jié)因子[24]。研究發(fā)現(xiàn),在丙泊酚誘導(dǎo)的PC-12細(xì)胞中,miRNA-148B-3p的過(guò)表達(dá)抑制了PI3K和磷酸化蛋白激酶(p-Akt)蛋白的表達(dá),從而促進(jìn)了NF-κB的表達(dá),導(dǎo)致了神經(jīng)毒性和神經(jīng)炎癥的發(fā)生[25]。
3.2miR-455-3p
miR-455-3p被認(rèn)為是一種潛在的神經(jīng)保護(hù)因子,能夠挽救創(chuàng)傷性腦損傷小鼠的行為缺陷[26]。miR-455-3p還可通過(guò)調(diào)節(jié)淀粉樣前體蛋白提高阿爾茨海默病期間神經(jīng)母細(xì)胞瘤細(xì)胞的存活率,同時(shí)減少細(xì)胞凋亡[27]。對(duì)丙泊酚誘導(dǎo)的神經(jīng)元研究發(fā)現(xiàn),人酪氨酸蛋白激酶受體A4(EphA4)表達(dá)水平升高,miR-455-3p可以靶向降低丙泊酚誘導(dǎo)的神經(jīng)元中EphA4的表達(dá)[28]。一些研究發(fā)現(xiàn),EphA4的過(guò)表達(dá)可以加重腦缺血再灌注損傷[29],EphA4表達(dá)下調(diào)可抑制缺血-再灌注期間神經(jīng)細(xì)胞凋亡,并抑制海馬突觸功能障礙[30-31]。丙泊酚抑制了miR-455-3p的表達(dá),上調(diào)EphA4的表達(dá),從而導(dǎo)致了神經(jīng)毒性。
3.3miR-21
miR-21具有良好的抗凋亡作用,并在神經(jīng)元保護(hù)中發(fā)揮重要作用[32]。一項(xiàng)研究發(fā)現(xiàn),miR-21的過(guò)表達(dá)可以減輕丙泊酚誘導(dǎo)的人胚胎干細(xì)胞來(lái)源神經(jīng)元的細(xì)胞死亡,miR-21的敲除加重了丙泊酚的毒性作用。表明miR-21在神經(jīng)細(xì)胞死亡中發(fā)揮著重要的作用[33]。信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子3(STAT3)本身及其與miR-21表達(dá)的改變相結(jié)合具有抗凋亡作用[34]。單獨(dú)暴露于20 mg/L濃度丙泊酚后,STAT3和miR-21的表達(dá)顯著下調(diào),提示這一途徑參與了丙泊酚誘導(dǎo)的細(xì)胞死亡[33]。Akt在細(xì)胞存活和凋亡中起著重要作用??焖侔l(fā)育生長(zhǎng)因子同源蛋白2抗體(sprouty2)是miR-21的直接靶標(biāo),可以起到負(fù)調(diào)節(jié)蛋白表達(dá)的作用[35]。相關(guān)研究發(fā)現(xiàn),sprouty2的表達(dá)隨著丙泊酚的增加而增加,同時(shí)磷酸化絲氨酸/蘇氨酸蛋白激酶的表達(dá)減少,這表明STAT3/miR-21/sprouty2/Akt通路在丙泊酚神經(jīng)毒性中起著至關(guān)重要的作用[33]。
3.4miR-214
已觀察到丙泊酚誘導(dǎo)的神經(jīng)毒性與促炎因子的釋放有關(guān)[36]。丙泊酚誘導(dǎo)胎鼠海馬區(qū)神經(jīng)元促炎因子的釋放,這可能導(dǎo)致神經(jīng)元谷氨酸的產(chǎn)生增加,從而增加細(xì)胞凋亡[37]。研究發(fā)現(xiàn),miR-214過(guò)表達(dá)促進(jìn)了丙泊酚處理的神經(jīng)細(xì)胞中炎癥因子的釋放,誘導(dǎo)的神經(jīng)細(xì)胞凋亡,抑制了細(xì)胞增殖和細(xì)胞周期蛋白D1(cyclinD1)的表達(dá),促進(jìn)了caspase-3活性和Bax蛋白的表達(dá)[38]。
3.5miR-383
MiR-383已在各種類型的癌癥、不孕癥和其他疾病的病人中發(fā)現(xiàn)其下調(diào)。它的異位表達(dá)已被證明與細(xì)胞生長(zhǎng)、凋亡和凋亡相關(guān)蛋白的表達(dá)有關(guān)。研究表明,丙泊酚介導(dǎo)miR-383表達(dá)下調(diào),Bax/Bcl-2上調(diào),突觸后致密蛋白95(PSD-95)和磷酯化環(huán)腺苷酸應(yīng)答元件結(jié)合蛋白(p-CREB)表達(dá)降低,PI3K/Akt信號(hào)通路失活,導(dǎo)致海馬神經(jīng)元凋亡[39]。
3.6miR-582-5p
長(zhǎng)時(shí)間使用丙泊酚顯示出明顯的細(xì)胞凋亡和β-微管蛋白陽(yáng)性神經(jīng)元的減少,不同劑量的丙泊酚對(duì)新生小鼠海馬神經(jīng)元均有明顯的毒副作用[40-41]。丙泊酚處理后,神經(jīng)元存活率明顯降低,而凋亡相關(guān)蛋白的表達(dá)明顯增加。值得注意的是,丙泊酚以劑量依賴的方式抑制新生小鼠海馬神經(jīng)元細(xì)胞miR-582的表達(dá),促進(jìn)Rho關(guān)聯(lián)含卷曲螺旋結(jié)合蛋白激酶1(Rock1)的表達(dá)。提示丙泊酚對(duì)新生小鼠海馬神經(jīng)元的毒副作用可能與miR-582-5p和Rock1有關(guān)[42]。
3.7miR-665
miR-665可以負(fù)調(diào)控Bcl-2樣蛋白11(BCL2L11),通過(guò)caspase-3介導(dǎo)的機(jī)制參與丙泊酚的神經(jīng)毒性作用。應(yīng)用丙泊酚后能顯著上調(diào)miR-665的表達(dá),而miR-665基因敲除可減輕丙泊酚誘導(dǎo)的人胚胎干細(xì)胞(hESC)源性神經(jīng)元死亡,miR-665的過(guò)表達(dá)加劇了丙泊酚的毒性作用。
3.8miR-215
有研究表明,miRs與神經(jīng)系統(tǒng)疾病有關(guān),并且miRs失調(diào)在神經(jīng)毒性中起著重要作用[43-44]。一項(xiàng)研究發(fā)現(xiàn),丙泊酚可以誘導(dǎo)miR-215表達(dá)下調(diào),通過(guò)上調(diào)大型腫瘤抑制因子2(LATS2)表達(dá)導(dǎo)致神經(jīng)細(xì)胞的凋亡和氧化應(yīng)激的發(fā)生[45]。此外,miR-215過(guò)表達(dá)通過(guò)靶向LATS2減輕了這一現(xiàn)象。這提示miR-215可能為治療丙泊酚誘導(dǎo)的發(fā)育中神經(jīng)細(xì)胞凋亡提供一個(gè)新的治療靶點(diǎn)。
3.9miR-496
已有研究證明,miR-496在細(xì)胞凋亡和神經(jīng)損傷方面有重要意義[46-48]。腦缺血再灌注損傷后,miR-496在腦組織中的表達(dá)減少,它通過(guò)抑制Bcl-2樣蛋白14(BCL2L14)的表達(dá)而減輕腦缺血再灌注損傷[46]。在神經(jīng)毒物3,3′-亞氨基二丙腈(IDPN)引起的神經(jīng)毒性過(guò)程中,miR-496在腦橋和延髓受到相當(dāng)程度的抑制[47]。有研究發(fā)現(xiàn),PFC神經(jīng)元miR-496的改變可能參與了丙泊酚誘導(dǎo)的神經(jīng)毒性,進(jìn)一步的實(shí)驗(yàn)表明,miR-496過(guò)表達(dá)可減輕丙泊酚對(duì)PFC神經(jīng)元的神經(jīng)毒性[48]。提示miR-496可作為神經(jīng)調(diào)節(jié)劑調(diào)節(jié)丙泊酚對(duì)PFC神經(jīng)元的毒性作用。
3.10miR-9-5p
研究表明,小鼠神經(jīng)干細(xì)胞經(jīng)過(guò)丙泊酚處理后miR-9-5p的表達(dá)上調(diào),同時(shí)caspase-3、Bax等凋亡蛋白表達(dá)增加,抗凋亡蛋白Bcl-2表達(dá)降低,細(xì)胞存活率下降。這些結(jié)果提示,丙泊酚似乎是通過(guò)miR-9-5p損傷神經(jīng)干細(xì)胞[49]。趨化因子C-X-C-基元受體4(CXCR4)是一種位于細(xì)胞膜表面的G蛋白偶聯(lián)受體。研究發(fā)現(xiàn),CXCR4存在于神經(jīng)干細(xì)胞中,并與趨化因子C-X-C配體12(CXCL12)一起參與維持神經(jīng)干細(xì)胞的特性[50]。研究發(fā)現(xiàn),CXCR4的表達(dá)在丙泊酚處理的神經(jīng)干細(xì)胞中明顯上調(diào),并且miR-9-5p的過(guò)表達(dá)也增加了CXCR4在神經(jīng)干細(xì)胞中的表達(dá),提示丙泊酚通過(guò)miR-9-5p促進(jìn)CXCR4的表達(dá)[51]。
3.11miR-363-3p
越來(lái)越多的研究證明,miR-363-3p對(duì)多種神經(jīng)細(xì)胞的凋亡似乎都起到了作用[51-52]。接受丙泊酚麻醉的小鼠海馬神經(jīng)元和暴露在丙泊酚刺激下的SH-SY5Y細(xì)胞內(nèi)的mir-363-3p表達(dá)都有上調(diào)的改變,促進(jìn)了神經(jīng)元的氧化應(yīng)激和凋亡[51-52]。單磷酸腺苷反應(yīng)元件結(jié)合蛋白(CREB)是真核細(xì)胞中的一種核調(diào)節(jié)因子,在神經(jīng)元的抗凋亡、突觸形成、學(xué)習(xí)和記憶等方面發(fā)揮著重要的調(diào)節(jié)作用。研究證實(shí),丙泊酚可調(diào)節(jié)miR-363-3p/creb信號(hào)通路,促進(jìn)SH-SY5Y細(xì)胞的氧化應(yīng)激和凋亡,從而引起神經(jīng)毒性[52]。
3.12miR-141-3p
最近的研究結(jié)果表明,miRs表達(dá)的變化在不同的疾病發(fā)展過(guò)程中起重要作用,包括神經(jīng)系統(tǒng)疾病在多種刺激物誘導(dǎo)的細(xì)胞凋亡中起重要作用[39,53]。miRs在調(diào)節(jié)P53上調(diào)凋亡調(diào)節(jié)因子(PUMA)表達(dá)和調(diào)節(jié)細(xì)胞存活方面的作用已經(jīng)得到充分證實(shí)[54]。一項(xiàng)研究結(jié)果顯示,在人胚胎干細(xì)胞中miR-206、PUMA和caspase-3在暴露于丙泊酚后表達(dá)顯著上調(diào),miR-206可以負(fù)向調(diào)控丙泊酚誘導(dǎo)的PUMA和裂解caspase-3表達(dá),敲除PUMA可抑制丙泊酚誘導(dǎo)的細(xì)胞死亡和裂解caspase-3激活,但不影響丙泊酚誘導(dǎo)的miR-206上調(diào),這表明miR-206/PUMA通路參與了丙泊酚誘導(dǎo)的細(xì)胞死亡[55]。
3.13miR-132
一些早期的研究已經(jīng)表明,麻醉后的記憶障礙可能會(huì)導(dǎo)致海馬樹(shù)突棘功能障礙,而樹(shù)突棘作為學(xué)習(xí)和記憶功能的結(jié)構(gòu)基礎(chǔ)已經(jīng)被認(rèn)識(shí)了相當(dāng)長(zhǎng)的時(shí)間[56]。最近的研究發(fā)現(xiàn),miR-132已被證明在海馬神經(jīng)元的形態(tài)發(fā)生中發(fā)揮關(guān)鍵作用,特別是在介導(dǎo)樹(shù)突生長(zhǎng)和棘突形成方面[57]。一項(xiàng)研究顯示,反復(fù)丙泊酚麻醉導(dǎo)致miR-132表達(dá)水平顯著下調(diào),海馬區(qū)樹(shù)突棘數(shù)量減少,最終導(dǎo)致學(xué)習(xí)和記憶功能的障礙[58]。
3.14miR-34a
miR-34a的特點(diǎn)是促進(jìn)腫瘤細(xì)胞的凋亡,是p53的下游靶點(diǎn)[59]。研究發(fā)現(xiàn),miR-34a在調(diào)節(jié)海馬神經(jīng)元凋亡中有重要作用,miR-34a及其靶mRNA被認(rèn)為是通過(guò)MAPK/ERK信號(hào)通路調(diào)節(jié)神經(jīng)元凋亡的關(guān)鍵開(kāi)關(guān),miR-34a可能是術(shù)后認(rèn)知功能障礙的潛在治療靶點(diǎn)[60]。
4小結(jié)
綜上所述,miRs參與了丙泊酚誘導(dǎo)的神經(jīng)毒性,后者甚至?xí)?dǎo)致認(rèn)知功能障礙和記憶障礙。但是,關(guān)于miRs在丙泊酚誘導(dǎo)的神經(jīng)毒性中的作用的人體研究數(shù)據(jù)很少。一些體外實(shí)驗(yàn),無(wú)法在人體內(nèi)復(fù)制,也無(wú)法對(duì)人類腦組織進(jìn)行取材分析。下一步的研究方向應(yīng)該更多地關(guān)注miRs表達(dá)失衡及其后續(xù)靶點(diǎn)如何參與誘導(dǎo)神經(jīng)毒性。每天都有人因?yàn)槭中g(shù)或者需要長(zhǎng)時(shí)間的鎮(zhèn)靜而應(yīng)用丙泊酚,所以了解這種機(jī)制至關(guān)重要。
[參考文獻(xiàn)]
[1]KUCZKOWSKI K M. The safety of anaesthetics in pregnant women[J].? Expert Opinion on Drug Safety, 2006,5(2):251-264.
[2]JEVTOVIC-TODOROVIC V. Exposure of developing brain to general anesthesia: what is the animal evidence[J]?? Anesthe-siology, 2018,128(4):832-839.
[3]VUTSKITS L, XIE Z C. Lasting impact of general anaesthesia on the brain: mechanisms and relevance[J].? Nature Reviews Neuroscience, 2016,17(11):705-717.
[4]STOCKWELL S. FDA anesthesia warning for pregnant women, children[J].? The American Journal of Nursing, 2017,117(4):18.
[5]CHIDAMBARAN V, COSTANDI A, DMELLO A. Propofol: a review of its role in pediatric anesthesia and sedation[J].? CNS Drugs, 2015,29(7):543-563.
[6]YANG B, LIANG G, KHOJASTEH S, et al. Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane[J].? PLoS One, 2014,9(6):e99171.
[7]GUO P P, HUANG Z B, TAO T, et al. Zebrafish as a model for studying the developmental neurotoxicity of propofol[J].? Journal of Applied Toxicology, 2015,35(12):1511-1519.
[8]KAJIMOTO M, ATKINSON D B, LEDEE D R, et al. Propofol compared with isoflurane inhibits mitochondrial metabolism in immature swine cerebral cortex[J].? Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 2014,34(3):514-521.
[9]CREELEY C, DIKRANIAN K, DISSEN G, et al. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal andneonatal rhesus macaque brain[J].? British Journal of Anaes-thesia, 2013,110(Suppl 1): i29-i38.
[10]GAO J, PENG S J, XIANG S Q, et al. Repeated exposure to propofol impairs spatial learning, inhibits LTP and reduces CaMKIIα in young rats[J].? Neuroscience Letters, 2014,560:62-66.
[11]TWAROSKI D M, YAN Y S, ZAJA I, et al. Altered mitochondrial dynamics contributes to propofol-induced cell death in human stem cell-derived neurons[J].? Anesthesiology, 2015,123(5):1067-1083.
[12]HUANG J, JING S, CHEN X, et al. Propofol administration during early postnatal life suppresses hippocampal neurogenesis[J].? Molecular Neurobiology, 2016,53(2):1031-1044.
[13]JEVTOVIC-TODOROVIC V. General anesthetics and neurotoxicity: how much do we know[J]?? Anesthesiology Clinics, 2016,34(3):439-451.
[14]POPI J, PEI V, MILANOVI D, et al. Induction of TNF-α signaling cascade in neonatal rat brain during propofol anesthesia[J].? International Journal of Developmental Neuroscience: the Official Journal of the International Society for Developmental Neuroscience, 2015,44:22-32.
[15]OLCUM M, TUFEKCI K U, GENC S. microRNAs in genetic etiology of human diseases[M]//miRNomics. New York: Humana, 2022:255-268.
[16]TFEKCI K U, ONER M G, MEUWISSEN R L J, et al. The role of microRNAs in human diseases[J].? Methods in Molecular Biology (Clifton, N J), 2014,1107:33-50.
[17]ALI SYEDA Z, LANGDEN S S S, MUNKHZUL C, et al. Regulatory mechanism of microRNA expression in cancer[J].? International Journal of Molecular Sciences, 2020,21(5):1723.
[18]HUSSEN B M, HIDAYAT H J, SALIHI A, et al. micro-RNA: a signature for cancer progression[J].? Biomedicine & Pharmacotherapy, 2021,138:111528.
[19]CHU A J, WILLIAMS J M. Astrocytic microRNA in ageing, inflammation, and neurodegenerative disease[J].? Frontiers in Physiology, 2022,12:826697.
[20]NAMPOOTHIRI S S, RAJANIKANT G K. Decoding the ubiquitous role of microRNAs in neurogenesis[J]. Molecular Neurobiology, 2017,54(3):2003-2011.
[21]LIN D, LIU J Y, HU Z H, et al. Neonatal anesthesia exposure impacts brain microRNAs and their associated neurodevelopmental processes[J].? Scientific Reports, 2018,8(1):10656.
[22]SUN W C, LIANG Z D, PEI L. Propofol-induced rno-miR-665 targets BCL2L1 and influences apoptosis in rodent developing hippocampal astrocytes[J].? NeuroToxicology, 2015,51:87-95.
[23]HUANG H, HUANG Q J, WANG F X, et al. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of α5β1 and αVβ3 integrins[J].? Journal of Neuroinflammation, 2016,13(1):227.
[24]ZUO D Y, LIN L, LIU Y M, et al. Baicalin attenuates ke-tamine-induced neurotoxicity in the developing rats: involvement of PI3K/Akt and CREB/BDNF/bcl-2 pathways[J].? Neurotoxicity Research, 2016,30(2):159-172.
[25]WANG M Y, SUO L Y, YANG S, et al. CircRNA 001372 reduces inflammation in propofol-induced neuroinflammation and neural apoptosis through PIK3CA/Akt/NF-κB by miRNA-148b-3p[J].? Journal of Investigative Surgery: the Official Journal of the Academy of Surgical Research, 2021,34(11):1167-1177.
[26]GUO S W, ZHEN Y W, ZHU Z Q, et al. Cinnamic acid rescues behavioral deficits in a mouse model of traumatic brain injury by targeting miR-455-3p/HDAC2[J].? Life Sciences, 2019,235:116819.
[27]KUMAR S, REDDY A P, YIN X L, et al. Novel microRNA-455-3p and its protective effects against abnormal APP processing and amyloid beta toxicity in Alzheimers disease[J].? Biochimica et Biophysica Acta Molecular Basis of Disease, 2019,1865(9):2428-2440.
[28]ZHU X J, LI H F, TIAN M, et al. miR-455-3p alleviates propofol-induced neurotoxicity by reducing EphA4 expression in developing neurons[J].? Biomarkers, 2020,25(8):685-692.
[29]CHEN F B, LIU Z Y, PENG W, et al. Activation of EphA4 induced by EphrinA1 exacerbates disruption of the blood-brain barrier following cerebral ischemia-reperfusion via the Rho/ROCK signaling pathway[J].? Experimental and Therapeutic Medicine, 2018,16(3):2651-2658.
[30]LI J G, LIU N H, WANG Y, et al. Inhibition of EphA4 signaling after ischemia-reperfusion reduces apoptosis of CA1 pyramidal neurons[J].? Neuroscience Letters, 2012,518(2):92-95.
[31]FU A K, HUNG K W, HUANG H Q, et al. Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimers disease[J].? Proceedings of the National Academy of Sciences of the United States of America, 2014,111(27):9959-9964.
[32]BULLER B, LIU X S, WANG X L, et al. microRNA-21 protects neurons from ischemic death[J].? The FEBS Journal, 2010,277(20):4299-4307.
[33]TWAROSKI D M, YAN Y S, OLSON J M, et al. Down-re-gulation of microRNA-21 is involved in the propofol-induced neurotoxicity observed in human stem cell-derived neurons[J].? Anesthesiology, 2014,121(4):786-800.
[34]SHEN X H, HAN Y J, ZHANG D X, et al. A link between the interleukin-6/Stat3 anti-apoptotic pathway and microRNA-21 in preimplantation mouse embryos[J].? Molecular Reproduction and Development, 2009,76(9):854-862.
[35]FENG Y H, WU C L, SHIAU A L, et al. microRNA-21-mediated regulation of Sprouty2 protein expression enhances the cytotoxic effect of 5-fluorouracil and metformin in colon cancer cells[J].? International Journal of Molecular Medicine, 2012,29(5):920-926.
[36]AN K, SHU H, HUANG W, et al. Effects of propofol on pulmonary inflammatory response and dysfunction induced by cardiopulmonary bypass[J].? Anaesthesia, 2008,63(11):1187-1192.
[37]ZHOU C H, ZHU Y Z, ZHAO P P, et al. Propofol inhibits lipopolysaccharide-induced inflammatory responses in spinal astrocytes via the toll-like receptor 4/MyD88-dependent nuc-lear factor-κB, extracellular signal-regulated protein Kinases1/2, and p38 mitogen-activated protein kinase pathways[J].? Anesthesia and Analgesia, 2015,120(6):1361-1368.
[38]GUO X K, CHENG M H, KE W Q, et al. microRNA-214 suppresses propofol-induced neuroapoptosis through activation of phosphoinositide 3-kinase/protein kinase B signaling by targeting phosphatase and tensin homolog expression[J].? International Journal of Molecular Medicine, 2018,42(5):2527-2537.
[39]WANG X L, DING G Y, LAI W, et al. microRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment[J].? Experimental and Therapeutic Medicine, 2018,15(4):3181-3188.
[40]LIU F, LIU S L, PATTERSON T A, et al. Protective effects of xenon on propofol-induced neurotoxicity in human neural stem cell-derived models[J].? Molecular Neurobiology, 2020,57(1):200-207.
[41]JIANG L L, YANG F Y, ZHAO Q, et al. microRNA-665 mediates propofol-induced cell apoptosis in human stem cell-derived neurons[J].? Bioengineered, 2019,10(1):493-500.
[42]ZHANG Z J, XU Y, CHI S Y, et al. microRNA-582-5p reduces propofol-induced apoptosis in developing neurons by targeting ROCK1[J].? Current Neurovascular Research, 2020,17(2):140-146.
[43]ASIKAINEN S, RUDGALVYTE M, HEIKKINEN L, et al. Global microRNA expression profiling of Caenorhabditis elegans Parkinsons disease models[J].? Journal of Molecular Neuroscience, 2010,41(1):210-218.
[44]KAUR P, ARMUGAM A, JEYASEELAN K. microRNAs in neurotoxicity[J].? Journal of Toxicology, 2012,2012:870150.
[45]TANG F, ZHAO L L, YU Q, et al. Upregulation of miR-215 attenuates propofol-induced apoptosis and oxidative stress in developing neurons by targeting LATS2[J].? Molecular Medicine (Cambridge, Mass), 2020,26(1):38.
[46]YAO X X, YAO R, YI J P, et al. Upregulation of miR-496 decreases cerebral ischemia/reperfusion injury by negatively regulating BCL2L14[J].? Neuroscience Letters, 2019,696:197-205.
[47]OGATA K, KUSHIDA M, MIYATA K, et al. Alteration of microRNA expressions in the pons and medulla in rats after 3,3′-iminodipropionitrile administration[J].? Journal of Toxicologic Pathology, 2016,29(4):229-236.
[48]MAO Z M, WANG W J, GONG H X, et al. Upregulation of miR-496 rescues propofol-induced neurotoxicity by targeting rho associated coiled-coil containing protein kinase 2 (ROCK2) in prefrontal cortical neurons[J].? Current Neurovascular Research, 2020,17(2):188-195.
[49]ZHANG W X, LIU Q, ZHU H, et al. Propofol induces the apoptosis of neural stem cells via microRNA-9-5p/chemokine CXC receptor 4 signaling pathway[J].? Bioengineered, 2022,13(1):1062-1072.
[50]HO S Y, LING T Y, LIN H Y, et al. SDF-1/CXCR4 signaling maintains stemness signature in mouse neural stem/progenitor cells[J].? Stem Cells International, 2017,2017:2493752.
[51]JIANG C S, LOGAN S, YAN Y S, et al. Signaling network between the dysregulated expression of microRNAs and mRNAs in propofol-induced developmental neurotoxicity in mice[J].? Scientific Reports, 2018,8(1):14172.
[52]YAO Y, ZHANG J J. Propofol induces oxidative stress and apoptosis in vitro via regulating miR-363-3p/CREB signalling axis[J].? Cell Biochemistry and Function, 2020,38(8):1119-1128.
[53]CHIPUK J E, GREEN D R. PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis[J].? Cell Cycle, 2009,8(17):2692-2696.
[54]DING S L, WANG J X, JIAO J Q, et al. A pre-microRNA-149 (miR-149) genetic variation affects miR-149 maturation and its ability to regulate the Puma protein in apoptosis[J].? The Journal of Biological Chemistry, 2013,288(37):26865-26877.
[55]LI Y, JIA C X, ZHANG D L, et al. Propofol-induced neurotoxicity in hESCs involved in activation of miR-206/PUMA signal pathway[J].? Cancer Biomarkers: Section A of Disease Markers, 2017,20(2):175-181.
[56]NUNZI M G, MILAN F, GUIDOLIN D, et al. Dendritic spine loss in hippocampus of aged rats. Effect of brain phosphatidylserine administration[J].? Neurobiology of Aging, 1987,8(6):501-510.
[57]PATHANIA M, TORRES-REVERON J, YAN L, et al. miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons[J].? PLoS One, 2012,7(5):e38174.
[58]ZHANG S, LIANG Z D, SUN W C, et al. Repeated propofol anesthesia induced downregulation of hippocampal miR-132 and learning and memory impairment of rats[J].? Brain Research, 2017,1670:156-164.
[59]KOFMAN A V, LETSON C, DUPART E, et al. The p53-microRNA-34a axis regulates cellular entry receptors for tumor-associated human herpes viruses[J].? Medical Hypotheses, 2013,81(1):62-67.
[60]LI G F, LI Z B, ZHUANG S J, et al. Inhibition of micro-RNA-34a protects against propofol anesthesia-induced neuroto-xicity and cognitive dysfunction via the MAPK/ERK signaling pathway[J].? Neuroscience Letters, 2018,675:152-159.
(本文編輯周曉彬)