• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    低溫輻射計光功率修正因子測試與分析

    2023-08-21 07:34:32史學舜莊新港王國權(quán)劉紅波張鵬舉劉長明周金戈
    光子學報 2023年7期
    關鍵詞:金戈計量站輻射計

    史學舜,莊新港,王國權(quán),劉紅波,張鵬舉,劉長明,周金戈

    (1 中國電子科技集團公司第四十一研究所,青島 266555)

    (2 國防科技工業(yè)光電子一級計量站,青島 266555)

    (3 電子測試技術重點實驗室,青島 266555)

    0 Introduction

    Optical radiation measurement generally refers to the use of basic measurement technology to establish a direct or indirect relationship between the measured optical radiation or radiometric parameters and the fundamental physical constants or physical quantities with low measurement uncertainty, so as to improve the reproduction or measurement level. During the development of basic optical radiation measurement technology,it has experienced radiation source standards represented by blackbody radiation source and synchrotron radiation source, and detector standards represented by absolute radiometer and self-calibration silicon photoelectric diode[1]. In the early 1980s, the development of cryogenic radiation technology greatly promoted the progress of absolute radiation technology and improved the measurement accuracy by an order of magnitude.In the optical comparison organized by the International Bureau of metrology, the consistency of the comparison results of cryogenic radiometers reaches 0.03%, which is the highest benchmark of optical radiation measurement in the world. As an important basis for optical radiation measurement, China has established optical measurement system based on cryogenic radiometer and has carried out measurement comparison of cryogenic radiometer[2]. Other values based on detector or radiation source are traced to cryogenic radiometer,or take cryogenic radiometer as circumstantial evidence to improve the measurement accuracy.

    By introducing new technical means such as cryogenic, superconductivity and vacuum, the cryogenic radiometer uses the principle of electrical substitution measurement in the state of cryogenic superconductivity to trace the optical radiation measurement to the electrical parameter measurement that can be measured accurately, so as to realize the absolute measurement of radiant power. However, in the actual substitution process, in order to ensure the measurement accuracy, the factors affecting the equivalent substitution of photoelectric heating, such as window transmittance, stray light, and absorption ratio, need to be corrected.For example, with the help of standard whiteboard and integrating sphere, the Physikalisch-Technische Bundesantalt (PTB) measures the absorptivity of inclined bottom blackbody absorption cavity at 632.8 nm,which is 0.999 885[3]; the National Physical Laboratory (NPL) uses an intermediate through-hole four quadrant detector to test the stray light entering the cryogenic radiometer[4]; Changchun Institute of Optics, Fine Mechanics and Physics, CAS uses Monte Carlo fiber tracking to analyze the stray light characteristics of wide field of view absolute radiometer[5].

    The above research only tests and simulates the factors affecting the equivalent substitution of photoelectric heating of cryogenic radiometer from a single aspect, and the technical means used have some defects. The 41st Research Institute of CETC takes the lead in developing the cryogenic radiometer for laboratory measurement[6]. In order to ensure the measurement uncertainty of the cryogenic radiometer, this paper introduces the optical path structure of the cryogenic radiometer test system, analyzes the substitution factors affecting the photoelectric heating and other effects of the cryogenic radiometer, and expounds the test simulation method for the correction factors of each influencing factor. Based on the finite element analysis method, the heat transfer model of absorbing cavity is constructed, and the photoelectric heating nonequivalence of cryogenic radiometer under different heating power is simulated and analyzed.

    1 Cryogenic radiometer system device

    Using the principle of equivalent substitution of photoelectric heating in cryogenic and vacuum environment, the cryogenic radiometer can realize the absolute measurement of radiant power. Taking the cryogenic radiometer as the primary standard and the laser as the light source, the responsivity of the standard transfer detector can be absolutely calibrated with the cryogenic radiometer, which can realize the transfer from the primary standard to the transfer standard. This calibration transfer method is widely adopted in the world[7-9].The laser source, transfer standard detector and cryogenic radiometer constitute the cryogenic radiometer test system, as shown in Fig. 1. In the laser source part, 632.8 nm laser is used as the initial light source, and then passes through optical elements such as polarizer, Laser Power Controller (LPC), spatial filter, collimating lens, LPC, mirror, shutter, aperture diaphragm. Finally, highly stable Gaussian laser output with vertical polarization is obtained. The emitted laser beam produces vertical polarized P light through the polarizer, and then the power stability is stabilized at 0.006% every 40 min with the laser power control facility. The spatial filter is used to filter out the high-order modes and stray light in the incident laser, and to acquire the basic mode Gauss light with the aperture, and then adjusts the collimated lens to converge the light beam into the absorbing cavity of the cryogenic radiometer.

    Fig.1 System structure diagram of cryogenic radiometer device

    After completing the laser beam modulation, referring to the indication of the four quadrant detector in the beam collimation system, the beam is incident to the center of the absorbing cavity through the Brewster window by adjusting the reflecting mirrors. The transfer standard detector adopts Si trap detector at the wavelength of 632.8 nm, and the switching between the transfer standard detector and the cryogenic radiometer in the optical path is realized with the help of a motorized translation stage.

    Due to the introduction of cryogenic and vacuum technology, the measurement accuracy of the cryogenic radiometer has been greatly improved compared with the traditional radiometer. However, in the actual measurement process, when the incident light enters the blackbody cavity through the Brewster window, the absorption and reflection loss of the window, some stray light in the Gaussian beam , the absorptance of the cavity, the non-equivalence of photoelectric heating and conductor heat leakage will introduce measurement uncertainty; on the other hand, uncertainty will be introduced in the transmission process of the absorbing cavity and the trap detector due to the difference of the incident optical aperture and the different optical path.Therefore, it is necessary to correct the factors affecting the measurement uncertainty of cryogenic radiometer one by one. The correction formula is usually expressed as follows[10]

    whereP0is the modulated measured laser power,Tis the transmittance correction factor of Brewster window,Sis stray light correction factor,Ais the blackbody cavity absorption correction factor,Nis the non-equivalent correction factor of photoelectric heating,Peis the electric power,Vhis the voltage at both ends of the blackbody cavity heating resistance, andVi、Riare the voltage and resistance value at both ends of the standard resistance in the electric heating circuit respectively.

    2 Correction factor test device and method

    2.1 Window transmittance

    The undetermined incident laser is incident into the cryogenic radiometer at Brewster angle through Brewster window plate. For one thing, Brewster window can ensure 100% transmission of vertically polarized incident light in an ideal state, for the other it can effectively shield the stray light in the environment from entering the absorption cavity. However, in the actual optical path adjustment, affected by the adjustment accuracy, as well as the absorption, scattering and uniformity of the window itself, there are inevitable differences between the window transmittance and the theoretical value, and the transmittance in different experimental processes is affected by human factors, which is difficult to reproduce completely. Therefore, it is necessary to test the window transmittance online during each experiment.

    In the measurement facility as shown in Fig.2, a beam alignment and test chamber is developed for window transmittance test. After completing a cryogenic radiometer optical power measurement, closing the vacuum valve between the cryogenic radiometer and the test chamber, the vacuum blind plate at the front end of the offaxis parabolic mirror is open to restore the Brewster window and the test chamber to a non-vacuum state,followed by testing the optical power values at the front end and rear end of the Brewster window with the Si detector and two-dimensional electric translation table. The power values noted asP1andP2respectively. The ratio ofP2andP1is the window transmittance correction factorT.

    Fig.2 Schematic diagram of window transmittance and stray light measurement

    2.2 Stray light

    As shown in Fig. 2, the Gaussian incident laser beam enters the absorbing cavity of the cryogenic radiometer after passing through the Brewster window and the middle through-hole off-axis parabolic mirror in turn. The diameter of the off-axis parabolic mirror is 1 inch and the diameter of the middle through hole is 7 mm(the diameter of the blackbody cavity is 10 mm). Although several apertures are set in the incident light path,there are still some scattered light outside a certain range of the main beam that cannot enter the absorption cavity through the off-axis parabolic mirror through hole. This part of the scattered light cannot enter the absorption cavity and is regarded as stray light. Fig.3 shows the energy distribution of Gaussian beam in the cryogenic radiometer test system measured experimentally. The horizontal axis is the spot diameter and the vertical axis is the spot energy proportion. When the spot diameter is greater than 5 mm, the laser energy proportion has exceeded 99.9%. The beam alignment device judges and adjusts the orientation of the incident beam by monitoring the position of the stray light focus on the four quadrant detector, as shown by the dotted line light in Fig. 2.

    Fig.3 Energy distribution of Gaussian beam

    The transmittance of the incident Gaussian beam passing through the through hole of the parabolic mirror exceeds 99.9%, and the stray light intensity is very weak. The direct test accuracy of the four quadrant detector is poor, and some stray light is not converged to the four quadrant detector through the mirror. In this paper,with the test chamber shown in Fig. 2, the stray light radiation is indirectly calculated by testing the transmittance of the incident light through the off-axis parabolic mirror, which is similar to the transmittance test of the Brewster window. The ratio of the power of the front and the rear of the parabolic mirror is the stray light correction factor. Because through hole diameter of the parabolic mirror is smaller than the blackbody cavity diameter, all the light that does not pass through the through hole is regarded as stray light, and all the light that passes through the through hole will enter the absorption cavity.

    2.3 Absorption of blackbody cavity

    As the core light radiation receiving device of the cryogenic radiometer, the fundamental purpose of the absorbing cavity is to form a light trap so that the light radiation incident into the cavity is approximately completely absorbed after multiple reflections[11]. On one hand, we need to develop a blackbody cavity with ultra-high absorptance. The absorptance of the cavity is related to its structure, shape, length and the characteristics of the blackened material; on the other hand, it is necessary to accurately measure the absorptivity of the cavity for the later photoelectric heating equivalent correction of the cryogenic radiometer. In our previous research work, Monte Carlo ray tracing method is used to analyze the factors affecting the cavity absorptance. Reference[12]specifically introduced the facility and method of measuring the cavity absorptance by substitution method.

    2.4 Light and electric heating non-equivalence corrections

    The main source of the non-equivalence of photoelectric heating is the difference between different heating areas and heating positions during photoelectric heating, which makes the photoelectric heating power required by the temperature sensor to obtain the same temperature rise different. Fig.4 shows the schematic diagram of photoelectric heating non-equivalence of blackbody cavity, which indicates the photoelectric heating position,heating area and detector position. Although the absorbing cavity is made of oxygen free copper with low heat capacity and high thermal conductivity, so that the cavity can quickly reach thermal balance, there will still be a small temperature gradient difference in the temperature distribution of the cavity during thermal balance, and the gradient difference is slightly different due to different photoelectric heating paths.

    Fig.4 Schematic diagram of photoelectric heating non-equivalence

    It is difficult to directly measure the photoelectric heating non-equivalence correction coefficient through experiments. Only the approximate value of non-equivalence can be given, and the temperature distribution and non-equivalence of optical heating and electric heating cannot be measured quantitatively[13]. Finite element analysis method is widely used in the world to simulate the steady-state response and evaluate the transient response of cryogenic radiometer. With its flexibility and effectiveness, finite element analysis method has become the most effective method to deal with complex models[14].

    3 Test results and analysis

    3.1 Transmittance and stray light

    According to Fig. 3, the energy spatial distribution of the incident laser beam in the cryogenic radiometer test optical system after spatial filtering is Gaussian distribution, and more than 99.9% of the energy is concentrated in a circular area with a diameter of 5 mm. In order to maximize the incident light entering the black body cavity of the cryogenic radiometer through the parabolic mirror and reduce the stray light and photoelectric non-equivalence, the diameter of the parabolic mirror is designed to be 25.4 mm, the diameter of the middle through hole is 5 mm and the focal length is 50.8 mm. Fig.5 shows the assembled Brewster window and the beam alignment and test device composed of parabolic mirror, four quadrant detector and beam alignment and test chamber. The incident light enters the blackbody cavity through the Brewster window through the off-axis parabolic mirror, and the direction of the incident light is adjusted with reference to the indication of the four quadrant detector until the indication of the four quadrants of the four quadrant detector is the same, indicating that the incident light enters the center at the bottom of the blackbody cavity. Fig.5 shows the stray light spot shape of the adjusted incident light reflected by the off-axis parabolic mirror, and the incident light power is stable at 500 μW, where Fig. 5(a) shows the stray light spot at 12.7 mm from the parabolic mirror through hole in the light on environment, and Fig.5 (b)~(d) shows the stray light spot at 12.7 mm, 25 mm and 50.8 mm(focus) from the parabolic mirror through hole in the darkroom environment, it can be clearly seen that the stray light that fails to enter the cryogenic radiometer through the parabolic mirror and the convergence of the light spot reflected by the mirror.

    Fig.5 Stray light spot shape at various distance and lighting conditions

    During the process, Si photodetector, preamplifier, digital voltmeter and two-dimensional electronic control translation table are used to build Brewster window transmittance and stray light detection devices.The optical power values at the front and back ends of Brewster window areP1=624.302 μW andP2=622.315 μW. Incident light power at the rear end of parabolic mirrorP3=621.701 μW. Therefore, the transmittance of Brewster window is 0.996 817 and the stray light is 0.614 μW. Stray light correction factor 0.999 013.

    3.2 Absorptivity

    The absorptivity of black body cavity is related to many factors, such as cavity structure, cavity aspect ratio, absorptivity characteristics of blackened materials, incident light position and angle, etc. The experiment uses the comparison method to test the absorptivity of the blackbody cavity with the help of the low split ball.The simulation and test of the absorptivity characteristics of the blackbody cavity have been completed in Refs.[11]and [12]. The experimentally measured absorptivity of the blackbody cavity at 632.8 nm is 0.999 95.

    3.3 Photoelectric heating non-equivalence

    In the experiment, SolidWorks simulation software is used to analyze the thermodynamic characteristics of the blackbody cavity assembly of cryogenic radiometer. Firstly, the three-dimensional mathematical model of blackbody cavity assembly is constructed by SolidWorks, and the thermodynamic characteristic parameters of materials at temperature of 6.5 K are added, and then the established mathematical model is imported into SolidWorks simulation for thermodynamic simulation. As shown in Fig. 6, heating power, between 100 μW to 1 mW, stepped 100 μW, is applied to the light heating area and the electric heating area, respectively. The temperature at the heat sink position is set to 6.5 K. Since the single absorption rate of the black body cavity blackened material at 632.8 nm is about 92%, and the light energy is basically absorbed after two reflections, in the simulation process, only the light heating power is applied in the first two reflection areas, and the heating power at the primary reflection position is set to 92% of the total power, and the heating power at the secondary reflection position is set to 8% of the total power. After the heating power is applied, the grid is divided and the finite element heat transfer system analysis model is established. The model is composed of 59 424 nodes and 34 081 elements.

    Fig.6 1 mW heating power temperature gradient diagram

    After completing the above steps, it will start to solve the finite element analysis model. Fig. 7 shows the temperature gradient distribution of the cavity under 1 mW heating power, and the temperature difference at different cavity positions can be clearly seen. By reading the temperature at the center of the temperature sensor,the cavity temperature rises and non-equivalence factor of optical heating and electric heating under different heating power can be calculated, as shown in Table 1. The photoelectric nonequivalence correction factor under different heating power is between 1.009 213 and 1.009 246, and the difference is slight. It can be found that under the same boundary conditions of optical power and electric power, the temperature rise of optical heating is slightly higher than that of electric heating, mainly because the position of optical heating is closer to the temperature sensor. Through error analysis of the test results in Table 1, it can be obtained that the photoelectric non-equivalence factor of the cryogenic radiometer is 1.009 240 ± 0.000 010.

    Table 1 Photoelectric heating non-equivalence factor under different heating power

    4 Conclusion

    The cryogenic radiometer adopts the principle of electric substitution measurement to realize the absolute measurement of optical power, and the measurement uncertainty reaches the order of 10?5. The accurate measurement of optical power is inseparable from the measurement of correction factors such as Brewster window transmittance, stray light, blackbody cavity absorptivity and photoelectric heating non-equivalence of cryogenic radiometer. Aiming at the transmittance and stray light correction factor of Brewster window, the self-designed beam alignment and test chamber are used for on-line measurement. At the same time, the Gaussian beam energy distribution after spatial filtering is analyzed. It is proposed to obtain the stray light distribution and energy by measuring the transmittance of incident light through off-axis parabolic mirror.Finally, the transmittance of Brewster window is 0.996 817, stray light correction factor 0.999 013. In addition,the spectral absorptivity of the black body cavity is analyzed and tested, and the factors affecting the absorptivity of the black body cavity are analyzed. The simulated and measured results are consistent. The absorptivity of the black body cavity at 632.8 nm is 0.999 950. Additionally, the heat transfer model of blackbody cavity is constructed by finite element analysis method, and the photoelectric heating non-equivalence of cryogenic radiometer under different heating power is simulated and analyzed. The simulation results show that the difference of photoelectric heating non-equivalence of cryogenic radiometer under different heating power is slight, and the photoelectric non-equivalence factor of the cryogenic radiometer is 1.009 240±0.000 010. The research results provide certain references for the optimization design and correction factor test of each functional module of cryogenic radiometer.

    猜你喜歡
    金戈計量站輻射計
    國防科技工業(yè)真空一級計量站
    真空與低溫(2021年6期)2021-12-02 09:19:50
    國防科技工業(yè)真空一級計量站
    真空與低溫(2021年5期)2021-10-19 04:40:38
    風云四號A星多通道掃描成像輻射計第一幅彩色合成圖像
    上海航天(2021年3期)2021-07-21 14:02:12
    不一樣
    金戈紡織走出國門成北美“隱形冠軍”
    華人時刊(2020年21期)2021-01-14 01:33:30
    金戈古韻齊長城
    金橋(2020年10期)2020-11-26 07:23:16
    基于CLEAN算法對一維綜合孔徑輻射計成像誤差的校正
    國防科技工業(yè)真空一級計量站
    真空與低溫(2019年5期)2019-10-18 09:08:30
    微波輻射計對昆明霧天的監(jiān)測及應用
    桃花開了!8年前的癡心絕戀復活了
    精品视频人人做人人爽| 男女下面插进去视频免费观看 | 午夜老司机福利剧场| 亚洲五月色婷婷综合| 在线观看人妻少妇| 亚洲第一区二区三区不卡| 久久精品国产自在天天线| 国产精品欧美亚洲77777| 我要看黄色一级片免费的| 成年av动漫网址| 亚洲国产精品999| 久久免费观看电影| 中文字幕最新亚洲高清| 国产亚洲一区二区精品| 免费在线观看完整版高清| 亚洲av欧美aⅴ国产| 亚洲综合色惰| 我要看黄色一级片免费的| 97在线人人人人妻| 你懂的网址亚洲精品在线观看| 亚洲av成人精品一二三区| 校园人妻丝袜中文字幕| 亚洲精品中文字幕在线视频| 亚洲精品美女久久av网站| 亚洲av国产av综合av卡| 国产精品一区二区在线不卡| 97精品久久久久久久久久精品| 精品一品国产午夜福利视频| 天天操日日干夜夜撸| 各种免费的搞黄视频| 18禁在线无遮挡免费观看视频| 女的被弄到高潮叫床怎么办| 大香蕉久久网| 精品久久久久久电影网| 国产免费一区二区三区四区乱码| 精品人妻一区二区三区麻豆| 精品熟女少妇av免费看| 大码成人一级视频| 黄色视频在线播放观看不卡| 在线观看免费视频网站a站| 免费女性裸体啪啪无遮挡网站| 亚洲国产av影院在线观看| 免费观看无遮挡的男女| 精品99又大又爽又粗少妇毛片| 日本黄色日本黄色录像| 一区二区av电影网| 国产免费一区二区三区四区乱码| 精品亚洲乱码少妇综合久久| 午夜福利在线观看免费完整高清在| 色婷婷av一区二区三区视频| 欧美国产精品va在线观看不卡| 在线观看人妻少妇| 美女大奶头黄色视频| 久久久国产一区二区| 成年人午夜在线观看视频| 夜夜爽夜夜爽视频| 91午夜精品亚洲一区二区三区| 有码 亚洲区| av女优亚洲男人天堂| 亚洲国产看品久久| 最新的欧美精品一区二区| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品美女久久av网站| 亚洲熟女精品中文字幕| 国产成人免费无遮挡视频| 熟妇人妻不卡中文字幕| 狠狠婷婷综合久久久久久88av| 美女国产视频在线观看| a级毛片黄视频| 亚洲天堂av无毛| 亚洲av电影在线观看一区二区三区| 久久精品夜色国产| 亚洲国产精品999| 久久99蜜桃精品久久| 欧美性感艳星| 中文字幕制服av| 大香蕉久久网| 亚洲伊人久久精品综合| 欧美国产精品va在线观看不卡| 国产xxxxx性猛交| 免费女性裸体啪啪无遮挡网站| 五月玫瑰六月丁香| 热99国产精品久久久久久7| 久久狼人影院| 久久99蜜桃精品久久| 黄色怎么调成土黄色| 国产精品久久久久久久久免| 插逼视频在线观看| 欧美另类一区| 亚洲国产欧美日韩在线播放| 欧美日韩一区二区视频在线观看视频在线| 午夜久久久在线观看| 亚洲精品日本国产第一区| 日韩欧美一区视频在线观看| 亚洲精品乱码久久久久久按摩| 成人影院久久| 熟妇人妻不卡中文字幕| 男女下面插进去视频免费观看 | 国产在线免费精品| 亚洲精品乱久久久久久| 少妇 在线观看| 宅男免费午夜| 草草在线视频免费看| 精品卡一卡二卡四卡免费| av在线app专区| 免费观看在线日韩| 国产精品一区二区在线不卡| 乱人伦中国视频| 熟女电影av网| 精品午夜福利在线看| 下体分泌物呈黄色| 久久久久精品人妻al黑| 女人精品久久久久毛片| 国产精品99久久99久久久不卡 | 精品一区二区三卡| 亚洲美女黄色视频免费看| 精品少妇久久久久久888优播| 亚洲国产成人一精品久久久| 免费观看av网站的网址| 国产高清国产精品国产三级| 内地一区二区视频在线| 国产成人精品久久久久久| 男女边吃奶边做爰视频| 黄色 视频免费看| 成人亚洲精品一区在线观看| 国产精品人妻久久久影院| 国产精品久久久久久精品电影小说| 少妇被粗大的猛进出69影院 | 欧美日韩av久久| 国产午夜精品一二区理论片| 亚洲色图 男人天堂 中文字幕 | 欧美人与善性xxx| 国产一区二区在线观看日韩| 色婷婷久久久亚洲欧美| 亚洲性久久影院| 波多野结衣一区麻豆| 亚洲成人手机| 国产av一区二区精品久久| 丝袜人妻中文字幕| 99九九在线精品视频| 在线观看一区二区三区激情| 黄片无遮挡物在线观看| 中文字幕精品免费在线观看视频 | av国产精品久久久久影院| 高清在线视频一区二区三区| 亚洲av欧美aⅴ国产| 在线观看美女被高潮喷水网站| 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 日日摸夜夜添夜夜爱| 国产日韩欧美亚洲二区| 亚洲精品日韩在线中文字幕| 王馨瑶露胸无遮挡在线观看| 18+在线观看网站| 精品国产乱码久久久久久小说| 一区二区三区乱码不卡18| 男女无遮挡免费网站观看| av在线观看视频网站免费| 日日爽夜夜爽网站| 少妇的逼水好多| 男女啪啪激烈高潮av片| av又黄又爽大尺度在线免费看| 国产成人一区二区在线| 男女下面插进去视频免费观看 | 少妇熟女欧美另类| 精品视频人人做人人爽| 国产成人精品无人区| 自拍欧美九色日韩亚洲蝌蚪91| 午夜91福利影院| 一级爰片在线观看| 日韩av不卡免费在线播放| 中文字幕最新亚洲高清| 欧美xxxx性猛交bbbb| 午夜影院在线不卡| 国产精品久久久久久久电影| 高清av免费在线| 亚洲精品第二区| 久久久久精品人妻al黑| 99热网站在线观看| 亚洲av免费高清在线观看| 精品一区二区三卡| 亚洲一区二区三区欧美精品| 亚洲成国产人片在线观看| 在线观看免费高清a一片| 丰满饥渴人妻一区二区三| 国产精品国产av在线观看| 国产av码专区亚洲av| 黄片无遮挡物在线观看| 午夜久久久在线观看| a级毛片黄视频| 夜夜爽夜夜爽视频| 欧美xxⅹ黑人| 十分钟在线观看高清视频www| 亚洲精品国产av成人精品| 黑人巨大精品欧美一区二区蜜桃 | 日韩精品有码人妻一区| 在线观看美女被高潮喷水网站| 在现免费观看毛片| 美女中出高潮动态图| 午夜福利网站1000一区二区三区| 国产精品欧美亚洲77777| 久久精品久久久久久久性| 高清视频免费观看一区二区| 成人毛片60女人毛片免费| 日本vs欧美在线观看视频| 国产1区2区3区精品| 欧美日韩亚洲高清精品| 91精品三级在线观看| 两性夫妻黄色片 | 一本大道久久a久久精品| 十八禁高潮呻吟视频| 亚洲经典国产精华液单| 日韩伦理黄色片| 综合色丁香网| 国产无遮挡羞羞视频在线观看| 日韩成人伦理影院| 男人操女人黄网站| 日日爽夜夜爽网站| 熟妇人妻不卡中文字幕| 午夜福利网站1000一区二区三区| 最近中文字幕高清免费大全6| 国产精品久久久av美女十八| 亚洲国产av新网站| 婷婷成人精品国产| 日韩av不卡免费在线播放| 热re99久久国产66热| 国产成人午夜福利电影在线观看| 国产男人的电影天堂91| 日韩制服丝袜自拍偷拍| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| 香蕉丝袜av| 国产综合精华液| 国产色婷婷99| 国产熟女午夜一区二区三区| 侵犯人妻中文字幕一二三四区| 90打野战视频偷拍视频| 观看美女的网站| 精品视频人人做人人爽| 久久久久视频综合| 日韩制服丝袜自拍偷拍| 国产熟女午夜一区二区三区| 人妻系列 视频| 国产熟女欧美一区二区| 高清不卡的av网站| 色5月婷婷丁香| 少妇的丰满在线观看| 成人二区视频| freevideosex欧美| 欧美精品亚洲一区二区| 久久人妻熟女aⅴ| 亚洲,一卡二卡三卡| h视频一区二区三区| 精品一区二区免费观看| 在线亚洲精品国产二区图片欧美| 国产精品偷伦视频观看了| 亚洲av免费高清在线观看| 亚洲中文av在线| 男女国产视频网站| 日韩一区二区视频免费看| 日本wwww免费看| 少妇 在线观看| 免费观看在线日韩| 美女福利国产在线| 日本黄色日本黄色录像| 久久综合国产亚洲精品| av视频免费观看在线观看| 色吧在线观看| 亚洲av在线观看美女高潮| 久久99精品国语久久久| 九色亚洲精品在线播放| 亚洲欧美一区二区三区黑人 | 99久久人妻综合| av在线观看视频网站免费| 99久国产av精品国产电影| 黄色一级大片看看| 搡老乐熟女国产| 精品一区二区三卡| 777米奇影视久久| 亚洲美女搞黄在线观看| 欧美人与性动交α欧美精品济南到 | 毛片一级片免费看久久久久| 黄色一级大片看看| 久久青草综合色| 国产精品人妻久久久久久| 亚洲国产欧美在线一区| 精品亚洲成国产av| 亚洲国产av影院在线观看| 999精品在线视频| 伊人亚洲综合成人网| 丰满少妇做爰视频| 色94色欧美一区二区| 色视频在线一区二区三区| 少妇的逼水好多| 亚洲国产欧美在线一区| 国产日韩欧美在线精品| 人人妻人人澡人人看| 妹子高潮喷水视频| 两性夫妻黄色片 | 亚洲一码二码三码区别大吗| 一本大道久久a久久精品| 国产免费现黄频在线看| 午夜福利视频精品| 岛国毛片在线播放| 黑人欧美特级aaaaaa片| 高清视频免费观看一区二区| 天堂8中文在线网| 国产精品国产av在线观看| 国产精品人妻久久久影院| 日日啪夜夜爽| 精品一区二区三区四区五区乱码 | 欧美精品一区二区免费开放| 97人妻天天添夜夜摸| 国产有黄有色有爽视频| 一区二区三区乱码不卡18| 国产精品.久久久| 欧美日韩视频高清一区二区三区二| 久热这里只有精品99| 爱豆传媒免费全集在线观看| 亚洲欧美色中文字幕在线| 精品一区二区三区四区五区乱码 | 制服诱惑二区| 激情视频va一区二区三区| 精品人妻偷拍中文字幕| 熟女人妻精品中文字幕| 男女啪啪激烈高潮av片| 在线免费观看不下载黄p国产| 在线看a的网站| 一级毛片我不卡| 性高湖久久久久久久久免费观看| 中文字幕av电影在线播放| 久久久久精品人妻al黑| 最近中文字幕高清免费大全6| 色5月婷婷丁香| 欧美精品av麻豆av| 蜜桃在线观看..| 一级a做视频免费观看| 国产色婷婷99| 精品久久国产蜜桃| 日韩欧美一区视频在线观看| www.熟女人妻精品国产 | 精品少妇久久久久久888优播| 少妇的逼水好多| 久久99蜜桃精品久久| 亚洲精品av麻豆狂野| 国产亚洲精品第一综合不卡 | 亚洲人与动物交配视频| 波野结衣二区三区在线| 观看美女的网站| 亚洲国产看品久久| 一区二区av电影网| 一二三四在线观看免费中文在 | 欧美日韩视频精品一区| 亚洲精品av麻豆狂野| 日日啪夜夜爽| 日产精品乱码卡一卡2卡三| 国产精品久久久久久av不卡| 日韩精品免费视频一区二区三区 | 少妇高潮的动态图| 七月丁香在线播放| 久久人人爽人人片av| 日韩成人伦理影院| 丝袜脚勾引网站| 波野结衣二区三区在线| 天堂8中文在线网| 成人二区视频| 一级毛片黄色毛片免费观看视频| 91在线精品国自产拍蜜月| 男人舔女人的私密视频| 22中文网久久字幕| 男女边吃奶边做爰视频| 国产精品一区www在线观看| 国产成人一区二区在线| 亚洲伊人久久精品综合| 亚洲国产色片| 久久久久精品人妻al黑| 国产成人精品婷婷| 欧美日韩亚洲高清精品| 天天躁夜夜躁狠狠久久av| 好男人视频免费观看在线| 亚洲精华国产精华液的使用体验| 亚洲综合色惰| 久久久精品区二区三区| 国产成人精品久久久久久| 国产av国产精品国产| 国产xxxxx性猛交| 亚洲美女视频黄频| 久久青草综合色| 久久久精品免费免费高清| 国产一区二区在线观看av| 国产精品一二三区在线看| 九九在线视频观看精品| 91在线精品国自产拍蜜月| 亚洲人成网站在线观看播放| 亚洲国产欧美在线一区| 少妇被粗大的猛进出69影院 | 国产乱来视频区| 街头女战士在线观看网站| 欧美丝袜亚洲另类| 中文字幕人妻熟女乱码| 亚洲少妇的诱惑av| 精品午夜福利在线看| 久久婷婷青草| 精品第一国产精品| 在线精品无人区一区二区三| 嫩草影院入口| 寂寞人妻少妇视频99o| 国产老妇伦熟女老妇高清| 久久久久久久久久久久大奶| 麻豆乱淫一区二区| 国产一区二区在线观看日韩| 国产亚洲精品第一综合不卡 | 在线精品无人区一区二区三| 毛片一级片免费看久久久久| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 亚洲av中文av极速乱| 建设人人有责人人尽责人人享有的| 大香蕉久久成人网| 中文字幕亚洲精品专区| 色婷婷av一区二区三区视频| 美女中出高潮动态图| 国产片内射在线| 欧美+日韩+精品| 国产1区2区3区精品| 国产av精品麻豆| 五月天丁香电影| 亚洲精品乱码久久久久久按摩| 国产亚洲一区二区精品| 免费播放大片免费观看视频在线观看| videos熟女内射| 大片电影免费在线观看免费| kizo精华| 91精品国产国语对白视频| 在线天堂最新版资源| 亚洲精品日本国产第一区| 亚洲一区二区三区欧美精品| 欧美日韩亚洲高清精品| 最近最新中文字幕免费大全7| 国产xxxxx性猛交| 亚洲精品国产色婷婷电影| 亚洲性久久影院| 午夜福利视频精品| 大话2 男鬼变身卡| 秋霞在线观看毛片| 国产国语露脸激情在线看| 丝袜喷水一区| 黑人猛操日本美女一级片| 丝袜人妻中文字幕| 天堂俺去俺来也www色官网| 免费观看a级毛片全部| 久久精品国产鲁丝片午夜精品| 五月玫瑰六月丁香| 亚洲,欧美精品.| 亚洲,一卡二卡三卡| 伦理电影大哥的女人| 人妻人人澡人人爽人人| 男女边摸边吃奶| 美女视频免费永久观看网站| 国产成人91sexporn| 国产色婷婷99| 人人澡人人妻人| 国产免费现黄频在线看| 美女国产高潮福利片在线看| 在线观看免费日韩欧美大片| 伊人久久国产一区二区| 国国产精品蜜臀av免费| 日韩,欧美,国产一区二区三区| 美女内射精品一级片tv| 天天操日日干夜夜撸| 热re99久久精品国产66热6| 日韩精品有码人妻一区| 男女无遮挡免费网站观看| 国产精品女同一区二区软件| 精品国产一区二区三区久久久樱花| 曰老女人黄片| 一区在线观看完整版| 极品少妇高潮喷水抽搐| 男女边吃奶边做爰视频| 岛国毛片在线播放| 国产老妇伦熟女老妇高清| 成人手机av| 日日啪夜夜爽| 国产视频首页在线观看| 女人久久www免费人成看片| 一本大道久久a久久精品| 亚洲一区二区三区欧美精品| 九九爱精品视频在线观看| 又粗又硬又长又爽又黄的视频| 国产毛片在线视频| 国语对白做爰xxxⅹ性视频网站| 久久久亚洲精品成人影院| 久久久久久久大尺度免费视频| 一级毛片 在线播放| 国产又色又爽无遮挡免| 18禁在线无遮挡免费观看视频| 成人毛片a级毛片在线播放| 久久精品久久久久久久性| 亚洲综合色惰| 97超碰精品成人国产| 卡戴珊不雅视频在线播放| 亚洲欧美一区二区三区黑人 | 日本黄色日本黄色录像| 99久国产av精品国产电影| 只有这里有精品99| 久久久国产欧美日韩av| 黑人欧美特级aaaaaa片| 欧美日韩一区二区视频在线观看视频在线| 国产日韩欧美视频二区| 美女国产视频在线观看| 欧美老熟妇乱子伦牲交| av电影中文网址| 蜜臀久久99精品久久宅男| 国产在线一区二区三区精| 免费av中文字幕在线| 看免费成人av毛片| 亚洲精品日本国产第一区| 男人操女人黄网站| 巨乳人妻的诱惑在线观看| 美女xxoo啪啪120秒动态图| 人体艺术视频欧美日本| 一边摸一边做爽爽视频免费| 久久这里只有精品19| av视频免费观看在线观看| 少妇猛男粗大的猛烈进出视频| 人成视频在线观看免费观看| 久久久久久久国产电影| 国国产精品蜜臀av免费| 中国美白少妇内射xxxbb| 国产精品一区二区在线不卡| 色5月婷婷丁香| 国产精品.久久久| 国产成人av激情在线播放| 久久久精品免费免费高清| 色哟哟·www| 亚洲国产精品999| 中文字幕av电影在线播放| videosex国产| 亚洲色图综合在线观看| 久久鲁丝午夜福利片| 色视频在线一区二区三区| 成年人免费黄色播放视频| 丝袜美足系列| 久久久久久久久久人人人人人人| 久久精品国产综合久久久 | 欧美精品av麻豆av| 国产毛片在线视频| 亚洲 欧美一区二区三区| 国产成人精品福利久久| 精品国产国语对白av| 亚洲欧美一区二区三区黑人 | 免费黄色在线免费观看| 在线观看免费日韩欧美大片| 丝袜在线中文字幕| 看非洲黑人一级黄片| 久久人人97超碰香蕉20202| av片东京热男人的天堂| tube8黄色片| 久久人人爽人人爽人人片va| 一区二区日韩欧美中文字幕 | 成人午夜精彩视频在线观看| 精品国产国语对白av| 久久99精品国语久久久| 午夜影院在线不卡| 日日摸夜夜添夜夜爱| 日韩av在线免费看完整版不卡| 精品人妻一区二区三区麻豆| 综合色丁香网| 亚洲av欧美aⅴ国产| 99久久人妻综合| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区黑人 | 精品人妻熟女毛片av久久网站| 美女福利国产在线| 成年美女黄网站色视频大全免费| 飞空精品影院首页| 国产激情久久老熟女| 国产av一区二区精品久久| 久久久久久久精品精品| 成人亚洲欧美一区二区av| 妹子高潮喷水视频| 免费久久久久久久精品成人欧美视频 | 亚洲天堂av无毛| 在线观看免费视频网站a站| 9191精品国产免费久久| 国产一区二区三区av在线| 欧美97在线视频| 国产1区2区3区精品| 汤姆久久久久久久影院中文字幕| 国产精品久久久av美女十八| 日日摸夜夜添夜夜爱| 汤姆久久久久久久影院中文字幕| 国产日韩欧美在线精品| av卡一久久| 街头女战士在线观看网站| 成年女人在线观看亚洲视频| 午夜91福利影院| 哪个播放器可以免费观看大片| 精品一品国产午夜福利视频| 欧美日韩国产mv在线观看视频| 亚洲熟女精品中文字幕| 午夜视频国产福利| 欧美人与性动交α欧美软件 | 亚洲第一av免费看| 91精品伊人久久大香线蕉| 日本与韩国留学比较| 精品一品国产午夜福利视频| 日韩欧美精品免费久久| 如日韩欧美国产精品一区二区三区| 精品一品国产午夜福利视频| 人妻人人澡人人爽人人| 日韩中字成人| 国产精品国产av在线观看| 亚洲四区av| 亚洲伊人久久精品综合|