馮昊, 曹伯雄, 昝自亮, 賀澤民, 黃浩, 皇改改, 魏強(qiáng)△
17β-雌二醇聯(lián)合苯并芘異常激活人肺腺癌A549細(xì)胞中AHR/PD-L1軸*
馮昊1, 曹伯雄1, 昝自亮1, 賀澤民1, 黃浩1, 皇改改2, 魏強(qiáng)1△
(1成都市雙流區(qū)第一人民醫(yī)院胸外科,四川 成都 610000;2成都市雙流區(qū)第一人民醫(yī)院醫(yī)學(xué)檢驗(yàn)科,四川 成都 610000)
探討17β-雌二醇(17β-estradiol, E2)和苯并芘(benzopyrene, BaP)對人肺腺癌A549細(xì)胞程序性死亡配體1(programmed death ligand 1, PD-L1)表達(dá)的影響及其潛在分子機(jī)制。分別選用濃度梯度為1~1 000 nmol/L的E2和濃度梯度為0.008~5 μmol/L的BaP處理A549細(xì)胞,篩選出最適濃度;實(shí)驗(yàn)分為對照組、E2組、BaP和E2+BaP組,每組實(shí)驗(yàn)重復(fù)3次。RT-qPCR檢測PD-L1的mRNA水平;Western blot檢測PD-L1、芳香烴受體(aryl hydrocarbon receptor, AHR)和缺氧誘導(dǎo)因子1α(hypoxia-inducible factor-1α, HIF-1α)表達(dá)水平,以及蛋白激酶B(protein kinase B, PKB/AKT)和細(xì)胞外信號調(diào)節(jié)激酶1/2(extracellular signal-regulated kinase 1/2, ERK1/2)的磷酸化水平。分別加入AKT特異性抑制劑LY294002和ERK1/2特異性抑制劑PD98059進(jìn)行反向驗(yàn)證,觀察PD-L1表達(dá)的變化。與E2組和BaP組相比,E2+BaP組A549細(xì)胞中PD-L1的mRNA和蛋白表達(dá)水平均顯著上調(diào)(<0.05);AHR、HIF-1α、p-AKT和p-ERK1/2蛋白水平均顯著高于其他各組(<0.05);LY294002和PD98059能夠逆轉(zhuǎn)E2+BaP對A549細(xì)胞PD-L1表達(dá)的上調(diào)作用(<0.05)。E2聯(lián)合BaP可能通過異常激活A(yù)HR-AKT-ERK1/2信號通路誘導(dǎo)人肺腺癌A549細(xì)胞PD-L1表達(dá)升高。
雌二醇;苯并芘;程序性死亡配體1;非小細(xì)胞肺癌;AHR-AKT-ERK1/2信號通路
肺癌是常見的惡性腫瘤疾病,發(fā)病率在全球范圍內(nèi)持續(xù)上升,非小細(xì)胞肺癌(non-small-cell lung cancer, NSCLC)約占肺癌的85%[1]。吸煙是促進(jìn)NSCLC的獨(dú)立危險(xiǎn)因素,大量研究充分證明煙草煙霧會促進(jìn)NSCLC的發(fā)展[2-4]。早期研究顯示男性吸煙者罹患肺癌的風(fēng)險(xiǎn)顯著高于女性吸煙者,然而隨著研究不斷深入,逐漸觀察到在全世界范圍內(nèi)男性NSCLC的發(fā)病率和死亡率開始有所下降,而女性的發(fā)病率和死亡率卻逐年上升[5-6];更進(jìn)一步的研究指出,診斷為NSCLC的女性平均吸煙量要比男性低20%~25%[7-8];同時(shí)幾項(xiàng)大型病例對照研究也表明,在同等吸煙水平下,女性患NSCLC的風(fēng)險(xiǎn)幾乎是男性的3倍[5-6, 9]。雖然暴露于煙霧的女性NSCLC的發(fā)病率顯著增加已經(jīng)開始受到廣泛關(guān)注,但我們對其發(fā)病機(jī)制卻仍知之甚少。
雌激素是類固醇激素,在體內(nèi)主要以17β-雌二醇(17β-estradiol,E2)的生物活性形式存在。越來越多的研究顯示雌激素可以促進(jìn)乳腺癌[10]、子宮內(nèi)膜癌[11]、肺癌[12]等多種腫瘤的發(fā)生發(fā)展;不僅如此,還有研究指出,雌激素可以通過調(diào)控免疫檢查點(diǎn)促進(jìn)腫瘤免疫逃逸[13]。免疫檢查點(diǎn)是指在免疫細(xì)胞上表達(dá)并且能調(diào)節(jié)免疫激活程度的一系列分子,可防止免疫系統(tǒng)過度活化。免疫檢查點(diǎn)的表達(dá)或功能失常是許多疾病發(fā)生的重要原因之一。腫瘤細(xì)胞免疫檢查點(diǎn)通常處于激活狀態(tài),通過抑制T淋巴細(xì)胞的活化,誘導(dǎo)腫瘤細(xì)胞免疫耐受,從而促進(jìn)腫瘤免疫逃逸。目前已經(jīng)證實(shí)細(xì)胞程序性死亡受體1(programmed death-1, PD-1)/程序性死亡配體1(programmed death ligand 1, PD-L1)信號通路是多種惡性腫瘤疾病的有效治療靶點(diǎn)[14-15]。PD-1/PD-L1阻斷治療可以在一定程度上延長患者的生存率[16-18]。盡管雌激素對多種腫瘤細(xì)胞PD-1/PD-L1均有調(diào)節(jié)作用,例如目前有研究指出雌激素可以顯著上調(diào)雌激素受體(estrogen receptor, ER)陽性的子宮內(nèi)膜癌細(xì)胞和乳腺癌細(xì)胞PD-L1蛋白表達(dá)[15],但是雌激素對肺癌細(xì)胞PD-L1影響的研究卻鮮有報(bào)道。因此雌激素是否可以促使肺癌腫瘤細(xì)胞逃脫免疫監(jiān)測進(jìn)而促進(jìn)NSCLC的發(fā)生發(fā)展仍有待進(jìn)一步研究。
因此我們推測雌激素可能誘導(dǎo)了一種肺癌細(xì)胞免疫逃逸的反應(yīng)機(jī)制,由此我們假設(shè)雌激素可以調(diào)節(jié)肺癌細(xì)胞免疫檢查點(diǎn),并且在煙霧的刺激下對肺癌細(xì)胞免疫檢查點(diǎn)的調(diào)節(jié)可能具有協(xié)同作用,從而進(jìn)一步促進(jìn)腫瘤細(xì)胞免疫逃逸。為了驗(yàn)證上述假設(shè),我們在體外實(shí)驗(yàn)中評估了煙草煙霧的主要成分苯并芘(benzopyrene, BaP)和E2單獨(dú)及聯(lián)合作用對人肺腺癌A549細(xì)胞PD-L1表達(dá)的影響及其分子機(jī)制,以期為肺癌免疫治療提供參考依據(jù)。
人肺腺癌細(xì)胞株A549來源于中國科學(xué)院(上海)細(xì)胞庫。
E2、BaP、二甲基亞砜(dimethyl sulfoxide, DMSO)、含EDTA的胰蛋白酶和1×磷酸鹽緩沖液(phosphate-buffered saline, PBS)均為Sigma產(chǎn)品;DMEM培養(yǎng)液為HyClone產(chǎn)品;澳洲優(yōu)級胎牛血清(fetal bovine serum, FBS)購自CellMax;PD-L1、芳香烴受體(aryl hydrocarbon receptor, AHR)和缺氧誘導(dǎo)因子1α(hypoxia-inducible factor-1α, HIF-1α)兔抗多克隆抗體購自Santa Cruz;蛋白激酶B(protein kinase B, PKB/AKT)、磷酸化AKT(phosphorylated AKT, p-AKT)、細(xì)胞外信號調(diào)節(jié)激酶1/2(extracellular signal-regulated kinase 1/2, ERK1/2)和磷酸化ERK1/2(phosphorylated ERK1/2, p-ERK1/2)兔抗多克隆抗體均購自Cell Signaling Technology;GAPDH鼠抗多克隆抗體購自武漢三鷹生物技術(shù)有限公司;辣根過氧化物酶標(biāo)記的山羊抗鼠/兔IgG試劑盒購自北京中杉金橋生物技術(shù)有限公司;聚偏二氟乙烯(polyvinylidene difluoride, PVDF)膜和化學(xué)發(fā)光試劑盒均購自Millipore;Trizol試劑和PrimeScriptTMRT Master Mix逆轉(zhuǎn)錄試劑盒均購自TaKaRa;RT-qPCR引物由深圳華大基因公司合成。其他試劑均為進(jìn)口分裝或國產(chǎn)分析純。
3.1細(xì)胞培養(yǎng)和傳代用含10% FBS和1%青霉素/鏈霉素的DMEM培養(yǎng)液培養(yǎng)A549細(xì)胞,細(xì)胞培養(yǎng)箱的條件是37 ℃、5% CO2,隔日更換培養(yǎng)液;細(xì)胞密度達(dá)70%~80%融合進(jìn)行細(xì)胞傳代。每天觀察和記錄細(xì)胞的生長狀態(tài)。
3.2BaP和E2處理A549細(xì)胞及實(shí)驗(yàn)分組取對數(shù)生長期的A549細(xì)胞置于培養(yǎng)液中,待細(xì)胞密度至30%~50%時(shí),分別選用濃度梯度為1~1 000 nmol/L的E2和濃度梯度為0.008~5 μmol/L的BaP處理A549細(xì)胞,篩選出最適濃度。實(shí)驗(yàn)分為對照(control, Ctrl)組、E2組(最適濃度為100 nmol/L)、BaP組(最適濃度為0.2 μmol/L)和E2+BaP組。每組實(shí)驗(yàn)重復(fù)3次。處理12~24 h后提取細(xì)胞總RNA,用于后續(xù)RT-qPCR檢測;處理48~72 h后提取細(xì)胞總蛋白,用于后續(xù)Western blot檢測。
3.3RT-qPCR法檢測PD-L1 mRNA采用Trizol法分離純化各組細(xì)胞的總RNA,分光光度法測定計(jì)算提取的總RNA含量及濃度。使用PrimeScriptTMRT Master Mix逆轉(zhuǎn)錄試劑盒將RNA逆轉(zhuǎn)錄成cDNA??偡磻?yīng)體積20.0 μL,其中包括5× RT-PCR buffer 5.0 μL、dNTP Mix 1.0 μL、RT-PCR Enzyme Mix 2.0 μL、RNA 2.0 μg和引物0.6 μmol/L。逆轉(zhuǎn)錄條件如下: 37 ℃ 15 min; 85 ℃ 5 s。RT-qPCR在CFX Connect Real-Time PCR Detection System (Bio-Rad)中進(jìn)行。樣品混合物由5 μL SYBR、0.8 μL引物、1 μL cDNA和3.2 μL ddH2O組成。熱循環(huán)條件如下: 95 ℃ 10 min; 95 ℃ 20 s, 56 ℃ 10 s,將溫度降低3 ℃/循環(huán),共35個循環(huán); 95 ℃ 20 s; 55 ℃ 20 s。引物序列見表1。以GAPDH為內(nèi)參照,檢測各組細(xì)胞PD-L1的表達(dá)水平,采用2-ΔΔCt法統(tǒng)計(jì)分析相對表達(dá)量。實(shí)驗(yàn)重復(fù)3次。
表1 引物序列
3.4Western blot法檢測PD-L1、AHR、HIF-1α、AKT、p-AKT、ERK1/2和p-ERK1/2蛋白水平首先使用含蛋白酶抑制劑和磷酸酶抑制劑的RIPA緩沖液來制備細(xì)胞裂解液,PBS清洗各組細(xì)胞,細(xì)胞刮刷收集后加入RIPA裂解液,BCA法測定蛋白濃度。250 μg為標(biāo)準(zhǔn)計(jì)算蛋白上樣體積,10% SDS-PAGE凝膠進(jìn)行電泳分離,首先是在濃縮膠中90 V恒壓濃縮30 min,然后在分離膠中120 V恒壓分離90 min,電泳完成后,進(jìn)行轉(zhuǎn)膜,轉(zhuǎn)膜條件為210 mA恒流,轉(zhuǎn)膜時(shí)間根據(jù)蛋白分子量大小調(diào)整,轉(zhuǎn)膜完成后將轉(zhuǎn)含有蛋白質(zhì)的PVDF膜放于在5%牛血清白蛋白中37 ℃封閉2 h,封閉結(jié)束后,加入Ⅰ抗(PD-L1抗體,1∶500; AHR抗體,1∶500; HIF-1α抗體,1∶500; p-AKT抗體,1∶1 000; AKT抗體,1∶1 000; p-ERK1/2抗體,1∶1 000; ERK1/2抗體,1∶1 000; GAPDH抗體,1∶1 000),4 ℃孵育過夜,14 h后將膜取出,用1× TBST洗滌3次,每次5 min,加入辣根過氧化物酶標(biāo)記的小鼠/兔IgG(1∶3 000) Ⅱ抗并在37 ℃孵育1 h,1× TBST洗滌3次后通過化學(xué)發(fā)光法顯影。ImageJ軟件計(jì)算各電泳條帶的灰度值,以GAPDH為內(nèi)參照,相比較后計(jì)算各組蛋白的表達(dá)水平。實(shí)驗(yàn)重復(fù)3次。
采用SPSS 27.0和GraphPad Prism 9軟件對實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。所有實(shí)驗(yàn)數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。多組間比較采用單因素方差分析,各組之間差異的兩兩比較用LSD-檢驗(yàn)。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
不同濃度的BaP誘導(dǎo)A549細(xì)胞3 d,Western blot檢測結(jié)果顯示,與對照組相比,0.008~1 μmol/L BaP均可以誘導(dǎo)免疫檢查點(diǎn)蛋白PD-L1表達(dá)升高(<0.05或<0.01),當(dāng)BaP濃度為0.2 μmol/L時(shí),PD-L1表達(dá)升高最為顯著(<0.01),見圖1。
Figure 1. Effect of benzopyrene (BaP) on PD-L1 expression in A549 cells was detected by Western blot. Mean±SD. n=3. *P<0.05, **P<0.01 vs Ctrl group.
不同濃度的E2誘導(dǎo)A549細(xì)胞3 d,Western blot檢測結(jié)果顯示,與對照組相比,10~1 000 nmol/L E2均可誘導(dǎo)免疫檢測點(diǎn)蛋白PD-L1表達(dá)升高(<0.05或<0.01),當(dāng)E2濃度為100 nmol/L時(shí),PD-L1表達(dá)升高最為顯著(<0.01),見圖2。
Figure 2. Effect of 17β-estradiol (E2) on PD-L1 expression in A549 cells was detected by Western blot. Mean±SD. n=3. *P<0.05, **P<0.01 vs Ctrl group.
根據(jù)分組采用不同條件誘導(dǎo)A549細(xì)胞3 d,Western blot檢測結(jié)果顯示,在A549細(xì)胞中,與單獨(dú)使用E2(濃度為100 nmol/L)組和單獨(dú)使用BaP(濃度為0.2 μmol/L)組相比,E2+BaP組PD-L1蛋白表達(dá)水平顯著升高(<0.05),見圖3A。根據(jù)分組采用不同條件誘導(dǎo)A549細(xì)胞1 d,RT-qPCR結(jié)果顯示,與單獨(dú)使用E2(濃度為100 nmol/L)組和單獨(dú)使用BaP(濃度為0.2 μmol/L)組相比,E2+BaP組PD-L1的mRNA表達(dá)水平顯著升高(<0.05),見圖3B。
Figure 3. Effects of 17β-estradiol (E2) combined with benzopyrene (BaP) on PD-L1 protein (A) and mRNA (B) expression in A549 cells were detected by Western blot and RT-qPCR. Mean±SD. n=3. *P<0.05 vs Ctrl group; #P<0.05 vs E2+BaP group.
根據(jù)分組采用不同條件誘導(dǎo)A549細(xì)胞3 d,Western blot檢測AHR和HIF-1α的蛋白表達(dá)水平,結(jié)果顯示,E2+BaP組蛋白表達(dá)水平顯著高于E2和BaP組(<0.05);根據(jù)分組采用不同條件誘導(dǎo)A549細(xì)胞8 h,Western blot檢測p-AKT和p-ERK1/2蛋白水平,結(jié)果顯示,E2+BaP組AKT和ERK1/2的磷酸化水平均顯著升高(<0.05);而細(xì)胞總AKT和ERK1/2表達(dá)量各組之間沒有顯著差異,見圖4A。加入AKT信號通路抑制劑LY294002(10 mmol/L)和ERK1/2信號通路抑制劑PD98059(10 mmol/L),Western blot結(jié)果顯示,與E2+BaP組相比,E2+BaP+LY294002組PD-L1蛋白表達(dá)水平顯著降低(<0.05);同樣,與E2+BaP組相比,E2+BaP+PD98059組PD-L1蛋白表達(dá)水平亦顯著降低(<0.05),見圖4B。
Figure 4. The role of AHR-AKT-ERK1/2 signaling pathway in A549 cells treated with 17β-estradiol (E2)+benzopyrene (BaP). A: the protein levels of AHR, HIF-1α, p-AKT and p-ERK1/2 in A549 cells were detected by Western blot; B: PD-L1 protein levels were analyzed by Western blot. Mean±SD. n=3. *P<0.05 vs Ctrl group; #P<0.05 vs E2+BaP group.
吸煙女性的NSCLC發(fā)病率正逐年增加[19],然而在煙霧的暴露下,雌激素可能誘導(dǎo)腫瘤細(xì)胞免疫逃逸的反應(yīng)機(jī)制仍需要詳細(xì)闡明。我們的數(shù)據(jù)表明E2可以增強(qiáng)A549細(xì)胞AHR/PD-L1的表達(dá),并且我們的結(jié)果顯示在BaP與E2協(xié)同作用下,A549細(xì)胞AHR/PD-L1的表達(dá)水平有更為顯著的升高。這些檢測結(jié)果為雌激素促進(jìn)腫瘤細(xì)胞免疫逃逸提供了新的證據(jù)。
吸煙是促進(jìn)NSCLC發(fā)生發(fā)展的獨(dú)立危險(xiǎn)因素,煙霧中誘發(fā)肺癌的致癌物至少有50種,BaP是常見的導(dǎo)致肺癌的有害成分[20-21],既往大量研究證明,BaP可以促進(jìn)腫瘤細(xì)胞增殖、轉(zhuǎn)移以及抑制其凋亡[2-3]。Wang等[22]在研究中指出,BaP可以通過上調(diào)免疫檢查點(diǎn)PD-1/PD-L1促使NSCLC細(xì)胞發(fā)生免疫逃避,并且可以促進(jìn)小鼠肺腺癌細(xì)胞的增殖。我們的結(jié)果顯示0.2 μmol/L BaP可以顯著上調(diào)PD-L1的蛋白水平,這一結(jié)果與先前的研究結(jié)果相一致[2-3,22],提示BaP可以促進(jìn)A549細(xì)胞PD-L1的表達(dá)升高。
既往研究表明內(nèi)環(huán)境中炎癥因子、外泌體、微小RNA等均可以調(diào)節(jié)細(xì)胞免疫檢查點(diǎn),從而介導(dǎo)腫瘤細(xì)胞發(fā)生免疫逃逸[23-25]。目前越來越多的證據(jù)指出雌激素同樣可能對促進(jìn)腫瘤細(xì)胞免疫逃逸起著重要作用。Yang等[15]在研究中指出,E2通過調(diào)控AKT信號通路促進(jìn)ER表達(dá)陽性的子宮內(nèi)膜癌細(xì)胞和乳腺癌細(xì)胞的PD-L1的升高,Williams等[26]也觀察到E2在突變型乳腺癌中可能通過激活ER和干擾素刺激基因上調(diào)腫瘤細(xì)胞及巨噬細(xì)胞PD-L1的表達(dá)水平。不僅在腫瘤領(lǐng)域,E2在抗磷脂綜合征等自身免疫性疾病、子宮內(nèi)膜異位等疾病中可以通上調(diào)CD4+、CD8+T細(xì)胞以及腫瘤壞死因子α、白細(xì)胞介素6從而促進(jìn)PD-L1的表達(dá)[27-28]。然而E2對NSCLC細(xì)胞的免疫檢查點(diǎn)的調(diào)節(jié)機(jī)制卻仍有待進(jìn)一步闡明。我們的研究結(jié)果顯示E2以劑量依賴的形式上調(diào)PD-L1,進(jìn)一步研究顯示,BaP與E2對于A549細(xì)胞PD-L1的表達(dá)上調(diào)具有協(xié)同作用,提示BaP與E2可能對誘導(dǎo)NSCLC細(xì)胞的免疫逃逸具有協(xié)同作用。
AHR在腫瘤的免疫逃逸中扮演了重要角色[22]。AHR是一種最早被檢測的環(huán)境污染物多環(huán)芳香烴類(polycyclic aromatic hydrocarbons, PAHs)的受體[29]。這種受體在人胎盤、肺、胸腺、腎臟、肝臟等幾乎所有組織中均有表達(dá)[30-31],與其配體結(jié)合并易位至細(xì)胞核后,通過調(diào)控HIF-1α核蛋白,不僅能調(diào)節(jié)下游涉及MAPK/PI3K/AKT、ERK1/2、NF-κB[22, 32]等多種配體特異性靶基因的表達(dá),甚至在調(diào)節(jié)免疫應(yīng)答[31]中也起重要作用。Wang等[22]的研究也指出,在NSCLC中AHR介導(dǎo)了BaP對肺癌細(xì)胞的促進(jìn)作用,并且通過阻斷PD-1/PD-L1免疫檢查點(diǎn)抑制BaP誘導(dǎo)的肺癌發(fā)展,說明PD-L1與AHR之間可能存在一定聯(lián)系。我們的結(jié)果顯示BaP聯(lián)合E2可以顯著提高A549細(xì)胞AHR/HIF-1α的表達(dá)水平。通過進(jìn)一步研究,我們的結(jié)果還顯示在BaP和E2聯(lián)合作用下p-AKT和p-ERK1/2蛋白水平均顯著提高,并且在加入ATK信號通路抑制劑LY294002和ERK1/2信號通路抑制劑PD98059后,PD-L1的表達(dá)水平顯著降低,這些結(jié)果提示BaP和E2聯(lián)合作用可能通過激活A(yù)KT和ERK1/2信號通路從而促進(jìn)PD-L1的表達(dá)。
綜上所述,E2聯(lián)合BaP共同作用A549細(xì)胞,通過上調(diào)AHR/HIF-1α水平,激活A(yù)KT和ERK1/2信號通路,從而顯著增強(qiáng)PD-L1表達(dá)。由此推測,在煙霧的刺激下,E2可能是增強(qiáng)NSCLC細(xì)胞免疫逃逸的重要調(diào)節(jié)因子。因此E2-AHR-AKT-ERK1/2-PD-L1軸可能成為NSCLC的潛在治療靶點(diǎn),我們在后續(xù)體內(nèi)、體外實(shí)驗(yàn)中會進(jìn)一步探究E2調(diào)節(jié)的AHR-AKT-ERK1/2信號通路上下游分子機(jī)制。盡管具有一定局限性,但本研究顯示E2聯(lián)合BaP能促進(jìn)A549細(xì)胞中PD-L1的表達(dá),此機(jī)制可能參與了NSCLC細(xì)胞的免疫逃逸過程。
[1] Friedlaender A, Addeo A, Russo A, et al. Targeted therapies in early stage NSCLC: hype or hope?[J]. Int J Mol Sci, 2020, 21(17):6329.
[2] Meng H, Li G, Wei W, et al. Epigenome-wide DNA methylation signature of benzo[a]pyrene exposure and their mediation roles in benzo[a]pyrene-associated lung cancer development[J]. J Hazard Mater, 2021, 416:125839.
[3]洪磊, 周繼紅, 李偉, 等. Hes1在煙草誘導(dǎo)人支氣管上皮細(xì)胞惡性轉(zhuǎn)化過程中的作用[J]. 中國病理生理雜志, 2017, 33(7):1153-1162.
Hong L, Zhou JH, Li W, et al. Role of Hes1 in tobacco-induced malignant transformation of human bronchial epithelial cells[J]. Chin J Pathophysiol,2017, 33(7):1153-1162.
[4] Wang Z. Mechanisms of the synergistic lung tumorigenic effect of arsenic and benzo(a)pyrene combined-exposure[J]. Semin Cancer Biol, 2021, 76:156-162.
[5] Baum P, Winter H, Eichhorn ME, et al. Trends in age-and sex-specific lung cancer mortality in Europe and Northern America: analysis of vital registration data from the WHO Mortality Database between 2000 and 2017[J]. Eur J Cancer, 2022, 171:269-279.
[6] Tsai LL, Chu NQ, Blessing WA, et al. Lung cancer in women[J]. Ann Thorac Surg, 2022, 114(5):1965-1973.
[7] Kreuzer M, Boffetta P, Whitley E, et al. Gender diffe-rences in lung cancer risk by smoking: a multicentre case-control study in Germany and Italy[J]. Br J Cancer, 2000, 82(1):227-233.
[8] Siegfried JM. Sex and gender differences in lung cancer and chronic obstructive lung disease[J]. Endocrinology, 2022, 163(2):bqab254.
[9] Stapelfeld C, Dammann C, Maser E. Sex-specificity in lung cancer risk[J]. Int J Cancer, 2020, 146(9):2376-2382.
[10] Kim JH, Lee ST. Polyamine oxidase expression is downregulated by 17β-estradiol via estrogen receptor 2 in human MCF-7 breast cancer cells[J]. Int J Mol Sci, 2022, 23(14):7521.
[11] Thompson DJ, O'Mara TA, Glubb DM, et al. CYP19A1 fine-mapping and mendelian randomization: estradiol is causal for endometrial cancer[J]. Endocr Relat Cancer, 2016, 23(2):77-91.
[12] Musial C, Knap N, Zaucha R, et al. Induction of 2-hydroxycatecholestrogens-methylation: a missing puzzle piece in diagnostics and treatment of lung cancer[J]. Redox Biol, 2022, 55:102395.
[13] Mu D, Guo JJ, Yu WW, et al. Downregulation of PD-L1 and HLA-I in non-small cell lung cancer with ALK fusion[J]. Thorac Cancer, 2022, 13(8):1153-1163.
[14] Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates[J]. J Clin Oncol, 2010, 28(19):3167-3175.
[15] Yang L, Huang F, Mei J, et al. Posttranscriptional control of PD-L1 expression by 17β-estradiol via PI3K/Akt signaling pathway in ERα-positive cancer cell lines[J]. Int J Gynecol Cancer, 2017, 27(2):196-205.
[16] Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentrerandomised controlled trial[J]. Lancet, 2017,389(10066):255-265.
[17] Antonia SJ, López-Martin JA, Bendell J, et al. Nivolu-mab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial[J]. Lancet Oncol, 2016, 17(7):883-895.
[18] Kang X, Li P, Zhang C, et al. The TLR4/ERK/PD?L1 axis may contribute to NSCLC initiation[J]. Int J Oncol, 2020, 57(2):456-465.
[19] Yang D, Liu Y, Bai C, et al. Epidemiology of lung cancer and lung cancer screening programs in China and the United States[J]. Cancer Lett, 2020, 468:82-87.
[20] Ajayi BO, Adedara IA, Farombi EO. 6-Gingerol abates benzo[a]pyrene-induced colonic injury via suppression of oxido-inflammatory stress responses in BALB/c mice[J]. Chem Biol Interact, 2019, 307:1-7.
[21] Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention[J]. Clin Chest Med, 2011, 32(4):605-644.
[22] Wang GZ, Zhang L, Zhao XC, et al. The aryl hydrocarbon receptor mediates tobacco-induced PD-L1 expression and is associated with response to immunotherapy[J]. Nat Commun, 2019, 10(1):1125.
[23] Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer[J]. Am J Cancer Res, 2020, 10(3):727-742.
[24] Dhouha D, Kathleen MM, Gordon JF. The importance of exosomal PDL1 in tumour immune evasion[J]. Nat Rev Immunol, 2020, 20(4):209-215.
[25] 張宇軒, 李春偉, 毛文浩, 等. miR-140-3p通過靶向PD-L1抑制非小細(xì)胞肺癌A549細(xì)胞的活力、遷移和侵襲[J]. 中國病理生理雜志, 2019, 35(1):8-14.
Zhang YX, Li CW, Mao WH, et al. miR-140-3p inhibits viability, invasion and migration of non-small-cell lung cancer A549 cells by targeting PD-L1[J]. Chin J Pathophysiol, 2019, 35(1):8-14.
[26] Williams MM, Spoelstra NS, Arnesen S, et al. Steroid hormone receptor and infiltrating immune cell status reveals therapeutic vulnerabilities of-mutant breast cancer[J]. Cancer Res, 2021, 81(3):732-746.
[27] Manukyan G, Martirosyan A, Slavik L, et al. 17β-estradiol promotes proinflammatory and procoagulatoryphenotype of innate immune cells in the presence of antiphospholipid antibodies[J]. Biomedicines, 2020, 8(6):162.
[28] Wu L, Lv C, Su Y, et al. Expression of programmed death-1 (PD-1) and its ligand PD-L1 is upregulated in endometriosis and promoted by 17β-estradiol[J]. Gynecol Endocrinol, 2019, 35(3):251-256.
[29] Shivanna B, Chu C, Moorthy B. The aryl hydrocarbon receptor (AHR): anovel therapeutic target for pulmonary diseases?[J]. Int J Mol Sci, 2022, 23(3):1516.
[30] Tirona RG, Kim RB. Nuclear receptors and drug disposition gene regulation[J]. J Pharm Sci, 2005, 94(6):1169-1186.
[31] Wheeler MA, Rothhammer V, Quintana FJ. Control of immune-mediated pathology via the aryl hydrocarbon receptor[J]. J Biol Chem, 2017, 292(30):12383-12389.
[32] Chen MJ, Wang YC, Wang L, et al. PD-L1 expressed from tumor cells promotes tumor growth and invasion in lung cancer via modulating TGF-β1/SMAD4 expression[J]. Thorac Cancer, 2022, 13(9):1322-1332.
17β-Estradiol combined with benzopyrene abnormally activates AHR/PD-L1 axis in human lung adenocarcinoma A549 cells
FENG Hao1, CAO Boxiong1, ZAN Ziliang1, HE Zemin1, HUANG Hao1, HUANG Gaigai2, WEI Qiang1△
(1,,610000,;2,,610000,)
To investigate the effects of 17β-estradiol (E2) and benzopyrene (BaP) on programmed death ligand 1 (PD-L1) expression in human lung adenocarcinoma A549 cells and their potential molecular mechanisms.The A549 cells were treated with 1~1 000 nmol/L E2and 0.008~5 μmol/L BaP, and the optimal concentrations were identified. The cells were divided into control group, E2group, BaP group, and E2+BaP group. Each set of experiments was repeated 3 times. RT-qPCR was used to determine the mRNA level of PD-L1. Western blot was used to detect the expression levels of PD-L1, aryl hydrocarbon receptor (AHR) and hypoxia-inducible factor-1α (HIF-1α), as well as the phosphorylation levels of protein kinase B (PKB/AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2). The AKT-specific inhibitor LY294002 and ERK1/2-specific inhibitor PD98059 were used for reverse verification, and the changes in PD-L1 expression were observed.Compared with E2group and BaP group, the mRNA and protein levels of PD-L1 in the A549 cells of E2+BaP group were significantly up-regulated (<0.05). The protein levels of AHR, HIF-1α, p-AKT and p-ERK1/2 in E2+BaP group were significantly higher than those in other groups (<0.05). LY294002 and PD98059 reversed the up-regulation of PD-L1 induced by E2+BaP (<0.05).E2combined with BaP up-regulates PD-L1 expression in human lung adenocarcinoma A549 cells through abnormal activation of the AHR-AKT-ERK1/2 signaling pathway.
estradiol; benzopyrene; programmed death ligand-1; non-small-cell lung cancer; AHR-AKT-ERK1/2 signaling pathway
10.3969/j.issn.1000-4718.2023.07.003
[基金項(xiàng)目]成都市衛(wèi)生健康委員會醫(yī)學(xué)科研基金資助項(xiàng)目(No. 2021104)
R363.2; R734.2
A
1000-4718(2023)07-1174-07
2023-04-12
2023-06-16
18180692239; E-mail: weiqiang011732@126.com
(責(zé)任編輯:余小慧,李淑媛)