夏 旭,李坤權(quán)
碳化溫度對豬骨炭結(jié)構(gòu)及四環(huán)素催化降解性能的影響機(jī)制
夏 旭,李坤權(quán)※
(南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031)
針對碳化溫度對豬骨炭(black pig biochar,BPBC)物化結(jié)構(gòu)變化、活性位形成和催化降解四環(huán)素(tetracycline,TC)影響機(jī)制不清的問題,該研究以富含鈣磷無機(jī)模板的廚余豬骨為原料通過高溫缺氧一步碳化法制備了高催化活性多孔豬骨炭,采用現(xiàn)代能譜和低溫N2吸脫附等技術(shù)考察了碳化溫度對BPBC形貌、活性礦晶、官能團(tuán)結(jié)構(gòu)和TC催化降解性能的影響及機(jī)制。結(jié)果表明,BPBC物化結(jié)構(gòu)及其對TC的催化降解性能隨碳化溫度變化明顯,在500、700和900 ℃ 3個不同碳化溫度下制備的BPBC(500BPBC、700BPBC、900BPBC),分別呈現(xiàn)層狀裂縫、針狀團(tuán)簇和空心球3種明顯不同的結(jié)構(gòu);碳框架中-OH、C=O、活性羥基磷灰石及比表面積隨碳化溫度升高先增加而后降低,BPBC對TC的降解性能比值為7.3∶10∶4.6,700BPBC催化性能最強(qiáng);自由基清除試驗(yàn)分析表明,700BPBC碳框架上高活性的-OH、C=O和針簇狀礦物晶體結(jié)構(gòu),能高效激活過硫酸鹽通過自由基和非自由基雙反應(yīng)途徑催化降解TC。該研究結(jié)果可為通過控制溫度一步碳化定向合成具有高催化降解TC活性的高值BPBC提供數(shù)據(jù)支持和理論依據(jù)。
溫度;生物炭;pH值;豬骨炭;針簇狀結(jié)構(gòu);四環(huán)素;去除機(jī)制
作為養(yǎng)殖業(yè)最廣泛的治療感染性疾病的藥物之一,四環(huán)素(tetracycline,TC)已成為典型的抗生素類有機(jī)污染物[1]。即使自2019年起中國及多個國家早已頒布“禁抗令”,但至今在高原濕地的地表徑流區(qū)域,四環(huán)素類抗生素檢出量仍然可高達(dá)2 185 μg/kg[2]。由于TC具有低效的生物吸收性、高可溶性與高生物活性,被攝入后其母體分子或副產(chǎn)物約有20%~97%會排出體外,繼而基于生物富集作用殘留在生態(tài)系統(tǒng)中[3-4],容易導(dǎo)致細(xì)菌抗生素耐藥性增強(qiáng)、生態(tài)系統(tǒng)干擾等持久的環(huán)境毒性危害。目前TC的去除方法有:生物降解[5]、物理吸附[6]、光降解[7]、光芬頓[8]、過硫酸鹽氧化[9]等。其中,過硫酸鹽高級氧化技術(shù)(sulfate radicals based-advanced oxidation processes,SR-AOPs)能夠利用綠色低廉的生物炭(biochar,BC)作為非均相催化劑,高效分解過硫酸鹽(persulfate,PS)產(chǎn)生高氧化還原電勢的羥基自由基和硫酸根自由基(·OH、SO4-·),進(jìn)而實(shí)現(xiàn)有機(jī)物的降解礦化,因而被認(rèn)為是兼具環(huán)保和經(jīng)濟(jì)雙重效益的優(yōu)勢手段[10]。
此外,近年來人們對畜禽肉類需求的提高,伴隨而來的廢骨產(chǎn)量也日益增加。據(jù)統(tǒng)計(jì),2021年中國廢骨年產(chǎn)量高達(dá)1 348 t[11-12]。傳統(tǒng)的如深埋、堆肥法、化制等廢骨處理方法存在實(shí)施條件受限或治病細(xì)菌滋生等缺陷,易加重農(nóng)業(yè)面源污染[13],而將廢棄骨骼制備為BC應(yīng)用于催化PS降解TC是極具發(fā)展前景的應(yīng)用,緊密貼切以廢治廢、綠色高效的資源化利用理念。骨骼中的無機(jī)晶體(主要為羥基磷灰石(hydroxyapatite,HAp)及含碳酸鹽的羥基磷灰石(carbonated hydroxyapatite,CHAp))與有機(jī)基質(zhì)(主要為膠原蛋白和脂肪)在納米尺度上分層排列,在高溫?zé)峤庵苽涔翘康倪^程中,羥基磷灰石能夠作為模板劑、膠原纖維作為碳基前體,發(fā)揮內(nèi)源礦質(zhì)膠原摻雜的作用,促進(jìn)骨炭3D多級孔結(jié)構(gòu)形成的同時提供更多的富氧活性基團(tuán)位點(diǎn),使其能夠快速激活PS,成為一種利于催化降解有機(jī)物的增值碳材料[14-15]。值得注意的是,不同熱解溫度制得BC的官能團(tuán)、結(jié)晶度、表面形貌等理化性質(zhì)具有明顯差異[16-18],可直接影響對污染物的去除性能[19]。如王夢妍等[20]研究表明隨熱解溫度500~900 ℃梯度性提升,骨料中HAp成分增多,含氧官能團(tuán)含量下降,使得骨炭堿性增強(qiáng)、酸性減弱。LIU等[21]采用與魚骨化學(xué)組成相近的魚鱗為原料制備了蜂窩狀結(jié)構(gòu)的魚鱗炭,發(fā)現(xiàn)在低溫550 ℃下膠原蛋白保留了更多的氮氧原子,而在高溫800 ℃下HAp的原始結(jié)構(gòu)受到極大程度的破壞,形成了豐富的微介孔結(jié)構(gòu)。REN等[22]發(fā)現(xiàn)魚骨炭缺陷結(jié)構(gòu)與含氧官能團(tuán)隨著制備溫度提升而增多,在800 ℃下制備的生物炭1 h內(nèi)可完全降解20 mg/L的苯酚。與魚骨相比,豬骨不但含有豐富的鈣磷等無機(jī)模板成份,且含有更高的膠原蛋白和脂肪有機(jī)組分含量(豬骨80.2%>魚骨74.9%)[23],在碳化成炭的過程中具有更大的成碳與成孔潛力。更為重要的是,盡管熱解溫度對骨炭結(jié)構(gòu)與催化的研究已經(jīng)比較豐富,但有關(guān)碳化溫度對豬骨炭形貌、富鈣礦質(zhì)晶體和含氧官能團(tuán)結(jié)構(gòu)及其對TC催化降解性能的影響研究還未見報(bào)道。
為此,本研究以豬骨為原料,在500~900℃的不同熱解溫度下制備不同結(jié)構(gòu)的豬骨炭,通過現(xiàn)代能光譜方法探析熱解溫度對豬骨炭形貌、活性羥基磷灰石晶體結(jié)構(gòu)、含氧活性官能團(tuán)以及孔隙結(jié)構(gòu)的影響,進(jìn)而通過催化降解試驗(yàn)探究豬骨炭形貌、晶態(tài)、官能團(tuán)、孔隙結(jié)構(gòu)對TC催化性能的影響與機(jī)制以及豬骨炭制備溫度-物化結(jié)構(gòu)及催化降解性能間的構(gòu)效關(guān)系,以期為高效催化去除環(huán)境四環(huán)素類抗生素有機(jī)物污染物的豬骨炭定向構(gòu)建和應(yīng)用提供數(shù)據(jù)支持。
骨料取自吉林東遼(約60%的礦物質(zhì)(主要是HAp)、25%的有機(jī)基質(zhì)(主要是I型膠原蛋白)、15%的水)。PS(過硫酸鈉,99%)、四環(huán)素(TC)、鹽酸(HCl)、氫氧化鈉(NaOH)、甲醇(MeOH)和叔丁醇(TBA)均為分析純,購于南京化學(xué)試劑公司。電子掃描顯微鏡(SEM,Hitachi Regulus8100,北京日立科學(xué)儀器有限公司)、X射線衍射儀(XRD,D8 Advance,德國布魯克公司)、紅外光譜分析儀(FTIR,Scientific Nicolet iS20,美國賽默飛科技公司)、孔徑分析儀(3H-200OPM2,北京貝士德儀器科技有限公司)、紫外-可見光分光光度計(jì)(UV-5000B,上海精密儀器儀表有限公司)。
將干燥的廚余豬骨粉碎過篩(0.15 mm)后置于管式爐中,在100 mL/min的氮?dú)鈿饬髦幸?0 ℃/min的速率升溫,使得煅燒溫度分別升到500、700、900℃,而后保溫2 h。自然冷卻后取出炭化品,用去離子水反復(fù)清洗至濾液呈中性,烘干后獲得3種不同熱解溫度的豬骨炭,分別記作500BPBC、700BPBC和900BPBC。
通過SEM、SEM-EDS、XRD和FTIR分析豬骨炭表面形貌、元素組成、晶體結(jié)構(gòu)與表面化學(xué)結(jié)構(gòu)。豬骨炭比表面積、孔容及孔徑分布,根據(jù)低溫氮?dú)馕降葴鼐€通過BET、BJH、H-K、DFT等模型計(jì)算分析。
1.4.1 不同溫度豬骨炭對四環(huán)素的降解試驗(yàn)
按質(zhì)量比1∶6分別取0.060 g豬骨炭和0.360 g PS,置于含有200 mL 250 mg/L的TC溶液(預(yù)調(diào)pH值為5)的錐形瓶中,放入搖床在轉(zhuǎn)速150 r/min下反應(yīng)取樣,使用0.22 μm的有機(jī)濾膜過濾后獲得清液,采用紫外-可見光分光光度法在波長358 nm測定溶液中剩余TC濃度。試驗(yàn)重復(fù)3次,取平均值。豬骨炭對TC的平衡去除量W根據(jù)式(1)計(jì)算。
W=(0-C)/(1)
式中W為平衡去除量(mg/g);0為溶液中TC的初始濃度(mg/L);C為溶液中TC的平衡濃度(mg/L);為溶液的體積(L);為豬骨炭的質(zhì)量(mg)。
1.4.2 pH和PS投加量對降解性能的影響
在控制炭投加量的情況下,在反應(yīng)體系中添加PS進(jìn)行批量去除試驗(yàn),以測試探究不同反應(yīng)環(huán)境的初始pH值(3~11)、不同PS投加量(BC∶PS質(zhì)量比1∶0~1∶9)條件下,反應(yīng)48 h后,豬骨炭對TC的去除能力的影響。
1.4.3 降解路徑分析
選取不同濃度梯度的甲醇(MeOH∶PS摩爾比20∶1~1 000∶1)和叔丁醇(TBA∶PS摩爾比20∶1~333∶1),在BC∶PS質(zhì)量比1∶6、pH值為5條件下進(jìn)行自由基清除試驗(yàn)。
2.1.1 熱解溫度對豬骨炭表面形貌的影響
從圖1a的SEM圖中可以看出,在500、700和900 ℃下制備的3組豬骨炭的表面雖都呈現(xiàn)不同程度凹凸不平的孔隙結(jié)構(gòu),但形態(tài)各異。500BPBC表面主要呈現(xiàn)為相對平整的層狀結(jié)構(gòu),擁有較多大塊的礦質(zhì)殘留體;而700BPBC表面呈現(xiàn)大量細(xì)長的纖維絲狀結(jié)構(gòu),且以團(tuán)簇形式相互纏繞在一起;當(dāng)熱解升高至900 ℃時,制得的900BPBC具有明顯的空心球形結(jié)構(gòu)。相比于500BPBC,700BPBC表面呈現(xiàn)纖維絲狀團(tuán)簇結(jié)構(gòu),并且殘留礦質(zhì)顆粒更小,這可能是由于豬骨中鈣磷在高溫形成的晶體與豬骨炭中的sp2雜化結(jié)構(gòu)碳框架結(jié)合在一起形成所致。900BPBC中團(tuán)簇結(jié)構(gòu)消失而呈現(xiàn)空心球形結(jié)構(gòu),可能是絲狀團(tuán)簇晶體成分高溫下分解所致[24]。從SEM-EDS能譜元素圖1b及成分含量表(表1)可以看出,碳和氧的含量均隨著熱解溫度的升高呈先增加后減少的趨勢,而鈣和磷的含量變化情況正好與之相反,說明鈣磷形成的磷酸鈣無定形相和羥基磷灰石晶體在700~900 ℃的高溫下相互轉(zhuǎn)換[25]。
2.1.2 熱解溫度對豬骨炭晶格結(jié)構(gòu)的影響
不同熱解溫度下制備得到的豬骨炭的XRD結(jié)果如圖 2所示,從3組豬骨炭的XRD衍射峰的形狀來看,熱解溫度明顯影響著豬骨炭的晶型結(jié)構(gòu)。在衍射角為10.8°、25.7°、32.2°、39.8°、49.5°時存在明顯的特征峰,分別對應(yīng)于類石墨物質(zhì)、CHAp的B型碳酸鹽取代物(Ca10(PO4)3(CO3)3(OH)2)、A型碳酸鹽取代物(Ca10(PO4)6CO3)、HAp和氮化碳物質(zhì)的(002)、(-202)、(310)和(201)晶面。圖譜在2為10.8°和39.8°處存在明顯的特征衍射峰,對應(yīng)于豬骨炭的碳構(gòu)型中球殼狀的類石墨碳簇分子以及無機(jī)相的HAp,并且隨著豬骨炭碳化溫度的升高結(jié)晶程度越高,說明豬骨炭是一種富含鈣磷的生物炭。
700BPBC在25.7°和32.2°峰位相比于500BPBC,在活性較高的B型CHAp衍射峰強(qiáng)度更大(700BPBC 522 > 500BPBC 498),而化學(xué)性質(zhì)更穩(wěn)定的A型CHAp結(jié)晶度適中,因而700BPBC的磷灰石礦物擁有更好的晶型配比,這可能促進(jìn)單線態(tài)氧與超氧自由基的產(chǎn)生提供更多的催化活性位點(diǎn)[26-27]。而900BPBC在全譜掃描范圍內(nèi)存在許多粗糙的尖銳峰型,這表明過高的熱解溫度使豬骨炭中形成了更為復(fù)雜的無機(jī)晶型結(jié)構(gòu),可能會覆蓋或阻塞碳結(jié)構(gòu)并影響豬骨炭的催化活性[27]。
注:500BPBC、700BPBC、900BPBC分別代表在碳化溫度為500、700、900 ℃下制得的豬骨炭。下同。
表1 能量色散X射線光譜掃描的元素質(zhì)量分?jǐn)?shù)(10 μm)
圖2 豬骨生物炭的XRD圖
2.1.3 熱解溫度對豬骨炭表面官能團(tuán)的影響
圖3為不同熱解溫度下豬骨炭的FTIR圖。如圖3所示,3種豬骨炭在3 417、1 622、1 457、1 415、1 035、603、564 cm-1具有明顯的吸收峰位。位于3 417 cm-1處的-OH振動特征峰,能夠?yàn)榻到夥磻?yīng)中自由基途徑的激活提供活性[28];在1 622 cm-1處為酰胺Ⅰ由C=O的振動拉伸引起的特征峰[29],能夠作為電子受體提供電子轉(zhuǎn)移途徑的活性位點(diǎn)[27];在1 415和1 457 cm-1附近出現(xiàn)碳酸鹽特征峰的雙態(tài)帶,表明CaCO3的存在,是由于CO32-取代HAp結(jié)構(gòu)中的PO43-位點(diǎn),使得C-O發(fā)生拉伸振動而形成的活性CHAp[30];在564、605和1 035 cm-1處出現(xiàn)磷酸鹽的特征峰,表現(xiàn)為明顯的磷酸鹽的反對稱彎曲以及不對稱的三重變性O(shè)-P-O拉伸振動,這歸屬于豬骨炭中的無機(jī)組分HAp,而磷具有較強(qiáng)的給電子能力,其存在形式可能提供了良好的電子傳遞性能,對于降解反應(yīng)所需的催化活性起支撐作用[31]。
其中,在700BPBC的圖譜上在564、605、1 415、1 457以及3 417 cm-1處的特征峰曲線呈現(xiàn)有更大的峰面積和清晰的峰形,表明該溫度下豬骨炭表面具有更多的-OH以及活性CHAp,這可能為700BPBC提供更高的催化活性。在熱解溫度為500 ℃時,由于碳化不充分導(dǎo)致豬骨中有機(jī)膠原和無機(jī)磷灰石裂解不完全,使500BPBC在活性-OH、CO32-和PO43-峰位未獲得突出的特征峰曲線。而當(dāng)碳化溫度上升至900 ℃后,-OH與C=O等含氧官能團(tuán)特征峰峰形曲線模糊,同時在872、1 415和1 457 cm-1的B型碳酸鹽特征峰在900BPBC上消失,表明CO32-取代羥基磷灰石結(jié)構(gòu)中的-OH位點(diǎn),轉(zhuǎn)化為979 cm-1處的A型碳酸鹽特征峰,這是由于制炭溫度過高而導(dǎo)致活性CHAp的失活,形成穩(wěn)定的A型CHAp[32-33],表明過高的碳化溫度不利于豬骨炭表面的催化活性。
圖3 豬骨炭的FTIR譜圖
2.1.4 熱解溫度對豬骨炭孔結(jié)構(gòu)的影響
不同熱解溫度下制備的豬骨炭的N2吸脫附等溫線以及全孔、中孔、微孔徑分布如圖4所示。由圖4a可知,當(dāng)熱解溫度為700 ℃時,700BPBC的氮吸附量在0低中高壓段相較于500BPBC和900BPBC均明顯上升;圖4b~4d中可以看出在700BPBC不僅具有優(yōu)異的中孔結(jié)構(gòu),還具有更多的微孔。因此綜合圖4a~4d和表2中數(shù)據(jù)可知,比表面積及孔體積隨著熱解溫度的升高呈先增加后減小的趨勢,700BPBC可能由于在熱解過程中有機(jī)物揮發(fā)更充分,相比于500BPBC擁有更多比例的微孔體積(0.053 mL/g)和更大的比表面積(134 m2/g),與SEM圖中觀察到的狹縫型短孔的現(xiàn)象相印證,更密集且短小的表面結(jié)構(gòu)能夠更好地富集PS分解產(chǎn)生的小分子自由基,為催化降解提供更多的增強(qiáng)效應(yīng)。900BPBC的孔結(jié)構(gòu)最差,這可能是由于裂解溫度過高,使得孔隙結(jié)構(gòu)在一定程度上擴(kuò)散變形,破壞并導(dǎo)致相鄰的孔隙壁坍塌[34]。
表2 豬骨炭的孔結(jié)構(gòu)及比表面積
圖4 碳化溫度為500、700、900 ℃的豬骨炭孔徑分析
圖5描述了3組不同溫度下豬骨炭在pH值為5、投加量BC∶PS為1∶6條件下的不同反應(yīng)時間對TC的降解性能。從圖中可以看出,不同碳化溫度下的豬骨炭對TC的降解性能差異明顯,降解能力由大到小順序?yàn)?00BPBC、 500BPBC、900BPBC。當(dāng)反應(yīng)進(jìn)行到30 min時,700BPBC、500BPBC和900BPBC對TC的去除能力之比為10∶4.7∶2.8,至反應(yīng)210 min去除能力之比仍高達(dá)10∶7.3∶4.6。相比于500BPBC和900BPBC,700BPBC對TC具有更優(yōu)的催化降解能力,究其原因可能是有機(jī)基質(zhì)裂解、HAp構(gòu)型以及原位物理模板作用的協(xié)同結(jié)果:在700 ℃的熱解溫度下,膠原蛋白等充分碳化形成豐富的活性氧基團(tuán),并且骨料中HAp開始發(fā)揮模板作用,保留活性CHAp的同時形成具有針簇狀特征的三維微-介孔結(jié)構(gòu),使得700BPBC擁有的更優(yōu)異的化學(xué)活性位點(diǎn)和孔隙結(jié)構(gòu)。由2.1節(jié)分析可知,纖維絲狀團(tuán)簇和更豐富的扁平狹縫型孔隙結(jié)構(gòu)能夠迅速發(fā)生吸附行為將TC與PS緊密富集,更有利于大分子TC的固定濃縮,從而提高其與活性位點(diǎn)和S2O82-的接觸效率;同時,700BPBC表面具有豐富的高活性官能結(jié)構(gòu)-OH、C=O和B型CHAp,在sp2碳網(wǎng)絡(luò)以及富電子含氧基團(tuán)的作用下,促進(jìn)形成PS的激發(fā)態(tài)加速自由基的分解[35],促進(jìn)自由基途徑(SO4-·、·OH、超氧自由基(O2-·))的產(chǎn)生;而“TC-700BPBC-PS”三元體系的形成大大增加了非自由基反應(yīng)途徑的貢獻(xiàn)度[36],并且C=O的存在也可以促進(jìn)電子轉(zhuǎn)移、單線態(tài)氧(1O2)等非自由基途徑;此外B型CHAp活性礦物成分的存在,不僅說明內(nèi)源礦質(zhì)組分在700 ℃的熱解溫度下獲得了較好的晶型配比、形成了特定的表面形貌,還能夠刺激活性氧物種的產(chǎn)生。以上活性氧物種產(chǎn)生機(jī)理見式(2)~(6)[27,37]。
BC-OH+S2O82-→SO4-·+HSO4-+BC-O· (2)
BC-OOH+S2O82-→SO4-·+HSO4-+BC-OO· (3)
SO4-·+H2O→SO42-+H++·OH(4)
·OH+O2-·→1O2+OH-(5)
H++2O2-·→1O2+H2O2(6)
注:R為剩余濃度與初始濃度比值。
S2O82-+2H2O(OH-)→2SO42-+3H++HO2-(7)
S2O82-+HO2-→SO42-+H++SO4-·+O2-· (8)
圖6c為PS投加量對700BPBC催化降解TC性能的影響,從圖6c可以看出,700BPBC催化降解TC能力隨PS投加量增大而增大,BC∶PS上升為1∶6時,700BPBC對TC的降解率為70%,降解性能高達(dá)629 mg/g,比500BPBC和900BPBC分別高37%和117%。降解率為70%。隨著PS投量的增加,豬骨炭催化PS的分解從而生成更多的·OH和SO4-·等自由基,能夠破壞四環(huán)素結(jié)構(gòu)生成副產(chǎn)物(degradation product,DP*)進(jìn)而逐步礦化,實(shí)現(xiàn)對TC的催化降解,TC降解反應(yīng)見式(9)[37]。而當(dāng)PS投量過多時,其分解產(chǎn)生的一部分SO4-·轉(zhuǎn)而與過硫酸鹽離子發(fā)生猝滅反應(yīng),生成活性較弱的S2O8-·和無活性的SO42-,導(dǎo)致700BPBC的催化性能減弱,PS猝滅反應(yīng)見式(10)[40]。
S2O82-+SO4-·→SO42-+S2O8-· (10)
甲醇可以同時猝滅·OH和SO4-·,而叔丁醇則更容易與·OH發(fā)生反應(yīng)[41],為確定700BPBC/PS體系對TC的主要降解途徑,采用不同濃度梯度的甲醇和叔丁醇進(jìn)行自由基清除試驗(yàn),結(jié)果如圖6d所示?,F(xiàn)有研究一般選用甲醇濃度為MeOH/PS=1 000∶1認(rèn)為能夠有效淬滅·OH和SO4-·自由基[42]。試驗(yàn)結(jié)果顯示,隨著甲醇(MeOH)濃度的大幅度提升,700BPBC對TC的去除率相對于對照組下降了14%、38%和57%,證明該去除部分主要來源于·OH和SO4-·引發(fā)的自由基反應(yīng)途徑。而叔丁醇(TBA)濃度的增加使去除量相對于對照組降低了9%、36%和44%,可見相對于MeOH,TBA對700BPBC催化降解性能的影響較大,證明該反應(yīng)體系下·OH貢獻(xiàn)度更多,且高濃度的TBA可能由于較強(qiáng)的疏水性從而阻止S2O82-與700BPBC發(fā)生催化反應(yīng),這與LIU等[43]研究磺胺甲惡唑降解路徑的觀點(diǎn)相似。此外,700BPBC/PS的反應(yīng)體系中近60%為·OH和SO4-·發(fā)揮對TC的降解作用,說明其余貢獻(xiàn)可能來自于1O2、電子傳遞等非自由基途徑,根據(jù)前文分析這與C=O以及活性礦質(zhì)成分CHAp有關(guān)。綜上,本文深入研究碳化溫度對豬骨炭結(jié)構(gòu)與催化降解性能間的作用及影響,為高性能骨炭調(diào)控提供參考依據(jù)。
圖6 700BPBC催化降解TC的參數(shù)影響與活性氧猝滅
1)豬骨炭形貌和碳框架鈣磷晶態(tài)結(jié)構(gòu)隨著碳化溫度升高變化顯著。豬骨炭500BPBC、700BPBC和900BPBC分別呈現(xiàn)層狀裂縫、針狀團(tuán)簇和空心球的獨(dú)特形貌,碳框架中磷鈣晶態(tài)分別以B型CHAp、A型CHAp和無機(jī)晶型為主,活性P(21.11%)和Ca(8.87%)含量在700BPBC中最高。
2)豬骨炭孔隙結(jié)構(gòu)和活性含氧官能團(tuán)隨碳化溫度變化明顯。隨著碳化溫度從500℃提升到900℃,豬骨炭表面積和表面活性-OH、C=O和活性CHAp官能位含量先升高后降低。700BPBC具有更大的活性位載體表面積(134 m2/g) 、適中的孔徑(8.371 nm)以及豐富的-OH、C=O 和活性 CHAP等活性官能團(tuán)點(diǎn)位。
3)豬骨炭對TC的催化降解性能隨碳化溫度變化差異顯著。700BPBC 對 TC 的降解性能高達(dá) 629 mg/g,比 500BPBC和900BPBC分別高37%和117%,主要?dú)w因于其豐富的針狀團(tuán)簇狹縫型孔隙載體表面以及-OH、C=O、B型CHAP高活性點(diǎn)位引起的自由基/非自由基雙反應(yīng)高效催化氧化途徑。
[1] 劉倩,張航,蔣開拓,等. 便攜式水產(chǎn)品四環(huán)素含量檢測裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(5):8-14. LIU Qian, ZHANG Hang, JIANG Kaituo, et al. Development of a portable device for the detection of tetracycline contents in the aquatic products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(5): 8-14. (in Chinese with English abstract)
[2] 秦榮,喻慶國,劉振亞,等. 人類活動影響下的高原濕地四環(huán)素類抗生素抗性基因賦存與微生物群落共現(xiàn)性[J]. 環(huán)境科學(xué),2023,44(1):169-179. QIN Rong, YU Qingguo, LIU Zhenya, et al. Co-occurrence of tetracycline antibiotic resistance genes and microbial communities in plateau wetlands under the influence of human activities[J]. Environmental Science, 2023, 44(1): 169-179. (in Chinese with English abstract)
[3] PROIA L, ANZIL A, SUBIRATS J, et al. Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem[J]. Chemosphere, 2018, 206: 70-82.
[4] LIU L L, WU W, ZHANG J Y, et al. Progress of research on the toxicology of antibiotic pollution in aquatic organisms[J]. Acta Ecologica Sinica, 2018, 38: 36-41.
[5] MOUNI R, RAJNARAYAN S, SHALABY A R. Dyes and their removal technologies from wastewater: A critical review[M]// SIDDHARTHA B, NABA K M, JAN P, et al. Intelligent Environmental Data Monitoring for Pollution Management. San Diego, CA, USA, Academic Press, 2021: 127-160.
[6] WANG T, XUE L, LIU Y H, et al. N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics[J]. Science of the Total Environment, 2022, 822: 153567.
[7] XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review[J]. Science of the Total Environment, 2021, 753: 141975.
[8] 姚鵬城,陳嘉瑜,張永明,等. 廢水處理系統(tǒng)中抗生素抗性基因分布特征[J]. 環(huán)境科學(xué),2019,40(11):5024-5031. YAO Pengcheng, CHEN Jiayu, ZHANG Yongming, et al. Distribution characteristics of antibiotic resistance genes in wastewater treatment plants[J]. Environmental Science, 2019, 40(11): 5024-5031. (in Chinese with English abstract)
[9] ZHONG Q, LIN Q, HUANG R, et al. Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar[J]. Chemical Engineering Journal, 2020, 380: 122608.
[10] WANG B, LI Y N, WANG L. Metal-free activation of persulfates by corn stalk biochar for the degradation of antibiotic norfloxacin: Activation factors and degradation mechanism[J]. Chemosphere, 2019, 237: 124454.
[11] XIAO J, HU R, CHEN G C, et al. Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: Physicochemical properties, heavy metals sorption behavior and mechanism[J]. Journal of Hazardous Materials, 2020, 399: 123067.
[12] 中華人民共和國國家統(tǒng)計(jì)局. 中國統(tǒng)計(jì)年鑒[M]. 北京:中國統(tǒng)計(jì)出版社,2022.
[13] PARK J H, YUN J J, KANG S W, et al. Removal of potentially toxic metal by biochar derived from rendered solid residue with high content of protein and bone tissue[J]. Ecotoxicology and environmental safety, 2021, 208: 111690.
[14] AHMED I, NICOLE M, JAMES G, et al. Hardness, an important indicator of bone quality, and the role of collagen in bone hardness[J]. Journal of Functional Biomaterials, 2020, 11(4): 85.
[15] ZHOU X R, ZENG Z T, ZENG G M, et al. Persulfate activation by swine bone char-derived hierarchical porous carbon: Multiple mechanism system for organic pollutant degradation in aqueous media[J]. Chemical Engineering Journal, 2020, 383: 123091.
[16] TASKIN E, BUENO C C, ALLEGRETTA I, et al. Multianalytical characterization of biochar and hydrochar produced from waste biomasses for environmental and agricultural applications[J]. Chemosphere, 2019, 233: 422-430.
[17] 牛文娟,鄧?yán)^猛,馮雨欣,等. 不同溫度下水稻秸稈多孔生物炭結(jié)構(gòu)與電化學(xué)性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(2):231-240. NIU Wenjuan, DENG Jimeng, FENG Yuxin, et al. Structure and electrochemical performances of porous biochar from rice straw at different temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(2): 231-240. (in Chinese with English abstract)
[18] 高亮,李志合,易維明,等. 棉稈生物炭去除水中 Pb(Ⅱ)吸附機(jī)理的量化分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(3):230-238. GAO Liang, LI Zhihe, YI Weiming, et al. Quantifying the adsorption mechanisms of Pb(Ⅱ) in aqueous solution by cotton stalk biochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(3): 230-238. (in Chinese with English abstract)
[19] LI B, LIU D J, LIN D, et al. Changes in biochar functional groups and its reactivity after volatile-char interactions during biomass pyrolysis[J]. Energy & Fuels, 2020, 34(11): 14291-14299.
[20] 王夢妍,劉燁,姚玉梅,等. 動物骨熱解過程中產(chǎn)物特性變化規(guī)律研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(5):357-365. WANG Mengyan, LIU Ye, YAO Yumei, et al. Product characteristics changes during animal bone pyrolysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 357-365. (in Chinese with English abstract)
[21] LIU M Y, NIU J, ZHANG Z P. Porous carbons with tailored heteroatom doping and well-defined porosity as high-performance electrodes for robust Na-ion capacitors[J]. Journal of Power Sources, 2019, 414: 68-75.
[22] REN X Y, WANG J J, YU J F, et al. Waste valorization: Transforming the fishbone biowaste into biochar as an efficient persulfate catalyst for degradation of organic pollutant[J]. Journal of Cleaner Production, 2021, 291: 125225.
[23] 程小飛,向勁,李傳武,等. 病死豬肉骨粉與魚粉營養(yǎng)成分對比分析[J]. 江蘇農(nóng)業(yè)科學(xué),2020,48(16):208-211. CHENG Xiaofei, XIANG Jin, LI Chuanwu, et al. Comparative analysis of the nutritional composition of pork and bone meal and fish meal in the dead pigs[J]. Jiangsu Agricultural Sciences, 2020, 48(16): 208-211. (in Chinese with English abstract)
[24] MUHAMMAD K S, JUN Y K, GWYAM S, et al. Effect of pyrolysis conditions on characteristics and fluoride adsorptive performance of bone char derived from bone residue[J]. Journal of Water Process Engineering, 2020, 37: 101499.
[25] NAHUM A M C, ERIKA P O, LEONARDO D T G, et al. Removal of fluoride from aqueous solution using acid and thermally treated bone char[J]. Adsorption, 2016, 22(7): 951-961.
[26] ZWETSLOOT M J, LEHMANN J, BAUERLE T, et al. Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae biochar interactions[J]. Plant Soil, 2016, 408, 95-105.
[27] ZHOU X R, ZENG Z T, ZENG G M, et al. Insight into the mechanism of persulfate activated by bone char: Unraveling the role of functional structure of biochar[J]. Chemical Engineering Journal, 2020, 401: 126127.
[28] SUSAN S A, RAED A A, JOCHEN B, et al. Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal[J]. Environmental Pollution, 2020, 262: 114221.
[29] PARTHA P B, LIANG B Q, GORDON T W, et al. Systematic changes of bone hydroxyapatite along a charring temperature gradient: An integrative study with dissolution behavior[J]. Science of The Total Environment, 2021, 766: 142601.
[30] INTHAPANYA X, WU S H, HAN Z F, et al. Adsorptive removal of anionic dye using calcined oyster shells: Isotherms, kinetics, and thermodynamics[J]. Environmental Science and Pollution Research International, 2019, 26(6): 5944-5954.
[31] Niu C X, LI S L, ZHOU G, et al. Preparation and characterization of magnetic modified bone charcoal for removing Cu2+ions from industrial and mining wastewater[J]. Journal of Environmental Management, 2021, 297: 113221.
[32] HONEY M, BARBARA P, MARY M J T. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite[J]. Journal of Solid State Chemistry, 2017, 255: 27-35.
[33] GARSKAITE E, GROSS K A, YANG S W, et al. Effect of processing conditions on the crystallinity and structure of carbonated calcium hydroxyapatite (CHAp)[J]. Crystengcomm, 2014, 16: 3950-3959.
[34] FAN X H, WANG X Q, ZHAO B, et al. Sorption mechanisms of diethyl phthalate by nutshell biochar derived at different pyrolysis temperature[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107328.
[35] LIU H Y, LIU Y N, TANG L, et al. Egg shell biochar-based green catalysts for the removal of organic pollutants by activating persulfate[J]. Science of the Total Environment, 2020, 745: 141095.
[36] REN W, XIONG L L, NIE G, et al. Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: The role of oxygen functional groups [J]. Environmental Science & Technology, 2020, 54(2): 1267-1275.
[37] CHEN J H, YU X L, LI C, et al. Removal of tetracycline via the synergistic effect of biochar adsorption and enhanced activation of persulfate[J]. Chemical Engineering Journal, 2020, 382: 211916.
[38] 曾少毅,李坤權(quán). 窄孔徑含磷棉稈生物質(zhì)炭的制備及對四環(huán)素的吸附機(jī)制[J]. 環(huán)境科學(xué):2023,44(3):1519-1527. ZENG Shaoyi, LI Kunquan. Preparation of narrow pore diameter phosphorus containing cotton stalk carbon and its adsorption mechanism for tetracycline[J]. Environmental Science, 2023, 44(3): 1519-1527. (in Chinese with English abstract)
[39] DIAO Z H, XU X R, CHEN H, et al. Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism[J]. Journal of Hazardous Materials, 2016, 316: 186-193.
[40] WANG B, ZHU C, AI D, et al. Activation of persulfate by green nano-zero-valent iron-loaded biochar for the removal of p-nitrophenol: Performance, mechanism and variables effects[J]. Journal of Hazardous Materials, 2021, 417: 126106.
[41] ZHU C, ZHU F, DIONYSIOU D D, et al. Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process[J]. Water Research, 2018, 139: 66-73.
[42] 孫鵬,張凱凱,張玉,等. 生物炭/過一硫酸鹽體系同時去除Cu2+和對硝基苯胺[J]. 化工進(jìn)展,2020,39(10):4268-4274. SUN Peng, ZHANG Kaikai, ZHANG Yu, et al. Simultaneous removal of Cu2+and p-nitroaniline from aqueous solution by biochar/peroxymonosulfate system[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4268-4274. (in Chinese with English abstract)
[43] LIU F, DING J, ZHAO G S, et al. Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation [J]. Chemosphere, 2022, 302: 134868.
Mechanism for the effects of carbonization temperature on the structure of pig bone biochar and tetracycline catalytic degradation performance
XIA Xu, LI Kunquan※
(,,210031,)
Tetracycline (TC) can easily lead to persistent environmental toxicity via bio-enrichment effects, due to the inefficient bio-absorption, high solubility, and high bio-activity. Advanced oxidation processes based on sulfate radicals (SR-AOPs) can be expected to serve as an alternative means. Green low-cost biochar (BC) can be also used as an uneven catalyst. The persulfate (PS) was efficiently decomposed to generate the high-oxidation to restore power free radicals (OH, and SO4-·) during the degradation mineralization of organic matter. In addition, the annual waste bone production has reached 1348 tons in 2021 in China. Traditional treatments of waste bone can also be limited in the implementation conditions or cure such defects as bacterial reproduction. The waste bone can be prepared to catalyze the PS degradation TC. There are different properties of thermal temperature, crystallization, and surface shape made of BC, leading to the removal performance of pollutants. In this study, the different structures of pig bones coal with cooking pig bones were prepared as the raw materials at different temperatures of thermal resolution from 500 ℃ to 900 ℃. Energy spectroscopy was selected to analyze the effect of heat resolution on the pig bone's carbon shape, active phosphorus (hydroxyapatite, HAP) crystal structure, oxygenic acid, as well as the active functional units and cavity structure. Then, the material performance was compared to determine the optimal material pH, and PS parameters impact. The optimal system was achieved in the active oxygen sudden extinction to investigate the interaction between bone carbonization temperature and structure for the catalyst degradation performance. The results showed that there was a noticeable carbonization structure of the pig’s bone with the change in the carbonization temperature, indicating three distinct structures of layered cracks, needle-shaped clusters, and empty heart balls at three supply temperatures. Compared with 500 ℃ and 900 ℃, the crystalline structure formed at 700 ℃, and the fully volatile organic components presented the 700BPBC surface calcium phosphorus in the high-temperature formed crystal and the sp2structural carbon frame in the pig coal combined to form the needle-shaped fiber structure in the form of cluster. The more fine and shorter narrow conveyor was formed with a more microporous structure and better crystal comparison of phosphatic minerals. Energy and infrared spectrum analysis showed that the non-crystalline transformation was significantly influenced by the thermal resolution temperature, and then the content of C, O, Ca, and P, due to the full splitting of organic collagen and inorganic phosphorus and crystalline composition in HAp. As such, the 700BPBC was superior to the other two kinds of pig bone biochar with the rich -OH and active CHAp. The catalytic degradation experiment showed that the degrading capacity order from large to small is 700BPBC, 500BPBC, 900BPBC. Among them, the 700BPBC shared a stronger performance of catalytical degeneration for the TC, due to the small, narrow conveyor, rich active functional agglomeration spots, and better crystalline comparison. Furthermore, the ion form of quercetin was easier to capture than pig coal, when the solution environment was weakly acidic (pH value is 5). The best activity was achieved in the free radicals produced by sulfate (PS). The moderate overdose of sulphate (BC:PS = 1:6) produced the most effective free radical. The OH contributed the most under the 700BPBC/PS system. The free radical reaction was the dominant pathway to catalyze the degradation reaction. There were active CHAp and C=O-induced non-free radical reactions.
temperature; biochar; pH value; pig bone biochar; needle cluster structure; tetracycline; removal mechanism
2022-11-25
2023-04-06
國家自然科學(xué)基金項(xiàng)目(21876086);江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2018708)
夏旭,研究方向?yàn)楣δ苌镔|(zhì)炭材料調(diào)控與污染控制。Email:3502325728@qq.com
李坤權(quán),博士,教授,博士生導(dǎo)師,研究方向?yàn)樗廴究刂婆c固體廢棄物利用研究。Email:kqlee@njau.edu.cn
10.11975/j.issn.1002-6819.202211218
X705;S216.1
A
1002-6819(2023)-08-0231-08
夏旭,李坤權(quán). 碳化溫度對豬骨炭結(jié)構(gòu)及四環(huán)素催化降解性能的影響機(jī)制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(8):231-238. doi:10.11975/j.issn.1002-6819.202211218 http://www.tcsae.org
XIA Xu, LI Kunquan. Mechanism for the effects of carbonization temperature on the structure of pig bone biochar and tetracycline catalytic degradation performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(8): 231-238. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202211218 http://www.tcsae.org