孟坤 崔春義 許成順 姚怡亦 辛宇 梁志孟
摘要 為合理考慮浮承樁縱向振動(dòng)問(wèn)題中樁端土作用及樁?土界面相對(duì)位移條件,同時(shí)引入動(dòng)力Winkler模型和虛土樁模型,建立了一種適用性更廣的浮承樁縱向振動(dòng)特性研究方法。引入分離變量法對(duì)三維土體位移控制方程進(jìn)行求解,結(jié)合土體表面及基巖處邊界條件得到三維土體位移基本解;通過(guò)將動(dòng)力Winkler模型相關(guān)參數(shù)考慮為樁?土界面邊界條件在頻域內(nèi)解析求解了樁縱向振動(dòng)特性,并將所得頻域解析解拓展到時(shí)域,采用離散傅里葉逆變換方法(IFT)求解了樁頂速度時(shí)域響應(yīng);開(kāi)展參數(shù)化分析探討了樁?土界面非完全粘結(jié)條件及虛土樁參數(shù)對(duì)浮承樁動(dòng)力響應(yīng)的影響,計(jì)算結(jié)果表明:樁?土界面完全耦合假定會(huì)過(guò)高估計(jì)樁側(cè)土對(duì)樁的約束作用,無(wú)法合理評(píng)估樁基的抗振性能,并會(huì)對(duì)樁基抗振防振設(shè)計(jì)及樁底反射信號(hào)識(shí)別產(chǎn)生不利影響;另外,針對(duì)浮承樁縱向振動(dòng)問(wèn)題,采用虛土樁模型描述其樁底土作用具有合理性和必要性。
關(guān)鍵詞 樁底土; 虛土樁; 樁?土相對(duì)滑移; 動(dòng)力阻抗; 解析解
引 言
樁基礎(chǔ)作為一種承載性好、沉降小的深基礎(chǔ),在近幾十年的眾多重點(diǎn)工程建設(shè)中被廣泛采用。實(shí)際工程中,樁基礎(chǔ)的受力情況一般較為復(fù)雜,不僅有靜荷載,還承受各類豎向動(dòng)荷載作用,例如交通荷載;而樁?土縱向振動(dòng)理論方法作為研究豎向動(dòng)荷載作用下樁基礎(chǔ)振動(dòng)特性的基石,引起越來(lái)越多的關(guān)注[1?5]。已有針對(duì)該理論方法的研究主要從樁側(cè)土和樁底土模型兩方面展開(kāi)。對(duì)于樁側(cè)土振動(dòng)模型而言,從Winkle模型[6]到Novak平面應(yīng)變模型[7],再到理論上更為嚴(yán)謹(jǐn)?shù)娜S連續(xù)介質(zhì)模型[8?10],發(fā)展已逐漸完善。在樁底土模型方面,端承樁僅采用固端支撐模擬樁底土作用即可滿足樁基縱向振動(dòng)特性的計(jì)算精度[11?13]。由于浮承樁振動(dòng)效應(yīng)受樁底土影響顯著,其采用的樁底土模型對(duì)于此類問(wèn)題研究的合理性與準(zhǔn)確性顯得尤為重要。
樁底黏彈性支撐模型因其物理概念清晰、簡(jiǎn)便等優(yōu)點(diǎn),在浮承樁振動(dòng)問(wèn)題中得到廣泛應(yīng)用[14?18],但該模型作為一種離散的彈簧?阻尼器元件,相關(guān)系數(shù)取值多依賴經(jīng)驗(yàn)方法,主觀性較強(qiáng)且無(wú)法合理考慮樁底土體波動(dòng)效應(yīng)的影響?;诖它c(diǎn)考慮,Muki等[19]最早提出了彈性半空間模型引入樁底土波動(dòng)效應(yīng),并結(jié)合虛擬桿疊加法對(duì)浮承樁縱向振動(dòng)特性進(jìn)行求解。該方法雖可在一定程度上彌補(bǔ)樁底黏彈性支撐假設(shè)的不足,但其僅適用于樁底基巖埋深較大的情況。為解決這一問(wèn)題,楊冬英等[20]通過(guò)將樁底土體考慮為與實(shí)體樁等直徑的虛擬土柱,提出了一種理論上更為嚴(yán)格的虛土樁模型,建立了樁側(cè)土?樁?虛土樁?樁底土完全耦合動(dòng)力相互作用體系,并對(duì)浮承樁縱向振動(dòng)特性影響因素進(jìn)行了系統(tǒng)分析。
上述針對(duì)樁?土縱向動(dòng)力相互作用問(wèn)題的研究均基于界面完全耦合假定,即忽略樁?土間的相對(duì)滑移。然而當(dāng)樁頂激振作用較強(qiáng)時(shí)樁?土界面會(huì)產(chǎn)生明顯的相對(duì)位移,該現(xiàn)象對(duì)于浮承樁更加顯著,此時(shí)仍采用該假定將會(huì)引起不可避免的誤差[21]。因此,如何合理考慮樁?土界面效應(yīng),對(duì)于樁?土縱向振動(dòng)問(wèn)題而言尤為重要。Nogami等[22?23]和EI Naggar等[24]最早提出了包括遠(yuǎn)場(chǎng)和近場(chǎng)兩部分的動(dòng)力Winkler模型,其中遠(yuǎn)場(chǎng)模型模擬樁側(cè)土作用,近場(chǎng)模型則描述樁?土間的相對(duì)滑移,推導(dǎo)得出了樁?土動(dòng)力相互作用的時(shí)域解。欒茂田等[25]則基于三維連續(xù)介質(zhì)模型考慮樁側(cè)土波動(dòng)效應(yīng),并采用動(dòng)力Winkler模型模擬樁?土界面非完全粘結(jié),不考慮樁底邊界條件,解析求解了樁縱向振動(dòng)問(wèn)題。在此基礎(chǔ)上,李強(qiáng)等[26?27]分別將樁底考慮為固定和黏彈性支撐,對(duì)非完全粘結(jié)條件下樁的縱向振動(dòng)特性進(jìn)行了求解。
綜上所述,已有研究在考慮樁?土界面非完全粘結(jié)條件對(duì)浮承樁縱向振動(dòng)特性進(jìn)行分析時(shí),或未考慮樁底邊界條件的影響,或僅采用簡(jiǎn)化的固端支撐或黏彈性支撐模擬樁底土作用,理論上均不夠嚴(yán)格。鑒于此,本文同時(shí)引入樁?土界面動(dòng)力Winkler模型和樁底虛土樁模型,建立三維軸對(duì)稱連續(xù)介質(zhì)中非完全粘結(jié)浮承樁縱向振動(dòng)體系,提出了一種適用性更廣的浮承樁縱向振動(dòng)特性研究方法。
1 力學(xué)模型與定解問(wèn)題
1.1 力學(xué)模型
基于樁側(cè)土三維連續(xù)介質(zhì)、樁底土虛土樁(Fictitious Soil Pile, FSP)模型和樁?土界面動(dòng)力Winkler模型建立的簡(jiǎn)化力學(xué)模型如圖1所示。圖中H為基巖上土層總厚度,HP和HFSP分別為樁側(cè)土(樁長(zhǎng))和樁底土(虛土樁樁長(zhǎng))厚度,樁頂作用激振力q(t),r0為樁徑,τ1(z,t)和τ2(z,t)分別為相應(yīng)位置處的剪應(yīng)力。
本文建立的力學(xué)模型所采用的基本假定如下:
(1) 土體為均質(zhì)黏彈性介質(zhì),樁側(cè)土與樁底土相互作用以彈簧和阻尼器并聯(lián)元件模擬,其中彈簧剛度系數(shù)為kS,阻尼系數(shù)為cS;
(2) 樁側(cè)土表面無(wú)應(yīng)力,樁底土底部固定;
(3)本文僅針對(duì)樁側(cè)和樁底土層總體較均勻情況;
(4) 實(shí)體樁和虛土樁為均質(zhì)等截面黏彈性Euler?Bernoulli桿,僅適用于長(zhǎng)徑比大于5的細(xì)長(zhǎng)樁,實(shí)體樁和虛土樁界面完全耦合;
(5)采用動(dòng)力Winkler模型考慮樁?土界面效應(yīng),其剛度和阻尼系數(shù)分別為kf和cf。
1.2 定解問(wèn)題
三維連續(xù)介質(zhì)土體控制方程可寫為:
3.1 合理性驗(yàn)證
李強(qiáng)[26]考慮樁?土界面滑移解析求解了飽和土中樁端固定時(shí)樁頂動(dòng)力阻抗解析解;王奎華等[28]基于樁?土完全耦合假定,利用虛土樁模型考慮樁底土作用推導(dǎo)得出樁縱向振動(dòng)特性解析解。將基于本文所建力學(xué)模型解析求解的樁頂動(dòng)力阻抗解答退化到端承情況(HFSP→0)和樁?土界面完全耦合情況(kf→∞),分別與文獻(xiàn)[26]和文獻(xiàn)[28]已有解對(duì)比如圖2和3所示。由圖可見(jiàn),本文退化解與已有解答吻合情況良好。
3.2 樁?土界面非完全粘結(jié)條件對(duì)樁動(dòng)力響應(yīng)的影響分析
圖4和5所示分別為樁?土界面動(dòng)力Winkle模型的剛度和阻尼系數(shù)對(duì)樁頂動(dòng)力阻抗的影響。綜合圖4和5可見(jiàn),樁?土界面動(dòng)力Winkle模型的剛度和阻尼系數(shù)的增大,會(huì)使得動(dòng)剛度和等效阻尼曲線的共振幅值減小,即樁的抗振性能會(huì)隨樁側(cè)土約束的增強(qiáng)而增強(qiáng)。這就說(shuō)明,針對(duì)存在明顯樁?土相對(duì)滑移的浮承樁縱向振動(dòng)問(wèn)題,若采用樁?土界面耦合假定則會(huì)高估樁側(cè)土的約束效應(yīng),無(wú)法合理評(píng)估樁基的抗振性能,并會(huì)對(duì)樁基抗振防振設(shè)計(jì)產(chǎn)生不利影響。此外,相對(duì)于樁?土界面阻尼系數(shù)而言,樁?土界面剛度系數(shù)對(duì)樁頂動(dòng)力阻抗影響更顯著。
樁頂動(dòng)力響應(yīng)曲線隨樁?土界面剛度系數(shù)和阻尼系數(shù)的變化情況分別如圖6和7所示。由圖6可見(jiàn),樁?土界面約束越強(qiáng),波在傳播過(guò)程中的耗能也就越多,這種規(guī)律在樁頂動(dòng)力響應(yīng)上表現(xiàn)為:樁頂速度頻響振幅及樁底速度反射信號(hào)幅值均隨著樁?土界面動(dòng)力Winkle模型的剛度和阻尼系數(shù)的增加而減小。該現(xiàn)象表明,在對(duì)樁頂動(dòng)力響應(yīng)進(jìn)行分析時(shí),采用樁?土界面完全耦合假定會(huì)使得樁底反射信號(hào)幅值降低,這對(duì)于識(shí)別樁底反射信號(hào)是不利的。對(duì)比圖6和7可知,相對(duì)于樁?土界面剛度系數(shù)而言,樁?土界面阻尼系數(shù)對(duì)樁頂動(dòng)力響應(yīng)的影響則可忽略。
3.3 虛土樁參數(shù)對(duì)樁動(dòng)力響應(yīng)的影響分析
圖8和9所示分別為樁底土層厚度,即虛土樁長(zhǎng)度對(duì)樁縱向振動(dòng)特性及速度響應(yīng)的影響。由圖9(b)可見(jiàn),HFSP→0時(shí)樁底反射信號(hào)與入射信號(hào)反相,這與端承樁反射信號(hào)特征相符,而采用虛土樁模型(HFSP=r0)計(jì)算所得樁底反射信號(hào)與入射信號(hào)同相,符合浮承樁反射信號(hào)特征。此外,由圖8和9(a)可見(jiàn),HFSP→0的樁動(dòng)力阻抗和速度導(dǎo)納(頻域)曲線上波峰與HFSP=r0時(shí)對(duì)應(yīng)曲線上波谷頻率相同,這是典型的端承樁與浮承樁振動(dòng)特性的差異,而HFSP→0代表端承樁,也就是說(shuō)采用虛土樁模型可以很好地反映浮承樁的振動(dòng)特性。綜上所述,可以說(shuō)明虛土樁模型在應(yīng)用到浮承樁縱向振動(dòng)問(wèn)題時(shí)的合理性,且其可退化到端承樁情況(HFSP→0),即虛土樁模型對(duì)于樁土縱向振動(dòng)問(wèn)題具有更廣泛的適用性。
4 結(jié) 論
本文通過(guò)建立浮承樁理論模型并求解其解析解,探討了樁?土界面非完全粘結(jié)條件和虛土樁參數(shù)對(duì)樁振動(dòng)特性和速度響應(yīng)的影響規(guī)律,計(jì)算結(jié)果表明:
(1) 針對(duì)存在明顯樁?土相對(duì)滑移的浮承樁縱向振動(dòng)問(wèn)題,若采用樁?土界面耦合假定會(huì)高估樁側(cè)土的約束效應(yīng),無(wú)法合理評(píng)估樁基的抗振性能,并會(huì)對(duì)樁基抗振防振設(shè)計(jì)產(chǎn)生不利影響。
(2) 樁?土界面約束越強(qiáng),波在傳播過(guò)程中的耗能也就越多,這種規(guī)律在樁頂動(dòng)力響應(yīng)上就表現(xiàn)為:樁頂速度頻響振幅及樁底速度反射信號(hào)幅值均隨著樁?土界面動(dòng)力Winkle模型的剛度和阻尼系數(shù)的增加而減小。該現(xiàn)象表明,在對(duì)樁頂動(dòng)力響應(yīng)進(jìn)行分析時(shí),采用樁?土界面完全耦合假定會(huì)對(duì)樁底反射信號(hào)的識(shí)別產(chǎn)生不利影響。
(3) 基于樁端固定模型與虛土樁模型所得樁動(dòng)力響應(yīng)解均呈現(xiàn)出典型的端承樁與浮承樁振動(dòng)特性的差異,說(shuō)明了采用虛土樁模型描述浮承樁樁底土體的合理性與必要性。此外,樁底土層厚度達(dá)到一倍樁徑后再繼續(xù)增加,其對(duì)樁縱向振動(dòng)特性的影響則可忽略。
參考文獻(xiàn)
1Varghese R, Boominathan A, Banerjee S. Stiffness and load sharing characteristics of piled raft foundations subjected to dynamic loads[J]. Soil Dynamics and Earthquake Engineering,2020,133: 106177.
2Xu Y , Zeng Z , Wang Z , et al. Seismic study of a widened and reconstructed long-span continuous steel truss bridge[J]. Structure and Infrastructure Engineering, 2020, 17(1):1-11.
3Meng Kun, Cui Chunyi, Li Haijiang. An ontology framework for pile integrity evaluation based on analytical methodology[J]. IEEE Access, 2020, 8: 72158-72168.
4吳文兵, 王奎華, 楊冬英,等. 成層土中基于虛土樁模型的樁基縱向振動(dòng)響應(yīng)[J]. 中國(guó)公路學(xué)報(bào), 2012, 25(2):72-80.
WU Wenbing, WANG Kuihua, YANG Dongying, et al. Longitudinal dynamic response to the pile embedded in layered soil based on fictitious soil pile model[J]. China Journal of Highway & Transport, 2012, 25(2):72-80.
5孟坤, 崔春義,許成順,等.三維飽和層狀土?虛土樁?實(shí)體樁體系縱向振動(dòng)頻域分析[J].巖石力學(xué)與工程學(xué)報(bào),2019,38(7):1470-1484.
MENG Kun, CUI Chunyi, XU Chengshun, et al. Frequency analysis of longitudinal vibration of three dimensional system including saturated layered soils,virtual soil pile and solid pile[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(7):1470-1484.
6Novak M, Beredugo Y O. Vertical vibration of embedded footings[J]. Soil Mechanics and Foundation Division, 1972, 98(12): 1291-1131.
7Novak M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974, 11(4):574-598.
8Nogami T, Novak M. Soil‐pile interaction in vertical vibration[J]. Earthquake Engineering & Structural Dynamics, 1976, 4(3):277-293.
9胡昌斌, 王奎華, 謝康和. 考慮樁土耦合作用時(shí)彈性支承樁縱向振動(dòng)特性分析及應(yīng)用[J]. 工程力學(xué), 2003, 20(2), 146-154.
HU Changbin, WANG Kuihua, XIE Kanghe. Soil-pile interaction in vertical vibrations of a pile with elastic bottom boundaries and its applications[J]. Engineering Mechanics, 2003, 20(2):146-154.
10王奎華, 闕仁波, 夏建中.考慮土體真三維波動(dòng)效應(yīng)時(shí)樁的振動(dòng)理論及對(duì)近似理論的校核[J]. 巖石力學(xué)與工程學(xué)報(bào), 2005, 24(8), 1363-1370.
WANG Kuihua, QUE Renbo, XIA Jianzhong. Theory of pile vibration considering true three-dimensional wave effect of soil and its check on the approximate theories[J]. Chinese Journal of Rock Mechanics & Engineering, 2005, 24(8): 1363-1370.
11Naggar M H, Novak M. Nonlinear axial interaction in pile dynamics[J]. Journal of Geotechnical Engineering, 1994, 120(4): 678-696.
12王奎華, 謝康和, 曾國(guó)熙. 有限長(zhǎng)樁受迫振動(dòng)問(wèn)題解析解及其應(yīng)用[J]. 巖土工程學(xué)報(bào), 1997, 19(6): 27-35.
WANG Kuihua, XIE Kanghe, ZENG Guoxi. Analytical solution to vibration of finite length pile under exciting force and its application[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(6): 27-35.
13王海東, 尚守平. 瑞利波作用下徑向非均質(zhì)地基中的單樁豎向響應(yīng)研究[J]. 振動(dòng)工程學(xué)報(bào), 2006, 19(2): 258-264.
WANG Haidong, SHANG Shouping. Research on vertical dynamic response of single-pile in radially inhomogeneous soil during the passage of Rayleigh waves[J]. Journal of Vibration Engineering, 2006, 19(2): 258-264.
14Nogami T, Konagai K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics, 1986, 112(11): 1241-1252.
15胡昌斌, 黃曉明. 成層粘彈性土中樁土耦合縱向振動(dòng)時(shí)域響應(yīng)研究[J]. 地震工程與工程振動(dòng), 2006, 26(4): 205-211.
HU Changbin, HUANG Xiaoming. A quasi-analytical solution to soil-pile interaction in longitudinal vibration in layered soils considering vertical wave effect on soils[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(4): 205-211.
16孔德森, 欒茂田, 楊慶. 樁土相互作用分析中的動(dòng)力Winkler模型研究評(píng)述[J]. 世界地震工程, 2005, 21(1):12-17.
KONG Desen, LUAN Maotian, YANG Qing. Review of dynamic Winkler model applied in pile-soil interaction analyses[J]. World Earthquake Engineering, 2005, 21(1):12-17.
17王奎華, 應(yīng)宏偉. 廣義Voigt土模型條件下樁的縱向振動(dòng)響應(yīng)與應(yīng)用[J]. 固體力學(xué)學(xué)報(bào), 2003, 24(3):293-303.
WANG Kuihua, YING Hongwei. Vibration of inhomogeneous pile embedded in layered soils with general Voigt models[J]. Acta Mechanica Solida Sinica, 2003, 24(3):293-303.
18馮世進(jìn), 陳云敏, 劉明振. 成層土中粘彈性樁縱向振動(dòng)分析及工程應(yīng)用[J]. 中國(guó)公路學(xué)報(bào), 2004, 17(2):59-63.
FENG Shijin, CHEN Yunmin, LIU Mingzhen. Analysis and application in engineering on vertical vibration of viscoelasticity piles in layered soil[J]. China Journal of Highway & Transport, 2004, 17(2): 59-63.
19Muki R, Sternberg E. Elastostatic load transfer to a half space from a partially embedded axially loaded rod[J].International Journal of Solids and Structures, 1970, 6(1): 69-90.
20楊冬英, 王奎華. 非均質(zhì)土中基于虛土樁法的樁基縱向振動(dòng)[J]. 浙江大學(xué)學(xué)報(bào)(工學(xué)版), 2010, 44(10): 2021-2028.
YANG Dongying, WANG Kuihua. Vertical vibration of pile based on fictitious soil-pile model in inhomogeneous soil[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(10): 2021-2028.
21Manna B, Baidya D K. Dynamic nonlinear response of pile foundations under vertical vibration-theory versus experiment[J]. Soil Dynamics and Earthquake Engineering, 2010,30:456-469.
22Nogami K, Konagai K, Otani J. Nonlinear time domain numerical model for pile group under transient dynamic forces[C]. Proceeding of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 1991, 3: 881-888.
23Nogami T , Otani J , Konagai K , et al. Nonlinear soil-pile interaction model for dynamic lateral motion[J]. Journal of Geotechnical Engineering, 1992, 118(1):89-106.
24El Naggar M H , Novak M . Nonlinear lateral interaction in pile dynamics[J]. Journal of Geotechnical Engineering, 1995, 14(4):678-696.
25欒茂田,孔德森. 單樁豎向動(dòng)力阻抗計(jì)算方法及其影響因素分析[J]. 振動(dòng)工程學(xué)報(bào), 2004, 17(4):500-505.
LUAN Maotian, KONG Desen. Simplified computational model and parametric studies of vertical dynamic impedance for single pile[J]. Journal of Vibration Engineering, 2004, 17(4):500-505.
26李強(qiáng). 飽和土中端承樁非完全黏結(jié)下的豎向振動(dòng)特性[J]. 水利學(xué)報(bào), 2007, 38(3):349-354.
LI Qiang. Vertical vibration of piles embedded in saturated soil considering the imperfect contact[J]. Journal of Hydraulic Engineering, 2007, 38(3):349-354.
27李強(qiáng), 鄭輝, 王奎華. 飽和土中摩擦樁豎向振動(dòng)解析解及應(yīng)用[J]. 工程力學(xué), 2011, 28(1):157-162.
LI Qiang, ZHENG Hui, WANG Kuihua. Analytical solution and its application of vertical vibration of a friction pile in saturated soil[J]. Engineering Mechanics, 2011, 28(1):157-162.
28王奎華, 王寧, 劉凱, 等. 三維軸對(duì)稱條件下基于虛土樁法的單樁縱向振動(dòng)分析[J]. 巖土工程學(xué)報(bào), 2012, 34(5):885-889.
WANG K H,WANG N,LIU K,et al. Longitudinal vibration of piles in 3D axisymmetric soil based on fictitious soil pile method[J]. Chinese Journal of Geotechnical Engineering,2012,34(5):885-892.
Vertical vibration characteristics for floating pile considering the incomplete bonding condition of pile-soil and the wave propagation effect of soil beneath pile
MENG Kun 1,2 ?CUI Chun-yi 1 ?XU Cheng-shun 3Yao Yi-yi 1Xin Yu 1LIANG Zhi-meng 1
1. Department of Civil Engineering, Dalian Maritime University, Dalian 116026, China;
2. College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China;
3. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
Abstract Based on dynamic Winkler model and fictitious soil pile model to consider the relative sliding at pile-soil interface and the propagation effect of soil beneath pile toe, respectively, the dynamic interaction system for a floating pile with incomplete bonding condition embedded in three-dimensional continuum is established. The separation variable method is introduced to solve the three-dimensional soil displacement control equation. Combined with the boundary conditions of soil surface and bedrock, the general solution of soil displacement is obtained. Considering the relevant parameters of the dynamic Winkler model as the boundary condition of the pile-soil interface, the longitudinal vibration characteristics of the pile are solved analytically in the frequency domain, and the obtained frequency domain analytical solution is extended to the time domain. The time domain response of the velocity is solved by using the inverse Fourier transform (IFT). Extensive parametric analyses are performed to investigate the effects of incomplete bonding condition at pile-soil interface and parameters of fictitious soil pile. The results show that the assumption of complete coupling of pile-soil interface may overestimate the restraint effect of pile surrounding soil on pile, which has an adverse impact on the anti-vibration design of pile foundation and the identification for reflected signal of pile toe. In addition, for the longitudinal vibration of floating bearing pile, it is reasonable and necessary to use the fictitious soil pile model to describe the soil action under the pile.
Keywords soil beneath pile toe; fictitious soil pile; relative sliding at the pile-soil interface; dynamic impedance; analytical solution