• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于BP-GA算法的時(shí)柵傳感器信號(hào)健康狀況預(yù)測(cè)

    2023-07-10 13:21:42張海霞
    電子產(chǎn)品世界 2023年6期

    張海霞

    關(guān)鍵詞:時(shí)柵位移傳感器;激勵(lì)信號(hào)誤差;組合預(yù)測(cè)模型;健康診斷

    時(shí)柵傳感器是一類根據(jù)時(shí)空轉(zhuǎn)換位移傳感器,其結(jié)構(gòu)簡(jiǎn)單并且能夠滿足多種環(huán)境的使用要求[1]。由于在長(zhǎng)期使用過程中,電路、信號(hào)處理器以及傳感器材料都會(huì)發(fā)生老化,上述情況都會(huì)導(dǎo)致測(cè)量誤差的增加,無法達(dá)到高精度測(cè)試的狀態(tài)[1-2]。為了更深入了解系統(tǒng)運(yùn)行情況,應(yīng)對(duì)時(shí)柵傳感器的信號(hào)處理系統(tǒng)進(jìn)行檢測(cè),從而提前消除各類潛在故障問題,有效降低損失,確保時(shí)柵傳感器能夠準(zhǔn)確測(cè)定位移參數(shù)[3-4]。目前的大部分時(shí)柵信號(hào)處理系統(tǒng)基本都是由模擬集成電路構(gòu)成,呈現(xiàn)明顯的非線性特征,無法獲得良好的元件容差性,當(dāng)電路模塊出現(xiàn)故障時(shí),系統(tǒng)激勵(lì)信號(hào)同時(shí)存在時(shí)變與非平穩(wěn)信息[5-8]。

    為使模型優(yōu)勢(shì)都得到充分發(fā)揮,本文設(shè)計(jì)了一種由灰色模型與BP 神經(jīng)網(wǎng)絡(luò)共同構(gòu)成的能夠預(yù)測(cè)運(yùn)行健康狀況的時(shí)柵信號(hào)處理系統(tǒng),確保預(yù)測(cè)結(jié)果可以準(zhǔn)確反映系統(tǒng)的健康情況。

    1 激勵(lì)信號(hào)誤差與測(cè)量精度

    圓型場(chǎng)式時(shí)柵結(jié)構(gòu)見圖1 所示。位于轉(zhuǎn)子線圈與傳感器定子間會(huì)產(chǎn)生勻速旋轉(zhuǎn)磁場(chǎng),使動(dòng)測(cè)頭與定測(cè)頭導(dǎo)線感應(yīng)產(chǎn)生電信號(hào),表示各自的空間位置,體現(xiàn)了被測(cè)單元的角位移參數(shù)[9]。

    2 組合預(yù)測(cè)模型

    可以利用BP 神經(jīng)網(wǎng)絡(luò)模型對(duì)長(zhǎng)時(shí)間以及含有大量歷史數(shù)據(jù)的時(shí)柵信號(hào)處理系統(tǒng)進(jìn)行分析,采用灰色模型更加適合分析含有較少歷史數(shù)據(jù)的時(shí)柵信號(hào)處理系統(tǒng)[10-11]。為了更好地滿足對(duì)該系統(tǒng)不同模塊電路的運(yùn)行狀況進(jìn)行測(cè)試的要求,可以發(fā)揮BP 神經(jīng)網(wǎng)絡(luò)模型所具備的時(shí)變捕捉以及非線性映射特性,同時(shí)利用G(1,1) 模型能夠快速預(yù)測(cè)樣本數(shù)量少和無規(guī)律數(shù)列的特征,綜合發(fā)揮上述兩種預(yù)測(cè)模型的優(yōu)勢(shì),根據(jù)加權(quán)-比例-平均的處理方式,建立相應(yīng)的加權(quán)平方以及平均組合模型,由此獲得能夠適應(yīng)不同樣本數(shù)量的預(yù)測(cè)模型,使預(yù)測(cè)模型達(dá)到更大適用范圍并顯著增大預(yù)測(cè)精度[12]。

    3 預(yù)測(cè)模型建立

    對(duì)圓型場(chǎng)結(jié)構(gòu)的時(shí)柵傳感器進(jìn)行測(cè)試,用于測(cè)試的時(shí)柵信號(hào)處理系統(tǒng)實(shí)際健康狀態(tài)是已知的,總共提供4個(gè)數(shù)據(jù)接口,構(gòu)建了時(shí)柵傳感器數(shù)據(jù)采集系統(tǒng),按照6 h間隔條件從偏置電路、功率放大模塊、濾波電路中采集輸出數(shù)據(jù),由于從現(xiàn)場(chǎng)進(jìn)行數(shù)據(jù)采集需要花費(fèi)很長(zhǎng)的時(shí)間,因此從實(shí)驗(yàn)室的數(shù)據(jù)庫(kù)內(nèi)按照6 h 間隔對(duì)應(yīng)的歷史數(shù)據(jù)組成樣本,分別從各電路模塊中輸出600 個(gè)數(shù)據(jù)進(jìn)行測(cè)試,從中選擇500 個(gè)數(shù)據(jù)組成訓(xùn)練模型,再以剩下的100 個(gè)對(duì)模型進(jìn)行檢驗(yàn),利用該系統(tǒng)的10 d 內(nèi)包含的數(shù)據(jù)對(duì)最后20 d 中的系統(tǒng)健康情況進(jìn)行預(yù)測(cè)。

    4 實(shí)驗(yàn)及討論

    在預(yù)測(cè)模型中輸入預(yù)處理后的數(shù)據(jù)并完成訓(xùn)練以及測(cè)試過程。之后通過功率放大模塊對(duì)激勵(lì)信號(hào)幅值進(jìn)行輸出,根據(jù)實(shí)際測(cè)試結(jié)果判斷系統(tǒng)預(yù)測(cè)精度。

    通過計(jì)算得到表1 評(píng)價(jià)指標(biāo)。模型相關(guān)系數(shù)R2 都高于98%,推斷預(yù)測(cè)值和實(shí)際測(cè)試值基本相符,達(dá)到了較低的預(yù)測(cè)誤差。

    對(duì)上述兩個(gè)模型獲得的預(yù)測(cè)結(jié)果進(jìn)行分析可知,第1 個(gè)模型的預(yù)測(cè)效果比第兩個(gè)模型更優(yōu)。利用2 次規(guī)劃模型計(jì)算得到組合模型ω1與ω2 依次為0.7 與0.3。

    較預(yù)測(cè)結(jié)果可知,組合模型產(chǎn)生的測(cè)試點(diǎn)比較靠近預(yù)測(cè)結(jié)果,達(dá)到了很高相關(guān)系數(shù),誤差也較低,由此可見,該模型可以滿足預(yù)測(cè)要求,實(shí)現(xiàn)準(zhǔn)確預(yù)測(cè)。

    計(jì)算出兩個(gè)參數(shù)的相對(duì)誤差再跟健康診斷標(biāo)準(zhǔn)進(jìn)行對(duì)比,得到模塊電路健康預(yù)測(cè)結(jié)果見表2 所示。比較模型診斷數(shù)據(jù)與電路的實(shí)際健康情況,兩種模型存在1 個(gè)模塊發(fā)生診斷結(jié)果偏差的現(xiàn)象,采用組合模型能夠?qū)崿F(xiàn)所有模塊健康狀況的準(zhǔn)確預(yù)測(cè),獲得比單一模型更優(yōu)的預(yù)測(cè)精度。

    5 結(jié)束語

    本文設(shè)計(jì)了一種綜合運(yùn)用BP 神經(jīng)網(wǎng)絡(luò)與灰色模型進(jìn)行預(yù)測(cè)的模型。根據(jù)激勵(lì)信號(hào)的實(shí)際誤差引起的測(cè)試精度變化,得到預(yù)測(cè)模型的各項(xiàng)參數(shù)。之后建立組合預(yù)測(cè)模型并設(shè)置了健康狀況的參考標(biāo)準(zhǔn)。經(jīng)測(cè)試發(fā)現(xiàn),采用此健康預(yù)測(cè)模式可以實(shí)現(xiàn)高可靠性與高精度的預(yù)測(cè)效果,能夠提前掌握電路系統(tǒng)的健康情況。

    疏勒县| 西贡区| 吉林市| 达日县| 棋牌| 合山市| 竹北市| 略阳县| 永泰县| 册亨县| 镇宁| 会同县| 新乐市| 冕宁县| 淮南市| 布拖县| 安国市| 宁海县| 通许县| 武城县| 黄梅县| 清新县| 桃江县| 华安县| 邵阳市| 防城港市| 阿拉善左旗| 桦甸市| 始兴县| 潮安县| 永和县| 河曲县| 邯郸县| 元氏县| 昭苏县| 祁东县| 义马市| 新丰县| 宁明县| 仙居县| 抚远县|